Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 457
Filtrar
1.
Nutrients ; 16(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39275356

RESUMEN

ATP-binding cassette transporter subfamily G member 2 (ABCG2) is responsible for the excretion of foreign substances, such as uric acid (UA) and indoxyl sulfate (IS), from the body. Given the importance of increased ABCG2 expression in UA excretion, we investigated the enhancement of intestinal ABCG2 expression using Lactiplantibacillus plantarum 06CC2 (LP06CC2). Mice were reared on a potassium oxonate-induced high-purine model at doses of 0.02% or 0.1% LP06CC2 for three weeks. Results showed that LP06CC2 feeding resulted in increased ABCG2 expression in the small intestine. The expression level of large intestinal ABCG2 also showed a tendency to increase, suggesting upregulation of the intestinal excretion transporter ABCG2 by LP06CC2. Overall, LP06CC2 treatment increased fecal UA excretion and showed a trend towards increased fecal excretion of IS, suggesting that LP06CC2 treatment enhanced the expression of intestinal ABCG2, thereby promoting the excretion of UA and other substances from the intestinal tract.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Ácido Úrico , Animales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Ácido Úrico/metabolismo , Ácido Úrico/orina , Ratones , Masculino , Heces/química , Heces/microbiología , Probióticos , Mucosa Intestinal/metabolismo , Lactobacillus plantarum/metabolismo , Lactobacillaceae/metabolismo , Intestino Delgado/metabolismo , Intestinos/microbiología
3.
J Transl Med ; 22(1): 659, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010173

RESUMEN

BACKGROUND: Spinal cord injury (SCI) is characterized by extensive demyelination and inflammatory responses. Facilitating the clearance of lipid droplets (LDs) within microglia contributes to creating a microenvironment that favors neural recovery and provides essential materials for subsequent remyelination. Therefore, investigating MicroRNAs (miRNAs) that regulate lipid homeostasis after SCI and elucidating their potential mechanisms in promoting LDs clearance in microglia have become focal points of SCI research. METHODS: We established a subacute C5 hemicontusion SCI model in mice and performed transcriptomic sequencing on the injury epicenter to identify differentially expressed genes and associated pathways. Confocal imaging was employed to observe LDs accumulation. Multi-omics analyses were conducted to identify differentially expressed mRNA and miRNA post-SCI. Pathway enrichment analysis and protein-protein interaction network construction were performed using bioinformatics methods, revealing miR-223-Abca1 as a crucial miRNA-mRNA pair in lipid metabolism regulation. BV2 microglia cell lines overexpressing miR-223 were engineered, and immunofluorescence staining, western blot, and other techniques were employed to assess LDs accumulation, relevant targets, and inflammatory factor expression, confirming its role in regulating lipid homeostasis in microglia. RESULTS: Histopathological results of our hemicontusion SCI model confirmed LDs aggregation at the injury epicenter, predominantly within microglia. Our transcriptomic analysis during the subacute phase of SCI in mice implicated ATP-binding cassette transporter A1 (Abca1) as a pivotal gene in lipid homeostasis, cholesterol efflux and microglial activation. Integrative mRNA-miRNA multi-omics analysis highlighted the crucial role of miR-223 in the neuroinflammation process following SCI, potentially through the regulation of lipid metabolism via Abca1. In vitro experiments using BV2 cells overexpressing miR-223 demonstrated that elevated levels of miR-223 enhance ABCA1 expression in myelin debris and LPS-induced BV2 cells. This promotes myelin debris degradation and LDs clearance, and induces a shift toward an anti-inflammatory M2 phenotype. CONCLUSIONS: In summary, our study unveils the critical regulatory role of miR-223 in lipid homeostasis following SCI. The mechanism by which this occurs involves the upregulation of ABCA1 expression, which facilitates LDs clearance and myelin debris degradation, consequently alleviating the lipid burden, and inhibiting inflammatory polarization of microglia. These findings suggest that strategies to enhance miR-223 expression and target ABCA1, thereby augmenting LDs clearance, may emerge as appealing new clinical targets for SCI treatment.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Gotas Lipídicas , Ratones Endogámicos C57BL , MicroARNs , Microglía , Traumatismos de la Médula Espinal , Regulación hacia Arriba , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , MicroARNs/metabolismo , MicroARNs/genética , Microglía/metabolismo , Microglía/patología , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Gotas Lipídicas/metabolismo , Ratones , Línea Celular , Masculino , Metabolismo de los Lípidos/genética
4.
J Transl Int Med ; 12(3): 288-298, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39081282

RESUMEN

Background and Objectives: Overcoming ATP-binding cassette subfamily G member 2 (ABCG2)-mediated multidrug resistance (MDR) has attracted the attention of scientists because one of the critical factors resulting in MDR in cancer is the overexpression of ABCG2. RN486, a Bruton's Tyrosine Kinase (BTK) inhibitor, was discovered to potentially reverse ABCB1-mediated MDR. However, there is still uncertainty about whether RN486 has a reversal off-target impact on ABCG2-mediated MDR. Methods: MTT assay was used to detect the reversal effect of RN486 on ABCG2-overexpressing cancer cells. The ABCG2 expression level and subcellular localization were examined by Western blotting and immunofluorescence. Drug accumulation and eflux assay and ATPase assay were performed to analyze the ABCG2 transporter function and ATPase activity. Molecular modeling predicted the binding between RN486 and ABCG2 protein. Results: Non-toxic concentrations of RN486 remarkably increased the sensitivity of ABCG2-overexpressing cancer cells to conventional anticancer drugs mitoxantrone and topotecan. The reversal mechanistic studies showed that RN486 elevated the drug accumulation because of reducing the eflux of ABCG2 substrate drug in ABCG2-overexpressing cancer cells. In addition, the inhibitory efect of RN486 on ABCG2-associated ATPase activity was also verified. Molecular docking study implied a strong binding afinity between RN486 and ABCG2 transporter. Meanwhile, the ABCG2 subcellular localization was not altered by the treatment of RN486, but the expression level of ABCG2 was down-regulated. Conclusions: Our studies propose that RN486 can antagonize ABCG2-mediated MDR in cancer cells via down-regulating the expression level of ABCG2 protein, reducing ATPase activity of ABCG2 transporter, and inhibiting the transporting function. RN486 could be potentially used in conjunction with chemotherapy to alleviate MDR mediated by ABCG2 in cancer.

5.
J Pers Med ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38929857

RESUMEN

The ATP-binding cassette (ABC) transporters are a vast group of 48 membrane proteins, some of which are of notable physiological and clinical importance. Some ABC transporters are involved in functions such as the transport of chloride ions, bilirubin, reproductive hormones, cholesterol, and iron. Consequently, genetic or physiological disruption in these functions is manifested in various disease processes like cystic fibrosis, Tangier disease, and sideroblastic anemia. Among other etiologies, primary sideroblastic anemia results from a genetic mutation in the ATP-binding cassette-7 (ABCB7), a member of the ABC transporter family. There are not many articles specifically tackling the disease processes caused by ABC transporters in detail. Some testing methodologies previously reported in the available literature for investigating sideroblastic anemia need updating. Here, we expound on the relevance of ABCB7 as a clinically important ABC transporter and a rare participant in the disease process of Sideroblastic anemia. The other genetic and secondary etiologies of sideroblastic anemia, which do not involve mutations in the ABCB7 protein, are also described. We review the pathophysiology, clinical course, symptoms, diagnosis, and treatment of sideroblastic anemia with a focus on modern technologies for laboratory testing.

6.
Transl Cancer Res ; 13(4): 1642-1664, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38737683

RESUMEN

Background: The adenosine triphosphate-binding-cassette (ABC) transporter orchestrates the transmembrane transport of diverse substrates with the aid of ATP as an energy source. ABC transporter constitutes a widespread superfamily of transporters prominently present on the cellular membrane of organisms. Advancements in understanding have unveiled additional roles beyond mere intracellular or extracellular transport functions for the ABC protein family, encompassing involvement in DNA repair, protein translation, and gene expression regulation. Yet its role in tumors is still unknown. Methods: This study drew support from multiple databases, including Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA), The Cancer Genome Atlas (TCGA), and employed multidimensional bioinformatics analyses, incorporating online databases and the R-project. Through a comprehensive analysis, we seek to discern transcriptional-level disparities among genes and their consequential impacts on prognosis, tumor microenvironment (TME), stemness score, immune subtypes, clinical characteristics, and drug sensitivity across human cancers. Results: ABC transporter subfamily B (ABCB) family genes exhibited heightened expression across diverse tumors, demonstrating a significant correlation with overall prognosis in pan-cancer contexts. Notably, gene expression levels manifested substantial associations with TME, stemness score, immune subtypes, clinical characteristics, and drug sensitivity in specific cancers, including kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), and pancreatic adenocarcinoma (PAAD). Within this subset, transporter associated with antigen processing 1 (TAP1), TAP2, and ABCB6 emerged as noteworthy oncogenes. Conclusions: The outcomes of this study contribute to a comprehensive understanding of the implications of ABCB family genes in tumor progression, offering insights into potential therapeutic targets for cancer. Notably, the identification of ABCB6 as a significant oncogene suggests promising avenues for targeted therapies in KIRP, LIHC, and PAAD.

7.
J Biochem Mol Toxicol ; 38(6): e23732, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769657

RESUMEN

Achieving targeted, customized, and combination therapies with clarity of the involved molecular pathways is crucial in the treatment as well as overcoming multidrug resistance (MDR) in cancer. Nanotechnology has emerged as an innovative and promising approach to address the problem of drug resistance. Developing nano-formulation-based therapies using therapeutic agents poses a synergistic effect to overcome MDR in cancer. In this review, we aimed to highlight the important pathways involved in the progression of MDR in cancer mediated through nanotechnology-based approaches that have been employed to circumvent them in recent years. Here, we also discussed the potential use of marine metabolites to treat MDR in cancer, utilizing active drug-targeting nanomedicine-based techniques to enhance selective drug accumulation in cancer cells. The discussion also provides future insights for developing complex targeted, multistage responsive nanomedical drug delivery systems for effective cancer treatments. We propose more combinational studies and their validation for the possible marine-based nanoformulations for future development.


Asunto(s)
Productos Biológicos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Nanotecnología , Neoplasias , Humanos , Productos Biológicos/química , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nanotecnología/métodos , Organismos Acuáticos/química , Animales , Nanomedicina/métodos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Sistemas de Liberación de Medicamentos
8.
Atherosclerosis ; 397: 117578, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38797615

RESUMEN

BACKGROUND AND AIMS: High density lipoprotein (HDL) exerts an anti-atherosclerotic effect via reverse cholesterol transport (RCT). Several phases of RCT are transcriptionally controlled by Liver X receptors (Lxrs). Although macrophage Lxrs reportedly promote RCT, it is still uncertain whether hepatic Lxrs affect RCT in vivo. METHODS: To inhibit Lxr-dependent pathways in mouse livers, we performed hepatic overexpression of sulfotransferase family cytosolic 2B member 1 (Sult2b1) using adenoviral vector (Ad-Sult2b1). Ad-Sult2b1 or the control virus was intravenously injected into wild type mice and Lxrα/ß double knockout mice, under a normal or high-cholesterol diet. A macrophage RCT assay and an HDL kinetic study were performed. RESULTS: Hepatic Sult2b1 overexpression resulted in reduced expression of Lxr-target genes - ATP-binding cassette transporter G5/G8, cholesterol 7α hydroxylase and Lxrα itself - respectively reducing or increasing cholesterol levels in HDL and apolipoprotein B-containing lipoproteins (apoB-L). A macrophage RCT assay revealed that Sult2b1 overexpression inhibited fecal excretion of macrophage-derived 3H-cholesterol only under a high-cholesterol diet. In an HDL kinetic study, Ad-Sult2b1 promoted catabolism/hepatic uptake of HDL-derived cholesterol, thereby reducing fecal excretion. Finally, in Lxrα/ß double knockout mice, hepatic Sult2b1 overexpression increased apoB-L levels, but there were no differences in HDL levels or RCT compared to the control, indicating that Sult2b1-mediated effects on HDL/RCT and apoB-L were distinct: the former was Lxr-dependent, but not the latter. CONCLUSIONS: Hepatic Lxr inhibition negatively regulates circulating HDL levels and RCT by reducing Lxr-target gene expression.


Asunto(s)
Colesterol , Receptores X del Hígado , Hígado , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Sulfotransferasas , Animales , Receptores X del Hígado/metabolismo , Receptores X del Hígado/genética , Hígado/metabolismo , Transporte Biológico , Ratones , Colesterol/metabolismo , Macrófagos/metabolismo , Sulfotransferasas/metabolismo , Sulfotransferasas/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5/genética , Colesterol en la Dieta , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/metabolismo , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8/genética , Masculino , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas
9.
Biomolecules ; 14(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38672442

RESUMEN

By 2013, it had been shown that the genes cadherin-like receptor (Cad) and ATP-binding cassette transporter subfamily C2 (ABCC2) were responsible for insect resistance to several Cry1A toxins, acting as susceptibility-determining receptors, and many review articles have been published. Therefore, this review focuses on information about receptors and receptor-binding sites that have been revealed since 2014. Since 2014, studies have revealed that the receptors involved in determining susceptibility vary depending on the Cry toxin subfamily, and that binding affinity between Cry toxins and receptors plays a crucial role. Consequently, models have demonstrated that ABCC2, ABCC3, and Cad interact with Cry1Aa; ABCC2 and Cad with Cry1Ab and Cry1Ac; ABCC2 and ABCC3 with Cry1Fa; ABCB1 with Cry1Ba, Cry1Ia, Cry9Da, and Cry3Aa; and ABCA2 with Cry2Aa and Cry2Ba, primarily in the silkworm, Bombyx mori. Furthermore, since 2017, it has been suggested that the binding sites of BmCad and BmABCC2 on Cry1Aa toxin overlap in the loop region of domain II, indicating that Cry toxins use various molecules as receptors due to their ability to bind promiscuously in this region. Additionally, since 2017, several ABC transporters have been identified as low-efficiency receptors that poorly induce cell swelling in heterologously expressing cultured cells. In 2024, research suggested that multiple molecules from the ABC transporter subfamily, including ABCC1, ABCC2, ABCC3, ABCC4, ABCC10, and ABCC11, act as low-efficiency receptors for a single Cry toxin in the midgut of silkworm larvae. This observation led to the hypothesis that the presence of such low-efficiency receptors contributes to the evolution of Cry toxins towards the generation of highly functional receptors that determine the susceptibility of individual insects. Moreover, this evolutionary process is considered to offer valuable insights for the engineering of Cry toxins to overcome resistance and develop countermeasures against resistance.


Asunto(s)
Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Animales , Toxinas de Bacillus thuringiensis/metabolismo , Sitios de Unión , Bombyx/metabolismo , Bombyx/genética , Endotoxinas/metabolismo , Endotoxinas/química , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/química , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Unión Proteica
10.
Biochem Biophys Res Commun ; 712-713: 149955, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640737

RESUMEN

We previously demonstrated a positive relation of secretory phospholipase A2 group IIA (sPLA2-IIA) with circulating high-density lipoprotein cholesterol (HDL-C) in patients with coronary artery disease, and sPLA2-IIA increased cholesterol efflux in THP-1 cells through peroxisome proliferator-activated receptor-γ (PPAR-γ)/liver X receptor α/ATP-binding cassette transporter A1 (ABCA1) signaling pathway. The aim of the present study was to examine the role of sPLA2-IIA over-expression on lipid profile in a transgenic mouse model. Fifteen apoE-/- and C57BL/7 female mice received bone marrow transplantation from transgenic SPLA2-IIA mice, and treated with specific PPAR-γ inhibitor GW9662. High fat diet was given after one week of bone marrow transplantation, and animals were sacrificed after twelve weeks. Immunohistochemical staining showed over-expression of sPLA2-IIA protein in the lung and spleen. The circulating level of HDL-C, but not that of low-density lipoprotein cholesterol (LDL-C), total cholesterol, or total triglyceride, was increased by sPLA2-IIA over-expression, and was subsequently reversed by GW9662 treatment. Over-expression of sPLA2-IIA resulted in augmented expression of cholesterol transporter ABCA1 at mRNA level in the aortas, and at protein level in macrophages, co-localized with macrophage specific antigen CD68. GW9662 exerted potent inhibitory effects on sPLA2-IIA-induced ABCA1 expression. Conclusively, we demonstrated the effects of sPLA2-IIA on circulating HDL-C level and the expression of ABCA1, possibly through regulation of PPAR-γ signaling in transgenic mouse model, that is in concert with the conditions in patients with coronary artery disease.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Molécula CD68 , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Femenino , Ratones , Fosfolipasas A2 Grupo II/metabolismo , Fosfolipasas A2 Grupo II/genética , PPAR gamma/metabolismo , HDL-Colesterol/sangre , HDL-Colesterol/metabolismo , Pulmón/metabolismo , Pulmón/patología , Antígenos de Diferenciación Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Antígenos CD/genética , Bazo/metabolismo , Trasplante de Médula Ósea , Humanos , Lípidos/sangre
11.
Biochem Pharmacol ; 228: 116219, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38643907

RESUMEN

The pivotal roles of ATP-binding cassette (ABC) transporters in drug resistance have been widely appreciated. Here we report that marein, a natural product from Coreopsis tinctoria Nutt, is a potent chemo-sensitizer in drug resistant cancer cells overexpressing ABCG2 transporter. We demonstrate that marein can competitively inhibit efflux activity of ABCG2 protein and increase the intracellular accumulation of the chemotherapeutic drugs that belong to substrate of this transporter. We further show that marein can bind to the conserved amino acid residue F439 of ABCG2, a critical site for drug-substrate interaction. Moreover, marein can significantly sensitize the ABCG2-expressing tumor cells to chemotherapeutic drugs such as topotecan, mitoxantrone, and olaparib. This study reveals a novel role and mechanism of marein in modulating drug resistance, and may have important implications in treatment of cancers that are resistant to chemotherapeutic drugs that belong to the substrates of ABCG2 transporters.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Antineoplásicos , Chalconas , Resistencia a Antineoplásicos , Proteínas de Neoplasias , Humanos , Antineoplásicos/farmacología , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Productos Biológicos/farmacología , Productos Biológicos/química , Línea Celular Tumoral , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Células HEK293 , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Chalconas/uso terapéutico
12.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38578272

RESUMEN

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Asunto(s)
Bivalvos , Dinoflagelados , Animales , Rifampin/metabolismo , alfa-Tocoferol/metabolismo , Mariscos/análisis , Colchicina/metabolismo , Dinoflagelados/metabolismo
13.
Theor Appl Genet ; 137(3): 63, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427048

RESUMEN

KEY MESSAGE: The gene BrABCG26 responsible for male sterility of Chinese cabbage was confirmed by two allelic mutants. Male-sterile lines are an important way of heterosis utilization in Chinese cabbage. In this study, two allelic male-sterile mutants msm3-1 and msm3-2 were obtained from a Chinese cabbage double haploid (DH) line 'FT' by using EMS-mutagenesis. Compared to the wild-type 'FT,' the stamens of mutants were completely degenerated and had no pollen, and other characters had no obvious differences. Cytological observation revealed that the failure of vacuolation of the mononuclear microspore, accompanied by abnormal tapetal degradation, resulted in anther abortion in mutants. Genetic analysis showed that a recessive gene controlled the mutant trait. MutMap combined with kompetitive allele specific PCR genotyping analyses showed that BraA01g038270.3C, encoding a transporter ABCG26 that played a vital role in pollen wall formation, was the candidate gene for msm3-1, named BrABCG26. Compared with wild-type 'FT,' the mutations existed on the second exon (C to T) and the sixth exon (C to T) of BrABCG26 gene in mutants msm3-1 and msm3-2, leading to the loss-of-function truncated protein, which verified the BrABCG26 function in stamen development. Subcellular localization and expression pattern analysis indicated that BrABCG26 was localized in the nucleus and was expressed in all organs, with the highest expression in flower buds. Compared to the wild-type 'FT,' the expressions of BrABCG26 were significantly reduced in flower buds and anthers of mutants. Promoter activity analysis showed that a strong GUS signal was detected in flower buds. These results indicated that BrABCG26 is responsible for the male sterility of msm3 mutants in Chinese cabbage.


Asunto(s)
Brassica rapa , Brassica , Infertilidad Vegetal , Transportadoras de Casetes de Unión a ATP/genética , Brassica/genética , Brassica rapa/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Mutación , Infertilidad Vegetal/genética , Proteínas de Plantas/genética
14.
Int J Biol Sci ; 20(5): 1729-1743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38481816

RESUMEN

Background: N6-methyladenosine (m6A) is the most common and abundant mRNA modification, playing an essential role in biological processes and tumor development. However, the role of m6A methylation in skin cutaneous melanoma (SKCM) is not yet clear. This study analyzed the expression of m6A-related functional genes in SKCM and aimed to explore the key demethylase ALKBH5 mediated m6A modification and its potential mechanism in human SKCM. Methods: Based on public databases, the m6A-related gene expression landscape in SKCM was portrayed. MeRIP-Seq and RNA-Seq were used to recognize the downstream target of ALKBH5. In vivo and in vitro functional phenotype and rescue functional experiments were performed to explore the mechanism of the ALKBH5-m6A-ABCA1 axis in SKCM. Results: We found ALKBH5 upregulated in SKCM, associated with poor prognosis. ALKBH5 can promote melanoma cell proliferation, colony formation, migration, and invasion and inhibit autophagy in vitro, facilitating tumor growth and metastasis in vivo. We identified ABCA1, a membrane protein that assists cholesterol efflux, as a downstream target of ALKBH5-mediated m6A demethylation. Finally, our data demonstrated that ALKBH5 promoted SKCM via mediating ABCA1 downregulation by reducing ABCA1 mRNA stability in an m6A-dependent manner. Conclusion: Our findings exhibited the functional value of the key demethylase ALKBH5 mediated m6A modification in the progression of SKCM, suggesting the ALKBH5-m6A-ABCA1 axis as a potential therapeutic target in SKCM.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Piel , Autofagia/genética , Desmetilación , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Transportador 1 de Casete de Unión a ATP
15.
mSystems ; 9(4): e0020624, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38514462

RESUMEN

Helicobacter pylori is a highly successful pathogen that poses a substantial threat to human health. However, the dynamic interaction between H. pylori and the human gastric epithelium has not been fully investigated. In this study, using dual RNA sequencing technology, we characterized a cytotoxin-associated gene A (cagA)-modulated bacterial adaption strategy by enhancing the expression of ATP-binding cassette transporter-related genes, metQ and HP_0888, upon coculturing with human gastric epithelial cells. We observed a general repression of electron transport-associated genes by cagA, leading to the activation of oxidative phosphorylation. Temporal profiling of host mRNA signatures revealed the downregulation of multiple splicing regulators due to bacterial infection, resulting in aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. Moreover, we demonstrated a protective effect of gastric H. pylori colonization against chronic dextran sulfate sodium (DSS)-induced colitis. Mechanistically, we identified a cluster of propionic and butyric acid-producing bacteria, Muribaculaceae, selectively enriched in the colons of H. pylori-pre-colonized mice, which may contribute to the restoration of intestinal barrier function damaged by DSS treatment. Collectively, this study presents the first dual-transcriptome analysis of H. pylori during its dynamic interaction with gastric epithelial cells and provides new insights into strategies through which H. pylori promotes infection and pathogenesis in the human gastric epithelium. IMPORTANCE: Simultaneous profiling of the dynamic interaction between Helicobacter pylori and the human gastric epithelium represents a novel strategy for identifying regulatory responses that drive pathogenesis. This study presents the first dual-transcriptome analysis of H. pylori when cocultured with gastric epithelial cells, revealing a bacterial adaptation strategy and a general repression of electron transportation-associated genes, both of which were modulated by cytotoxin-associated gene A (cagA). Temporal profiling of host mRNA signatures dissected the aberrant pre-mRNA splicing of functional genes involved in the cell cycle process in response to H. pylori infection. We demonstrated a protective effect of gastric H. pylori colonization against chronic DSS-induced colitis through both in vitro and in vivo experiments. These findings significantly enhance our understanding of how H. pylori promotes infection and pathogenesis in the human gastric epithelium and provide evidence to identify targets for antimicrobial therapies.


Asunto(s)
Colitis , Helicobacter pylori , Animales , Humanos , Ratones , Proteínas Bacterianas/genética , Antígenos Bacterianos/genética , Helicobacter pylori/genética , Transcriptoma/genética , Precursores del ARN/metabolismo , Interacciones Huésped-Patógeno/genética , Análisis de Secuencia de ARN , ARN Mensajero/metabolismo , Citotoxinas/metabolismo
16.
BMC Genomics ; 25(1): 315, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532362

RESUMEN

Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.


Asunto(s)
Glycyrrhiza , Transcriptoma , Transportadoras de Casetes de Unión a ATP/genética , Ácidos Indolacéticos/metabolismo , Glycyrrhiza/genética , Glycyrrhiza/metabolismo , Estrés Fisiológico/genética , Adenosina Trifosfato , Regulación de la Expresión Génica de las Plantas , Filogenia
17.
Cells ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474414

RESUMEN

The reabsorption of uric acid (UA) is mainly mediated by urate transporter 1 (URAT1) and glucose transporter 9 (GLUT9) in the kidneys. Dotinurad inhibits URAT1 but does not inhibit other UA transporters, such as GLUT9, ATP-binding cassette transporter G2 (ABCG2), and organic anion transporter 1/3 (OAT1/3). We found that dotinurad ameliorated the metabolic parameters and renal function in hyperuricemic patients. We consider the significance of the highly selective inhibition of URAT1 by dotinurad for metabolic syndrome, chronic kidney disease (CKD), and cardiovascular disease (CVD). The selective inhibition of URAT1 by dotinurad increases urinary UA in the proximal tubules, and this un-reabsorbed UA may compete with urinary glucose for GLUT9, reducing glucose reabsorption. The inhibition by dotinurad of UA entry via URAT1 into the liver and adipose tissues increased energy expenditure and decreased lipid synthesis and inflammation in rats. Such effects may improve metabolic parameters. CKD patients accumulate uremic toxins, including indoxyl sulfate (IS), in the body. ABCG2 regulates the renal and intestinal excretion of IS, which strongly affects CKD. OAT1/3 inhibitors suppress IS uptake into the kidneys, thereby increasing plasma IS, which produces oxidative stress and induces vascular endothelial dysfunction in CKD patients. The highly selective inhibition of URAT1 by dotinurad may be beneficial for metabolic syndrome, CKD, and CVD.


Asunto(s)
Benzotiazoles , Enfermedades Cardiovasculares , Síndrome Metabólico , Transportadores de Anión Orgánico , Insuficiencia Renal Crónica , Humanos , Ratas , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Síndrome Metabólico/tratamiento farmacológico , Uricosúricos/uso terapéutico , Ácido Úrico/metabolismo , Insuficiencia Renal Crónica/tratamiento farmacológico , Glucosa
18.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256272

RESUMEN

Cornelian cherry (Cornus mas L.) fruits, abundant in iridoids and anthocyanins, are natural products with proven beneficial impacts on the functions of the cardiovascular system and the liver. This study aims to assess and compare whether and to what extent two different doses of resin-purified cornelian cherry extract (10 mg/kg b.w. or 50 mg/kg b.w.) applied in a cholesterol-rich diet rabbit model affect the levels of sterol regulatory element-binding protein 1c (SREBP-1c) and CCAAT/enhancer binding protein α (C/EBPα), and various liver X receptor-α (LXR-α), peroxisome proliferator-activated receptor-α (PPAR-α), and peroxisome proliferator-activated receptor-γ (PPAR-γ) target genes. Moreover, the aim is to evaluate the resistive index (RI) of common carotid arteries (CCAs) and aortas, and histopathological changes in CCAs. For this purpose, the levels of SREBP-1c, C/EBPα, ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), fatty acid synthase (FAS), endothelial lipase (LIPG), carnitine palmitoyltransferase 1A (CPT1A), and adiponectin receptor 2 (AdipoR2) in liver tissue were measured. Also, the levels of lipoprotein lipase (LPL), visceral adipose tissue-derived serine protease inhibitor (Vaspin), and retinol-binding protein 4 (RBP4) in visceral adipose tissue were measured. The RI of CCAs and aortas, and histopathological changes in CCAs, were indicated. The oral administration of the cornelian cherry extract decreased the SREBP-1c and C/EBPα in both doses. The dose of 10 mg/kg b.w. increased ABCA1 and decreased FAS, CPT1A, and RBP4, and the dose of 50 mg/kg b.w. enhanced ABCG1 and AdipoR2. Mitigations in atheromatous changes in rabbits' CCAs were also observed. The obtained outcomes were compared to the results of our previous works. The beneficial results confirm that cornelian cherry fruit extract may constitute a potentially effective product in the prevention and treatment of obesity-related disorders.


Asunto(s)
Cornus , Lagomorpha , Extractos Vegetales , Animales , Conejos , Antocianinas , Transportadoras de Casetes de Unión a ATP , Proteína alfa Potenciadora de Unión a CCAAT/genética , Cornus/química , Dieta , Frutas/química , Hígado , Receptores X del Hígado/genética , Extractos Vegetales/farmacología , PPAR alfa/genética , PPAR gamma/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética
19.
Med Mycol ; 62(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38285608

RESUMEN

Milbemycin oximes are macrocyclic lactones that have a broad spectrum of activity against nematode infection in animals. They are known to block drug efflux, which increases the susceptibility of fungi to azoles. We investigated the effects of milbemycin on the azole susceptibility of fungi (Aspergillus fumigatus, Candida albicans, C. auris, Cryptococcus neoformans, and Trichophyton rubrum). To screen for changes in azole susceptibility, fungal growth was tested on a culture medium containing 1 µg/ml milbemycin. The results showed that milbemycin increased the azole susceptibility of azole-resistant strains of C. albicans, C. auris, C. neoformans, and T. rubrum. Thus, milbemycin might be useful against antifungal drug-resistant strains.


Milbemycin blocks drug efflux and increases the azole susceptibility of azole-resistant strains of Candida albicans, C. auris, Cryptococcus neoformans, and Trichophyton rubrum. This drug is expected to be a game changer against antifungal drug-resistant infections.


Asunto(s)
Cryptococcus neoformans , Macrólidos , Micosis , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica , Micosis/veterinaria , Azoles/farmacología , Pruebas de Sensibilidad Microbiana/veterinaria
20.
Br J Haematol ; 204(4): 1483-1494, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38031970

RESUMEN

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease. Cellular and systemic lipid metabolism plays a significant role in the regulation of immune cell activities. However, the role of lipoprotein lipids and apolipoproteins in ITP remains elusive. The automatic biochemistry analyser was used to measure the levels of serum total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A-I (apoA-I), apoB, apoE and lipoprotein a [LP(a)]. Genetic variants strongly associated with circulating lipoprotein lipids and apolipoproteins (LDL-C, apoB, TG, HDL-C and apoA-I) were extracted to perform Mendelian randomization (MR) analyses. Finally, drug-target MR and passive ITP mice model was used to investigate the potential druggable targets of ITP. Levels of HDL-C, apoA-I, decreased and LP(a) increased in ITP patients compared with healthy controls. Low HDL-C was causally associated with ITP susceptibility. Through drug-target MR and animal modelling, ABCA1 was identified as a potential target to design drugs for ITP. Our study found that lipid metabolism is related to ITP. The causative association between HDL-C and the risk of ITP was also established. The study provided new evidence of the aetiology of ITP. ABCA1 might be a potential drug target for ITP.


Asunto(s)
Apolipoproteína A-I , Púrpura Trombocitopénica Idiopática , Animales , Ratones , Humanos , Apolipoproteína A-I/genética , LDL-Colesterol , Lípidos , Análisis de la Aleatorización Mendeliana , Púrpura Trombocitopénica Idiopática/tratamiento farmacológico , Púrpura Trombocitopénica Idiopática/genética , Apolipoproteínas/genética , Triglicéridos , HDL-Colesterol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...