Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.291
Filtrar
1.
J Exp Biol ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39091230

RESUMEN

A decrease in environmental temperature represents a challenge to the cardiovascular system of ectotherms. To gain insight into the cellular changes that occur during cold exposure and cold acclimation we characterized the cardiac phosphoproteome and proteome of zebrafish following 24 h or one week exposure to 20 oC from 27 oC; or at multiple points during six weeks of acclimation to 20 oC from 27 oC. Our results indicate that cold exposure causes an increase in mitogen-activated protein kinase signaling, the activation of stretch sensitive pathways, cellular remodeling via ubiquitin-dependent pathways, and changes to the phosphorylation state of proteins that regulate myofilament structure and function including desmin and troponin T. Cold acclimation (2-6 weeks) led to a decrease in multiple components of the electron transport chain through time, but an increase in proteins for lipid transport, lipid metabolism, the incorporation of polyunsaturated fatty acids into membranes and protein turnover. For example, there was an increase in the levels of apolipoprotein C, prostaglandin reductase-3, and surfeit locus protein 4, involved in lipid transport, lipid metabolism, and lipid membrane remodeling. Gill opercular movements suggests that oxygen utilization during cold acclimation is reduced. Neither the amount of food consumed relative to body mass nor body condition were affected by acclimation. These results suggest that while oxygen uptake was reduced, energy homeostasis was maintained. This study highlights that the response of zebrafish to a decrease in temperature is dynamic through time and that investment in the proteomic response increases with the duration of exposure.

2.
Plant Cell Environ ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38946377

RESUMEN

The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.

3.
Zebrafish ; 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39007173

RESUMEN

Global warming and extreme weather events pose a significant threat to global biodiversity, with rising water temperatures exerting a profound influence on fish conservation and fishery development. In this study, we used zebrafish as a model organism to explore the impact of a heat acclimation period on their survival rates. The results demonstrated that a 2-month heat acclimation period almost completely mitigated heat stress-induced mortality in zebrafish. Subsequent analysis of the surviving zebrafish revealed a predominance of hepatic mitochondria in a fission state. Remarkably, a short-term fasting regimen, which induced hepatic mitochondrial fission, mirrored the outcomes of the protective effect of heat acclimation and augmented animal survival under heat stress. Conversely, treatment with a mitochondrial fission inhibitor within the fasting group attenuated the elevated survival rate. Furthermore, zebrafish embryos subjected to brief heat acclimation also exhibited increased heat resistance, a trait diminished by a chemical intervention inhibiting mitochondrial fission. This suggests a shared mechanism for heat resistance between embryos and adult zebrafish. These findings underscore the potential use of inducing mitochondrial fission to enhance heat resistance in zebrafish, offering promise for fish biodiversity conservation in the face of global warming.

4.
Plant Cell Environ ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011936

RESUMEN

Understanding photosynthetic acclimation to elevated CO2 (eCO2) is important for predicting plant physiology and optimizing management decisions under global climate change, but is underexplored in important horticultural crops. We grew three crops differing in stomatal density-namely chrysanthemum, tomato, and cucumber-at near-ambient CO2 (450 µmol mol-1) and eCO2 (900 µmol mol-1) for 6 weeks. Steady-state and dynamic photosynthetic and stomatal conductance (gs) responses were quantified by gas exchange measurements. Opening and closure of individual stomata were imaged in situ, using a novel custom-made microscope. The three crop species acclimated to eCO2 with very different strategies: Cucumber (with the highest stomatal density) acclimated to eCO2 mostly via dynamic gs responses, whereas chrysanthemum (with the lowest stomatal density) acclimated to eCO2 mostly via photosynthetic biochemistry. Tomato exhibited acclimation in both photosynthesis and gs kinetics. eCO2 acclimation in individual stomatal pore movement increased rates of pore aperture changes in chrysanthemum, but such acclimation responses resulted in no changes in gs responses. Although eCO2 acclimation occurred in all three crops, photosynthesis under fluctuating irradiance was hardly affected. Our study stresses the importance of quantifying eCO2 acclimatory responses at different integration levels to understand photosynthetic performance under future eCO2 environments.

5.
Heliyon ; 10(12): e33172, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38984309

RESUMEN

Roles of genes in heat acclimation (HA, repeated exercise-heat exposures) had not been explored. ACE I/D and ACTN3 R577X genetic polymorphisms are closely associated with outstanding exercise performances. This study investigated whether the two polymorphisms influenced the response to HA. Fifty young Han nationality male subjects were selected and conducted HA for 2 weeks. Exercise indicators (5-km run, push-up and 100-m run) were tested and rest aural thermometry (RTau) was measured before and after HA. ACE gene was grouped by I homozygote and D carrier, and ACTN3 gene was grouped by R homozygote and X carrier. Results showed that there were no differences between groups in age, body mass index, exercise indicators and RTau before HA. After HA, RTau of ACE I homozygote was lower than that of D carrier [F (1, 48) = 9.12, p = 0.004, η = 0.40]. Compared with RTau before HA, that of I homozygote decreased after HA (Δ = -0.26 °C, 95 % CI -0.34-0.18, p < 0.001), while that of D carrier did not change. There was a ACE gene × HA interaction in RTau [F (1, 48) = 14.26, p < 0.001, η = 0.48]. No effect of ACTN3 gene on RTau was observed. For exercise indicators, there were no differences between groups after HA, and no gene × HA interactions were observed. There may be a strong interaction of ACE gene and HA in the change of rest core temperature. I homozygote may have an advantage on improving heat tolerance.

6.
Am J Primatol ; : e23659, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38961812

RESUMEN

The Cayo Santiago rhesus macaque colony represents one of the most important nonhuman primate resources since their introduction to the Caribbean area in 1938. The 85 years of continuing existence along with the comprehensive database of the rhesus colony and the derived skeletal collections have provided and will continue to provide a powerful tool to test hypotheses about adaptive and evolutionary mechanisms in both biology and medicine.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38966932

RESUMEN

Elevated water temperatures and low dissolved oxygen (hypoxia) are pervasive stressors in aquatic systems that can be exacerbated by climate change and anthropogenic activities, and there is growing interest in their interactive effects. To explore this interaction, we quantified the effects of acute and long-term hypoxia exposure on the critical thermal maximum (CTmax) of Redside Dace (Clinostomus elongatus), a small-bodied freshwater minnow with sparse populations in the Great Lakes Basin of Canada and designated as Endangered under Canada's Species at Risk Act. Fish were held at 18°C and acclimated to four levels of dissolved oxygen (>90%, 60%, 40%, and 20% air saturation). CTmax was measured after 2 and 10 weeks of acclimation and after 3.5 weeks of reoxygenation, and agitation behavior was quantified during CTmax trials. Aquatic surface respiration behavior was also quantified at 14 weeks of acclimation to oxygen treatments. Acute hypoxia exposure decreased CTmax in fish acclimated to normoxia (>90% air saturation), but acclimation to hypoxia reduced this effect. There was no effect of acclimation oxygen level on CTmax when measured in normoxia, and there was no effect of exposure time to hypoxia on CTmax. Residual effects of hypoxia acclimation on CTmax were not seen after reoxygenation. Agitation behavior varied greatly among individuals and was not affected by oxygen conditions. Fish performed aquatic surface respiration with low frequency, but performed it earlier when acclimated to higher levels of oxygen. Overall, this work sheds light on the vulnerability of fish experiencing acute hypoxia and heat waves concurrently.

9.
Glob Chang Biol ; 30(7): e17429, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039847

RESUMEN

Vegetation autumn phenology is critical in regulating the ecosystem carbon cycle and regional climate. However, the dominant drivers of autumn senescence and their temporal shifts under climate change remain poorly understood. Here, we conducted a multi-factor analysis considering both direct climatic controls and biological carryover effects from start-of-season (SOS) and seasonal peak vegetation activities on the end-of-season (EOS) to fill these knowledge gaps. Combining satellite and ground observations across the northern hemisphere, we found that carryover effects from early-to-peak vegetation activities exerted greater influence on EOS than the direct climatic controls on nearly half of the vegetated land. Unexpectedly, the carryover effects from SOS on EOS have significantly weakened over recent decades, accompanied by strengthened climatic controls. Such results indicate the weakened constraint of leaf longevity on senescence due to prolonged growing season in response to climate change. These findings underscore the important role of biological carryover effects in regulating vegetation autumn senescence under climate change, which should be incorporated into the formulation and enhancement of phenology modules utilized in land surface models.


Asunto(s)
Cambio Climático , Hojas de la Planta , Estaciones del Año , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Senescencia de la Planta , Ecosistema
10.
Front Plant Sci ; 15: 1397534, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040509

RESUMEN

Introduction: Olive cultivation, like other evergreen fruit crops worldwide, is limited by the occurrence of frost episodes in different times of the year, mainly in winter or early spring. Some contradictory results are reported about cultivars' response to frost, which depends on the physiological stage of the tissues (acclimated or not acclimated) when the cold or frost episode occurs. This work aimed to implement a user-friendly and reliable lab method for discerning frost tolerance. Methods: Our methodology considered both detached leaves and potted plantlets. The optimal temperature at which damage differentiated between cultivars was evaluated, as well as the time of exposure to cold and the recovery time for the correct evaluation of the symptoms. Furthermore, a comparative analysis of damage on both young and mature leaves was conducted. To validate the efficacy of the methodology, assessments were conducted on the cultivars 'Arbequina' (tolerant), 'Picual' (moderately tolerant), and 'Frantoio' (susceptible) under acclimated and non-acclimated conditions. Results and discussion: The results indicated that, when detached leaves were used for frost evaluation, a temperature of -10°C ± 1°C for 30 min and a recovery time at 26°C for 24-48 h after exposure to cold are enough to induce damages on the leaves and discriminate between cultivar susceptibility. Under these conditions, a precise assessment of symptoms can be made, facilitating the categorization of frost tolerance level in various olive cultivars. Notably, no significant differences were observed between young and mature leaves during the evaluation process. On the other hand, the critical temperature to assess damages on potted plantlets was determined to be -7°C ± 1°C. In addition, it was observed that acclimated plants exhibited fewer symptoms compared to non-acclimated ones, with 'Frantoio' being the most affected alongside 'Picual' and 'Arbequina'. Conclusion: The implemented methodology will allow the assessment of frost tolerance in several olive cultivars within a short timeframe, and it is proven to be user-friendly and reliable.

11.
Ecol Evol ; 14(7): e70028, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39041017

RESUMEN

The persistence of plant populations depends crucially on successful regeneration. Yet, little is known about the effects of consecutive winter and spring frost events on the regeneration stage of trees from different seed sources, although this will partly determine the success of climate warming-driven poleward range shifts. In a common garden experiment with European beech (Fagus sylvatica) seedlings from winter 2015/2016 to autumn 2017, we studied how simulated successive spring and winter frost events affect leaf-out dates, growth performance, and survival rates of 1- to 2-year-old seedlings from provenances differing in climate at origin. We further investigated the combined effects of successive frost events. The first spring frost after germination led to a mortality rate up to 75%, resulting in reduced seedling numbers but better frost tolerance of the survivors, as reflected in a weaker impact of the following winter frost event in the survivors compared to the non-acclimated control. Final plant height was most strongly reduced by the spring frost in the second year. The winter frost event delayed leaf-out by up to 40 days, leading to severe growth impairment in 2017. Our results indicate partly successful frost acclimation and/or the selection of frost-hardier individuals, because the negative growth effects of consecutive frost events did not add up after exposure to more than one event. Both mechanisms may help to increase the frost tolerance of beech offspring. Nevertheless, mortality after the first spring frost was high, and frost exposure generally caused growth reductions. Thus, achieving higher frost tolerance may not be sufficient for beech seedlings to overcome frost-induced reductions in competitive strength caused by winter frost damage and delayed leaf enfolding.

12.
Evol Appl ; 17(7): e13757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027686

RESUMEN

Phenotypic plasticity can buffer organisms against short-term environmental fluctuations. For example, previous exposure to increased temperatures can increase thermal tolerance in many species. Prior studies have found that acclimation to higher temperature can influence the magnitude of transcriptional response to subsequent acute thermal stress (hereafter, "transcriptional response modulation"). However, mechanisms mediating this gene expression response and, ultimately, phenotypic plasticity remain largely unknown. Epigenetic modifications are good candidates for modulating transcriptional response, as they broadly correlate with gene expression. Here, we investigate changes in DNA methylation as a possible mechanism controlling shifts in gene expression plasticity and thermal acclimation in the reef-building coral Acropora nana. We find that gene expression response to acute stress is altered in corals acclimated to different temperatures, with many genes exhibiting a dampened response to heat stress in corals pre-conditioned to higher temperatures. At the same time, we observe shifts in methylation during both acclimation (11 days) and acute heat stress (24 h). We observed that the acute heat stress results in shifts in gene-level methylation and elicits an acute transcriptional response in distinct gene sets. Further, acclimation-induced shifts in gene expression plasticity and differential methylation also largely occur in separate sets of genes. Counter to our initial hypothesis no overall correlation between the magnitude of differential methylation and the change in gene expression plasticity. We do find a small but statistically significant overlap in genes exhibiting both dampened expression response and shifts in methylation (14 genes), which could be candidates for further inquiry. Overall, our results suggest transcriptional response modulation occurs independently from methylation changes induced by thermal acclimation.

13.
Plant Physiol Biochem ; 214: 108961, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39067102

RESUMEN

Winter crops acquire frost tolerance during the process of cold acclimation when plants are exposed to low but non-freezing temperatures that is connected to specific metabolic adjustments. Warm breaks during/after cold acclimation disturb the natural process of acclimation, thereby decreasing frost tolerance and can even result in a resumption of growth. This phenomenon is called deacclimation. In the last few years, studies that are devoted to deacclimation have become more important (due to climate changes) and necessary to be able to understand the mechanisms that occur during this phenomenon. In the acclimation of plants to low temperatures, the importance of plant membranes is indisputable; that is why the main aim of our studies was to answer the question of whether (and to what extent) deacclimation alters the physicochemical properties of the plant membranes. The studies were focused on chloroplast membranes from non-acclimated, cold-acclimated and deacclimated cultivars of winter oilseed rape. The analysis of the membranes (formed from chloroplast lipid fractions) using the Langmuir technique revealed that cold acclimation increased membrane fluidity (expressed as the Alim values), while deacclimation generally decreased the values that were induced by cold. Moreover, because the chloroplast membranes were penetrated by lipophilic molecules such as carotenoids or tocopherols, the relationships between the structure of the lipids and the content of these antioxidants in the chloroplast membranes during the process of the cold acclimation and deacclimation of oilseed rape are discussed.

14.
New Phytol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061112

RESUMEN

Heat stress transcription factors (HSFs) are the core regulators of the heat stress (HS) response in plants. HSFs are considered as a molecular rheostat: their activities define the response intensity, incorporating information about the environmental temperature through a network of partner proteins. A prompted activation of HSFs is required for survival, for example the de novo synthesis of heat shock proteins. Furthermore, a timely attenuation of the stress response is necessary for the restoration of cellular functions and recovery from stress. In an ever-changing environment, the balance between thermotolerance and developmental processes such as reproductive fitness highlights the importance of a tightly tuned response. In many cases, the response is described as an ON/OFF mode, while in reality, it is very dynamic. This review compiles recent findings to update existing models about the HSF-regulated HS response and address two timely questions: How do plants adjust the intensity of cellular HS response corresponding to the temperature they experience? How does this adjustment contribute to the fine-tuning of the HS and developmental networks? Understanding these processes is crucial not only for enhancing our basic understanding of plant biology but also for developing strategies to improve crop resilience and productivity under stressful conditions.

15.
Plant Signal Behav ; 19(1): 2383515, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39077764

RESUMEN

Plant memory plays an important role in the efficient and rapid acclimation to a swiftly changing environment. In addition, since plant memory can be inherited, it is also of adaptive and evolutionary importance. The ability of a plant to store, retain, retrieve and delete information on acquired experience is based on cellular, biochemical and molecular networks in the plants. This review offers an up-to-date overview on the formation, types, checkpoints of plant memory based on our current knowledge and focusing on its transcriptional aspects, the transcriptional memory. Roles of long and small non-coding RNAs are summarized in the regulation, formation and the cooperation between the different layers of the plant memory, i.e. in the establishment of epigenetic changes associated with memory formation in plants. The RNA interference mechanisms at the RNA and DNA level and the interplays between them are also presented. Furthermore, this review gives an insight of how exploitation of plant transcriptional memory may provide new opportunities for elaborating promising cost-efficient, and effective strategies to cope with the ever-changing environmental perturbations, caused by climate change. The potentials of plant memory-based methods, such as crop priming, cross acclimatization, memory modification by miRNAs and associative use of plant memory, in the future's agriculture are also discussed.


Asunto(s)
Transcriptoma , Transcriptoma/genética , Regulación de la Expresión Génica de las Plantas , Epigénesis Genética , Plantas/genética , Plantas/metabolismo , Transcripción Genética , Aclimatación/genética
16.
Plant Methods ; 20(1): 114, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075474

RESUMEN

Plants must cope with ever-changing temperature conditions in their environment. In many plant species, suboptimal high and low temperatures can induce adaptive mechanisms that allow optimal performance. Thermomorphogenesis is the acclimation to high ambient temperature, whereas cold acclimation refers to the acquisition of cold tolerance following a period of low temperatures. The molecular mechanisms underlying thermomorphogenesis and cold acclimation are increasingly well understood but neither signalling components that have an apparent role in acclimation to both cold and warmth, nor factors determining dose-responsiveness, are currently well defined. This can be explained in part by practical limitations, as applying temperature gradients requires the use of multiple growth conditions simultaneously, usually unavailable in research laboratories. Here we demonstrate that commercially available thermal gradient tables can be used to grow and assess plants over a defined and adjustable steep temperature gradient within one experiment. We describe technical and thermodynamic aspects and provide considerations for plant growth and treatment. We show that plants display the expected morphological, physiological, developmental and molecular responses that are typically associated with high temperature and cold acclimation. This includes temperature dose-response effects on seed germination, hypocotyl elongation, leaf development, hyponasty, rosette growth, temperature marker gene expression, stomatal conductance, chlorophyll content, ion leakage and hydrogen peroxide levels. In conclusion, thermal gradient table systems enable standardized and predictable environments to study plant responses to varying temperature regimes and can be swiftly implemented in research on temperature signalling and response.

17.
Biol Open ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077796

RESUMEN

Performance measures are an important tool to assess the impact of environmental change on animals. In fish, performance is often measured as critical swimming speed (Ucrit), which reflects individual maximal physiological capacities. A drawback of Ucrit is that trials are relatively long (∼30-75 min). Ucrit may therefore not be suitable for several repeated measurements because of the potential for training effects, long recovery periods, and low throughput. Here we test a shorter (∼4-5 min) protocol, "Ucrit fast" (UCfast) in zebrafish (Danio rerio). We show that UCfast and Ucrit have similar, significant repeatabilities within individuals. Unlike Ucrit, repeated UCfast trials did not elicit a training effect. Both UCfast and Ucrit provide the same insights into thermal acclimation, and both provide similar estimates of individual acclimation capacity in doubly acclimated fish. We propose that UCfast is a valid substitute for Ucrit particularly when higher throughput and several repeated measures are necessary.

18.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071258

RESUMEN

Fish in their natural environments possess elaborate mechanisms that regulate physiological function to mitigate the adverse effects of multiple environmental stressors such as temperature, metals, and hypoxia. We investigated how warm acclimation affects mitochondrial responses to Cd, hypoxia, and acute temperature shifts (heat shock and cold snap) in rainbow trout. We observed that state 3 respiration driven by complex I (CI) was resistant to the stressors while warm acclimation and Cd reduced complex I +II (CI + II) driven state 3 respiration. In contrast, state 4 (leak) respirations for both CI and CI + II were consistently stimulated by warm acclimation resulting in reduced mitochondrial coupling efficiency (respiratory control ratio, RCR). Warm acclimation and Cd exacerbated their individual effect on leak respiration to further reduce the RCR. Moreover, the effect of warm acclimation on mitochondrial bioenergetics aligned with its inhibitory effect on activities of citrate synthase and both CI and CII. Unlike the Cd and warm acclimation combined exposure, hypoxia alone and in combination with warm acclimation and/or Cd abolished the stimulation of CI and CI + II powered leak respirations resulting in partial recovery of RCR. The response to acute temperature shifts indicated that while state 3 respiration returned to pre-acclimation level, the leak respiration did not. Overall, our findings suggest a complex in vivo interaction of multiple stressors on mitochondrial function that are not adequately predicted by their individual effects.

19.
J Exp Biol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054898

RESUMEN

Adult, lab-reared, highland deer mice acclimate to hypoxia by increasing reliance on carbohydrates to fuel exercise. Yet neither the underlying mechanisms for this shift in fuel use pattern, nor the impact of lifetime hypoxia exposure experienced in the high alpine, are fully understood. Thus, we assessed exercise fuel use in wild highland deer mice running in their native environment. We examined a key step in muscle carbohydrate oxidation, pyruvate dehydrogenase (PDH) and its regulation with exercise at altitude in wild highlanders and using first generation (G1) lab born and raised highlanders acclimated to normoxia or hypoxia. PDH activity was also determined in the gastrocnemius of G1 highlanders using an in situ muscle preparation. We found wild highlanders had a high reliance on carbohydrates while running in their native environment, consistent with data from hypoxia acclimated G1 highlanders. PDH activity in the gastrocnemius was similar post exercise between G1 and wild highlanders. However, when the gastrocnemius was stimulated at a light work rate in situ, PDH activity was higher in hypoxia acclimated G1 highlanders, and associated with a lower intramuscular lactate. These findings were supported by lower PDH kinase 2 protein expression in hypoxia acclimated G-1 mice. Our findings indicate that adult phenotypic plasticity in response to low oxygen is sufficient to increase exercise carbohydrate reliance in highland deer mice. Additionally, variation in PDH regulation with hypoxia acclimation contributes to shifts in whole-animal fuel use patterns and are likely to improved exercise performance via elevated energy yield per mole O2.

20.
Front Microbiol ; 15: 1385333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962135

RESUMEN

Heat stroke (HS) is a critical condition with extremely high mortality. Heat acclimation (HA) is widely recognized as the best measure to prevent and protect against HS. Preventive administration of oral rehydration salts III (ORSIII) and probiotics have been reported to sustain intestinal function in cases of HS. This study established a rat model of HA that was treated with probiotics-based ORS (ORSP) during consecutive 21-day HA training. The results showed that HA with ORSP could attenuate HS-induced hyperthermia by regulating thermoregulatory response. We also found that HA with ORSP could significantly alleviate HS-induced multiple organ injuries. The expression levels of a series of heat-shock proteins (HSPs), including HSP90, HSP70, HSP60, and HSP40, were significantly up-regulated from the HA training. The increases in intestinal fatty acid binding protein (I-FABP) and D-Lactate typically seen during HS were decreased through HA. The representative TJ proteins including ZO-1, E-cadherin, and JAM-1 were found to be significantly down-regulated by HS, but sustained following HA. The ultrastructure of TJ was examined by TEM, which confirmed its protective effect on the intestinal barrier protection following HA. We also demonstrated that HA raised the intestinal levels of beneficial bacteria Lactobacillus and lowered those of the harmful bacteria Streptococcus through 16S rRNA gene sequencing. These findings suggest that HA with ORSP was proven to improve intestinal thermotolerance and the levels of protective gut microbiota against HS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...