Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Curr Top Membr ; 94: 225-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39370208

RESUMEN

Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/fisiología , Klebsiella pneumoniae/metabolismo , Bacterias/metabolismo , Animales
2.
Infect Genet Evol ; 125: 105669, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299538

RESUMEN

OBJECTIVE: This study aims to analyze the genomic and clinical characteristics of Non-baumannii Acinetobacter strains misidentified as A. baumannii, causing bloodstream infections (BSIs) in our hospital. MATERIALS AND METHODS: Whole genome sequencing was performed and average nucleotide identity (ANI) was analyzed. Susceptibility testing was conducted using micro-broth methods. The distribution of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) was examined using online software tools. The prevalence of virulence factors (VFs) was investigated through nucleotide coding sequence comparisons. Genetic structures of blaOXA genes were analyzed by Gcluster software. Clinical information was collected from electronic medical records for patient characterization. RESULTS: ANI analysis identified five strains as Acinetobacter pittii, with the remaining four identified as A. geminorum, A. nosocomialis, A. soli and A. bereziniae. The GC content of all isolates was less than 38.9 % except for A. soli 16,294. All Non-baumannii Acinetobacter strains were relatively susceptible to antibiotics, except for one A. pittii isolate. Nine blaOXA variants were identified in seven isolates, with two isolates co-carrying 2 different types of blaOXA. Twenty-four insertion sequences (ISs) were identified, with ISAba and IS17 being the primary ISs. Five A. pittii isolates shared the same genetic structures around blaOXA. Genes related to adherence, immune modulation, and nutritional/metabolic factors were the most frequent. Few VFs were detected in A. soli 16,294 and A.bereziniae 14,325. CONCLUSIONS: The presence of carbapenem hydrolyzing oxacillinase encoding genes did not confer carbapenem resistance, possibly due to the lack of ISs in the blaOXA flanking sequences. Different blaOXA variants within distinct strains shared the same genetic structures, suggesting potential for multidrug resistance development, which warrants our attention.

3.
Microorganisms ; 12(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39203358

RESUMEN

This study examined the potential use of three bacterial strains-Paraburkholderia sp. strain CRV74, Pseudomonas sp. strain CRV21, and Acinetobacter sp. strain CRV19-as biocontrol agents of Botrytis cinerea in grapevine. These strains were selected for their ability to inhibit B. cinerea growth in vitro and used in field conditions for the control of grey mould symptoms in 'Glera' grapes. To this end, after inoculating these microorganisms onto plants sprayed with B. cinerea spores, the final yield, the physicochemical characteristics of the must, disease incidence, and the possible influence on the expression of plant-defence proteins were evaluated. Strain CRV21 resulted as being the most effective in combating grey mould (-20% of disease incidence). Although yield was not affected, significantly different values of total soluble solids content was observed. Additionally, a significant up-regulation of the genes PR-1, PR-5, ß-1,3-glucanase, and class III chitinase was observed. These findings highlight the potential application of strains with anti-botrytis activity as sustainable alternatives to chemical defence for the control of this pathogen.

4.
J Cardiothorac Surg ; 19(1): 494, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192361

RESUMEN

BACKGROUND: Isolated pulmonary valve endocarditis (IPE) accounts for less than 2% of all infective endocarditis patients. It is commonly associated with several predisposing factors, including intravenous drug use (IVDU) and congenital heart disease. The most common causative pathogens of IPE are Staphylococcus aureus and Streptococcus viridans. We report a Down's syndrome patient with IPE and with no standard risk factors caused by the rare pathogen Acinetobacter spp. This led to respiratory failure and systemic infection due to septic pulmonary emboli. Early elective surgery was decided upon as the patient was no longer responding to medical therapy, and his clinical condition was worsening over time. CASE PRESENTATION: A 15-year-old male with Down syndrome and no underlying heart defect presented with a 3-month history of episodic fever, nausea, vomiting, and diarrhea. Transthoracic echocardiography (TTE) revealed large vegetation on the pulmonary valve leaflet, another mobile mass at the pulmonary artery bifurcation, and severe pulmonary regurgitation. Serial blood cultures isolated Acinetobacter spp. Despite initial antibiotic therapy, the patient continued to have sepsis, unresolved vegetations, and developed life-threatening complications and respiratory distress, which convinced us to perform a pulmonary valve replacement surgery with a homograft. After surgery, the patient recovered and was discharged on the ninth postoperative day (POD). CONCLUSION: This report highlights IPE's diagnostic and therapeutic challenges, alongside the importance of a comprehensive cardiopulmonary workup in patients with unexplained fever, sepsis, and pulmonary symptoms, even without typical risk factors. Based on the patient's aggravating condition despite medical treatment, early surgical intervention and pulmonary valve replacement were deemed crucial. However, there still needs to be a definitive guideline on when and how surgery should be performed in patients with complicated IPE, especially in pediatric patients.


Asunto(s)
Síndrome de Down , Endocarditis Bacteriana , Válvula Pulmonar , Humanos , Síndrome de Down/complicaciones , Masculino , Válvula Pulmonar/cirugía , Válvula Pulmonar/microbiología , Adolescente , Endocarditis Bacteriana/microbiología , Endocarditis Bacteriana/complicaciones , Endocarditis Bacteriana/diagnóstico , Endocarditis Bacteriana/cirugía , Ecocardiografía , Implantación de Prótesis de Válvulas Cardíacas
5.
Front Public Health ; 12: 1429799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894996

RESUMEN

[This corrects the article DOI: 10.3389/fpubh.2024.1357345.].

6.
Adv Med Sci ; 69(2): 256-263, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38782257

RESUMEN

PURPOSE: Cefiderocol is a novel cephalosporin-siderophore conjugate antibiotic that holds promise to thwart infections caused by multi-drug-resistant gram-negative bacilli. Its antibacterial activity against normally susceptible species is not affected by most ß-lactamases, including metallo-ß-lactamases. Due to the siderophore-mediated entry into the cell, the activity of cefiderocol is less affected by porin loss or active efflux resistance than many other ß-lactam antibiotics. The aim of this study was to assess in vitro susceptibility to the cefiderocol of carbapenemase-producing gram-negative bacilli from clinical samples of hospitalized patients. MATERIALS AND METHODS: We analyzed 102 clinical strains of carbapenemase-producing Enterobacterales and non-fermentives from hospital centers in Lódz, Poland. Antimicrobial susceptibility to cefiderocol was tested by the minimum inhibitory concentration test strips and disc diffusion methods. RESULTS: The obtained results turned out to be ambiguous, and the area of technical uncertainty made their interpretation very difficult. CONCLUSIONS: The cost of therapy with this antibiotic, and difficulties in interpreting the drug susceptibility are the limitations to the use of cefiderocol. Intensive work should be carried out to finally standardize an easily accessible and reliable method for the determination of susceptibility to cefiderocol.

7.
Viruses ; 16(5)2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38793652

RESUMEN

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Asunto(s)
Acinetobacter , Cápsulas Bacterianas , Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/enzimología , Bacteriófagos/clasificación , Acinetobacter/virología , Acinetobacter/genética , Acinetobacter/enzimología , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Polisacáridos/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/genética , Acinetobacter baumannii/virología , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimología , Glicósido Hidrolasas
8.
Front Microbiol ; 15: 1368813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765680

RESUMEN

Florfenicol (Ff) is an antimicrobial agent belonging to the class amphenicol used for the treatment of bacterial infections in livestock, poultry, and aquaculture (animal farming). It inhibits protein synthesis. Ff is an analog of chloramphenicol, an amphenicol compound on the WHO essential medicine list that is used for the treatment of human infections. Due to the extensive usage of Ff in animal farming, zoonotic pathogens have developed resistance to this antimicrobial agent. There are numerous reports of resistance genes from organisms infecting or colonizing animals found in human pathogens, suggesting a possible exchange of genetic materials. One of these genes is floR, a gene that encodes for an efflux pump that removes Ff from bacterial cells, conferring resistance against amphenicol, and is often associated with mobile genetic elements and other resistant determinants. In this study, we analyzed bacterial isolates recovered in rural Thailand from patients and environmental samples collected for disease monitoring. Whole genome sequencing was carried out for all the samples collected. Speciation and genome annotation was performed revealing the presence of the floR gene in the bacterial genome. The minimum inhibitory concentration (MIC) was determined for Ff and chloramphenicol. Chromosomal and phylogenetic analyses were performed to investigate the acquisition pattern of the floR gene. The presence of a conserved floR gene in unrelated Acinetobacter spp. isolated from human bacterial infections and environmental samples was observed, suggesting multiple and independent inter-species genetic exchange of drug-resistant determinants. The floR was found to be in the variable region containing various mobile genetic elements and other antibiotic resistance determinants; however, no evidence of HGT could be found. The floR gene identified in this study is chromosomal for all isolates. The study highlights a plausible impact of antimicrobials used in veterinary settings on human health. Ff shares cross-resistance with chloramphenicol, which is still in use in several countries. Furthermore, by selecting for floR-resistance genes, we may be selecting for and facilitating the zoonotic and reverse zoonotic exchange of other flanking resistance markers between human and animal pathogens or commensals with detrimental public health consequences.

9.
Euro Surveill ; 29(15)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606569

RESUMEN

BackgroundAs increasing antibiotic resistance in Acinetobacter baumannii poses a global healthcare challenge, understanding its evolution is crucial for effective control strategies.AimWe aimed to evaluate the epidemiology, antimicrobial susceptibility and main resistance mechanisms of Acinetobacter spp. in Spain in 2020, and to explore temporal trends of A. baumannii.MethodsWe collected 199 single-patient Acinetobacter spp. clinical isolates in 2020 from 18 Spanish tertiary hospitals. Minimum inhibitory concentrations (MICs) for nine antimicrobials were determined. Short-read sequencing was performed for all isolates, and targeted long-read sequencing for A. baumannii. Resistance mechanisms, phylogenetics and clonality were assessed. Findings on resistance rates and infection types were compared with data from 2000 and 2010.ResultsCefiderocol and colistin exhibited the highest activity against A. baumannii, although colistin susceptibility has significantly declined over 2 decades. A. non-baumannii strains were highly susceptible to most tested antibiotics. Of the A. baumannii isolates, 47.5% (56/118) were multidrug-resistant (MDR). Phylogeny and clonal relationship analysis of A. baumannii revealed five prevalent international clones, notably IC2 (ST2, n = 52; ST745, n = 4) and IC1 (ST1, n = 14), and some episodes of clonal dissemination. Genes bla OXA-23, bla OXA-58 and bla OXA-24/40 were identified in 49 (41.5%), eight (6.8%) and one (0.8%) A. baumannii isolates, respectively. ISAba1 was found upstream of the gene (a bla OXA-51-like) in 10 isolates.ConclusionsThe emergence of OXA-23-producing ST1 and ST2, the predominant MDR lineages, shows a pivotal shift in carbapenem-resistant A. baumannii (CRAB) epidemiology in Spain. Coupled with increased colistin resistance, these changes underscore notable alterations in regional antimicrobial resistance dynamics.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina/farmacología , beta-Lactamasas/genética , Proteína 1 Similar al Receptor de Interleucina-1 , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Antibacterianos/farmacología , Acinetobacter baumannii/genética , Genómica , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/genética
10.
Front Public Health ; 12: 1357345, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628847

RESUMEN

The spread of antimicrobial resistance (AMR) is a major global concern, and the islands of the Southwest Indian Ocean (SWIO) are not exempt from this phenomenon. As strategic crossroads between Southern Africa and the Indian subcontinent, these islands are constantly threatened by the importation of multidrug-resistant bacteria from these regions. In this systematic review, our aim was to assess the epidemiological situation of AMR in humans in the SWIO islands, focusing on bacterial species listed as priority by the World Health Organization. Specifically, we examined Enterobacterales, Acinetobacter spp., Pseudomonas spp. resistant to carbapenems, and Enterococcus spp. resistant to vancomycin. Our main objectives were to map the distribution of these resistant bacteria in the SWIO islands and identify the genes involved in their resistance mechanisms. We conducted literature review focusing on Comoros, Madagascar, Maldives, Mauritius, Mayotte, Reunion Island, Seychelles, Sri Lanka, and Zanzibar. Our findings revealed a growing interest in the investigation of these pathogens and provided evidence of their active circulation in many of the territories investigated. However, we also identified disparities in terms of data availability between the targeted bacteria and among the different territories, emphasizing the need to strengthen collaborative efforts to establish an efficient regional surveillance network.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Humanos , Antibacterianos/farmacología , Islas del Oceano Índico/epidemiología
11.
Microbiol Spectr ; 12(4): e0383623, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38483164

RESUMEN

Carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter spp. represent major threats and have few approved therapeutic options. Non-|fermenting Gram-negative isolates were collected from hospitalized inpatients from 49 sites in 6 European countries between 01 January 2020 and 31 December 2020 and underwent susceptibility testing against cefiderocol and ß-lactam/ß-lactamase inhibitor combinations. Meropenem-resistant (MIC >8 mg/L), cefiderocol-susceptible isolates were analyzed by PCR, and cefiderocol-resistant isolates were analyzed by whole-genome sequencing to identify resistance mechanisms. Overall, 1,451 (950 P. aeruginosa; 501 Acinetobacter spp.) isolates were collected, commonly from the respiratory tract (42.0% and 39.3%, respectively). Cefiderocol susceptibility was higher than |ß|-|l|a|c|t|a|m|/|ß|-|l|a|c|t|a|mase| inhibitor combinations against P. aeruginosa (98.9% vs 83.3%-91.4%), and P. |aeruginosa resistant to meropenem (n = 139; 97.8% vs 12.2%-59.7%), ß-lactam/ß-lactamase inhibitor combinations (93.6%-98.1% vs 10.7%-71.8%), and both meropenem and ceftazidime-avibactam (96.7% vs 5.0%-||45.0%) or |ceftolozane-tazobactam (98.4% vs 8.1%-54.8%), respectively. Cefiderocol and sulbactam-durlobactam susceptibilities were high against Acinetobacter spp. (92.4% and 97.0%) and meropenem-resistant Acineto|bacter |spp. (n = 227; 85.0% and 93.8%) but lower against sulbactam-durlobactam- (n |= 15; 13.3%) and cefiderocol- (n = 38; 65.8%) resistant isolates, respectively. Among meropenem-resistant P. aeruginosa and Acinetobacter spp., the most common ß-||lactamase genes were metallo-ß-lactamases [30/139; blaVIM-2 (15/139)] and oxacillinases [215/227; blaOXA-23 (194/227)], respectively. Acquired ß-lactamase genes were identified in 1/10 and 32/38 of cefiderocol-resistant P. aeruginosa and Acinetobacter spp., and pirA-like or piuA mutations in 10/10 and 37/38, respectively. Conclusion: cefiderocol susceptibility was high against P. aeruginosa and Acinetobacter spp., including meropenem-resistant isolates and those resistant to recent ß-lactam/ß-lactamase inhibitor combinations common in first-line treatment of European non-fermenters. IMPORTANCE: This was the first study in which the in vitro activity of cefiderocol and non-licensed ß-lactam/ß-lactamase inhibitor combinations were directly compared against Pseudomonas aeruginosa and Acinetobacter spp., including meropenem- and ß-lactam/ß-lactamase inhibitor combination-resistant isolates. A notably large number of European isolates were collected. Meropenem resistance was defined according to the MIC breakpoint for high-dose meropenem, ensuring that data reflect antibiotic activity against isolates that would remain meropenem resistant in the clinic. Cefiderocol susceptibility was high against non-fermenters, and there was no apparent cross resistance between cefiderocol and ß-lactam/ß-lactamase inhibitor combinations, with the exception of sulbactam-durlobactam. These results provide insights into therapeutic options for infections due to resistant P. aeruginosa and Acinetobacter spp. and indicate how early susceptibility testing of cefiderocol in parallel with ß-lactam/ß-lactamase inhibitor combinations will allow clinicians to choose the effective treatment(s) from all available options. This is particularly important as current treatment options against non-fermenters are limited.


Asunto(s)
Acinetobacter , Infecciones por Pseudomonas , Humanos , Meropenem/farmacología , Cefiderocol , Inhibidores de beta-Lactamasas/farmacología , Pseudomonas aeruginosa , Lactamas/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefalosporinas/farmacología , Infecciones por Pseudomonas/tratamiento farmacológico , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
12.
Eur J Microbiol Immunol (Bp) ; 14(2): 210-218, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483509

RESUMEN

Acinetobacter spp. are often isolated from natural sources, but knowledge about their presence in wild animals is fragmented and uncomplete. The present study aimed to characterize a series of Acinetobacter radioresistens isolated from Humboldt penguins (Spheniscus humboldti). Fifteen Humboldt penguins from an inhabited northern Peruvian island were sampled. Microorganisms were identified by MALDI-TOF MS. Antibiotic susceptibility to 12 antimicrobial agents was established, and clonal relationships were determined. A representative isolate was selected for whole genome sequencing (WGS). A. radioresistens were isolated from the feces of 12 (80%) Humboldt penguins, being susceptible to all the antimicrobial agents tested, except eight cefotaxime-intermediate isolates. All A. radioresistens were clonally related. WGS showed that the isolate belonged to ST1972, the presence of two chromosomal encoded carbapenemases (blaOXA-23 and a putative subclass B3 metallo-ß-lactamase), and a series of point mutations in antibiotic-resistance related chromosomal genes, which were considered as polymorphisms. In addition, a few virulence factors, including a capsule-encoding operon, superoxide dismutases, catalases, phospholipases and a siderophore receptor were identified. The present results suggest that A. radioresistens may be a common member of the gut microbiota of Humboldt penguins, but further studies in other geographical areas are needed to establish this finding.

13.
J Microbiol Immunol Infect ; 57(2): 288-299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38350841

RESUMEN

BACKGROUND: This study aimed to characterize carbapenem-nonsusceptible Acinetobacter (CNSA) isolated from patients with bacteremia from 1997 to 2015. METHODS: A total of 173 CNSA (12.3%) was recovered from 1403 Acinetobacter isolates. The presence of selected ß-lactamase genes in CNSA was determined by PCR amplification. The conjugation test was used to determine the transferability of metallo-ß-lactamase (MBL)-carrying plasmids. Whole genome sequencing in combination with phenotypic assays was carried out to characterize MBL-plasmids. RESULTS: In general, a trend of increasing numbers of CNSA was observed. Among the 173 CNSA, A. baumannii (54.9%) was the most common species, followed by A. nosocomialis (23.1%) and A. soli (12.1%). A total of 49 (28.3%) CNSA were extensively drug-resistant, and all were A. baumannii. The most common class D carbapenemase gene in 173 CNSA was blaOXA-24-like (32.4%), followed by ISAba1-blaOXA-51-like (20.8%), ISAba1-blaOXA-23 (20.2%), and IS1006/IS1008-blaOXA-58 (11.6%). MBL genes, blaVIM-11,blaIMP-1, and blaIMP-19 were detected in 9 (5.2%), 20 (11.6%), and 1 (0.6%) CNSA isolates, respectively. Transfer of MBL genes to AB218 and AN254 recipient cells was successful for 7 and 6 of the 30 MBL-plasmids, respectively. The seven AB218-derived transconjugants carrying MBL-plasmids produced less biofilm but showed higher virulence to larvae than recipient AB218. CONCLUSIONS: Our 19-year longitudinal study revealed a stable increase in CNSA during 2005-2015. blaOXA-24-like, ISAba1-blaOXA-51-like, and ISAba1-blaOXA-23 were the major determinants of Acinetobacter carbapenem resistance. MBL-carrying plasmids contribute not only to the carbapenem resistance but also to A. baumannii virulence.


Asunto(s)
Acinetobacter baumannii , Sepsis , Humanos , Carbapenémicos/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estudios Longitudinales , Virulencia/genética , Acinetobacter baumannii/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Plásmidos/genética , Sepsis/tratamiento farmacológico
15.
Front Microbiol ; 14: 1264030, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928684

RESUMEN

Introduction: Non-baumannii Acinetobacter species are increasingly isolated in the clinical setting and the environment. The aim of the present study was to analyze a genome database of 837 Acinetobacter spp. isolates, which included 798 non-baumannii Acinetobacter genomes, in order to define the concordance of classification and discriminatory power of 7-gene MLST, 53-gene MLST, and single-nucleotide polymorphism (SNPs) phylogenies. Methods: Phylogenies were performed on Pasteur Multilocus Sequence Typing (MLST) or ribosomal Multilocus Sequence Typing (rMLST) concatenated alleles, or SNPs extracted from core genome alignment. Results: The Pasteur MLST scheme was able to identify and genotype 72 species in the Acinetobacter genus, with classification results concordant with the ribosomal MLST scheme. The discriminatory power and genotyping reliability of the Pasteur MLST scheme were assessed in comparison to genome-wide SNP phylogeny on 535 non-baumannii Acinetobacter genomes assigned to Acinetobacter pittii, Acinetobacter nosocomialis, Acinetobacter seifertii, and Acinetobacter lactucae (heterotypic synonym of Acinetobacter dijkshoorniae), which were the most clinically relevant non-baumannii species of the A. baumannii group. The Pasteur MLST and SNP phylogenies were congruent at Robinson-Fould and Matching cluster tests and grouped genomes into four and three clusters in A. pittii, respectively, and one each in A. seifertii. Furthermore, A. lactucae genomes were grouped into one cluster within A. pittii genomes. The SNP phylogeny of A. nosocomialis genomes showed a heterogeneous population and did not correspond to the Pasteur MLST phylogeny, which identified two recombinant clusters. The antimicrobial resistance genes belonging to at least three different antimicrobial classes were identified in 91 isolates assigned to 17 distinct species in the Acinetobacter genus. Moreover, the presence of a class D oxacillinase, which is a naturally occurring enzyme in several Acinetobacter species, was found in 503 isolates assigned to 35 Acinetobacter species. Conclusion: In conclusion, Pasteur MLST phylogeny of non-baumannii Acinetobacter isolates coupled with in silico detection of antimicrobial resistance makes it important to study the population structure and epidemiology of Acinetobacter spp. isolates.

16.
Braz J Infect Dis ; 27(6): 103687, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37977198

RESUMEN

Acinetobacter spp. are one of the main pathogens responsible for healthcare-associated infections and are associated with high rates of morbidity and mortality globally, mainly because of their high capacity to present and develop resistance to antimicrobials. To identify species of the Acinetobacter and their resistance profiles from samples collected from hospitalized patients, health professionals and hospital environmental sources in the intensive care units of different public reference hospitals in Porto Velho City, Rondônia, Western Brazilian Amazon. Isolates were identified using microbiological and molecular techniques. The antimicrobial susceptibility profile was determined by disk diffusion. A total of 201 Acinetobacter spp. isolates were identified, of which 47.3% originated from hospital structures, 46.8% from patients and 6% from healthcare professionals. A. baumannii and A. nosocomialis were the most prevalent, with frequency of 58.7% and 31.8%, respectively. Regarding the susceptibility profile, it was observed that 56.3% were classified as multidrug-resistant and 76.2% of the samples belonging to A. baumannii were resistant to carbapenems. In contrast, 96.9% were susceptible to polymyxin B and 91.3% to doxycycline. The data presented here can be used to guide and strengthen the control of multidrug-resistant infections caused by Acinetobacter spp., in addition to improving providing information from a traditionally unassisted region of Brazil.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacología , Brasil/epidemiología , Infecciones por Acinetobacter/microbiología , Pruebas de Sensibilidad Microbiana , Hospitales , Unidades de Cuidados Intensivos , Farmacorresistencia Bacteriana Múltiple
17.
Lett Appl Microbiol ; 76(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37660241

RESUMEN

Characterizing microorganisms according to different criteria is useful when investigating sources of microbiological contamination in the pharmaceutical industry. The aim of this study was to characterize 38 Acinetobacter baumannii complex strains isolated from a biopharmaceutical industry by 16S rRNA sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS), multilocus sequence typing (MLST), antimicrobial susceptibility profile, biofilm formation, and sensibility to disinfectants. Thirty-three (86.9%) strains were identified by 16S rRNA gene sequencing as A. seifertii/pitti/nosocomialis/lactucae, four (10.5%) as A. baumannii, and one (2.6%) as A. vivianii/courvalini. MALDI-TOF/MS did not identify one strain, and incorrectly identified 30/37 (81.1%) strains as A. baumannii. Strains were assigned to 12 different STs, of which nine were newly defined in this study (STs 2091-2099). Twenty-six (68.4%) strains showed resistance to amikacin and gentamicin. Thirty-three (86.8%) strains were classified as moderately or strongly adherent on polystyrene. Alcohol 70%/15 min and quaternary ammonium 0.08%/20 min were not able to eliminate the biofilm formed, but sodium hypochlorite 0.1%/15 min was efficient. In conclusion, improved methods are needed to improve the identification of Acinetobacter strains in pharmaceutical industries. This organism is of particular concern as it forms recalcitrant biofilms, leading to persistence in the manufacturing environment and increased risk of product contamination.


Asunto(s)
Acinetobacter baumannii , Tipificación de Secuencias Multilocus , ARN Ribosómico 16S/genética , Acinetobacter baumannii/genética , Amicacina , Preparaciones Farmacéuticas
18.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630529

RESUMEN

Cefiderocol is a siderophore-conjugated cephalosporin with potent activity against multidrug-resistant Gram-negative pathogens including Acinetobacter baumannii. The aim of this study was to evaluate cefiderocol testing methods on a relevant collection of 97 Acinetobacter spp. isolates. Commercialized broth microdilution methods (ComASP®, Liofilchem and UMIC®, Bruker), MIC test strips (Liofilchem) and disc diffusion using discs of three different brands (Mast Diagnostic, Liofilchem and Oxoid-Thermo Fisher Scientific) were compared with the broth microdilution reference method. None of the methods tested fulfilled acceptable criteria (essential agreement [EA] ≥ 90%; bias = ±30%) but both BMD methods achieved acceptable categorical agreement rates (CA = 95.9% [93/97, 95% CI 89.9-98.4] and CA = 93.8% [91/97, 95% CI 87.2-97.1] for ComASP® and UMIC®, respectively) and bias < 30% (-7.2% and -25.2% for ComASP® and UMIC®, respectively). The use of MIC gradient testing is strongly discouraged due to misclassification of 55% (n = 23/42) of resistant strains. Finally, the disc diffusion method could be used to rapidly screen for susceptible strains by setting a critical diameter of 22 mm.

19.
Front Microbiol ; 14: 1174200, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323896

RESUMEN

Objective: To use genomic analysis to identify Acinetobacter spp. and to explore the distribution characteristics of ß-lactamase oxallicinases (blaOXA) among Acinetobacter species globally. Methods: Genomes of global Acinetobacter spp. were downloaded from GenBank using Aspera batch. After quality check using CheckM and QUAST software, the genomes were annotated using Prokka software to investigate the distribution of blaOXAs across Acinetobacter spp.; a phylogenetic tree was constructed to explore the evolutionary relationship among the blaOXA genes in Acinetobacter spp. Average-nucleotide identification (ANI) was performed to re-type the Acinetobacter spp. BLASTN comparison analysis was implemented to determine the sequence type (ST) of Acinetobacter baumannii strain. Results: A total of 7,853 genomes were downloaded, of which only 6,639 were left for further analysis after quality check. Among them, 282 blaOXA variants were identified from the genomes of 5,893 Acinetobacter spp.; blaOXA-23 (n = 3,168, 53.8%) and blaOXA-66 (2,630, 44.6%) were the most frequent blaOXAs, accounting for 52.6% (3,489/6639), and the co-carriage of blaOXA-23 and blaOXA-66 was seen in 2223 (37.7%) strains. The 282 blaOXA variants were divided into 27 clusters according to the phylogenetic tree. The biggest clade was blaOXA-51-family carbapenem-hydrolyzing enzymes composed of 108 blaOXA variants. Overall, 4,923 A. baumannii were identified out of the 6,639 Acinetobacter spp. strains and 291 distinct STs were identified among the 4,904 blaOXA-carrying A. baumannii. The most prevalent ST was ST2 (n = 3,023, 61.6%) followed by ST1 (n = 228, 4.6%). Conclusion: OXA-like carbapenemases were the main blaOXA-type ß-lactamase spread widely across Acinetobacter spp. Both blaOXA-23 and blaOXA-66 were the predominant blaOXAs, among all A. baumannii strains, with ST2 (belonging to CC2) being the main clone disseminated globally.

20.
Ann Med Surg (Lond) ; 85(5): 1584-1589, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37228944

RESUMEN

Acinetobacter spp. have been a primary cause of nosocomial infections worldwide, causing significant morbidity and mortality, especially in Pakistan. The purpose of this study was to investigate the trend of antimicrobial resistance over a 5-year period in a tertiary care hospital in Pakistan. Methods: A retrospective cross-sectional study regarding the occurrence and antimicrobial resistance of Acinetobacter spp. recovered from clinical specimens that were referred to the Pathology Laboratory of Northwest General Hospital, Peshawar. The data from 2014 to 2019 was recorded and analyzed by the laboratory. Sociodemographic characteristics and laboratory record data was analyzed using SPSS, version 25. A chi-square test was applied to see the significance. Results: Of 59 483 clinical samples, Acinetobacter baumannii strains were detected in 114 of them. The majority of the clinical samples were from blood (89.5%) followed by sputum (7.9%), wound swab (1.8%), and bone marrow (0.9%). A. baumannii has been found in 52 men (67.53%) and 28 women (75.67%), with an overall risk of 0.669 times. In 76 men (98.70%), sensitivity for ertapenem (99.1), colistin (96.49), and tigecycline (78.9%) were also observed which indicated the potential viability of these drugs to treat multidrug-resistant (MDR) Acinetobacter infections. The male-to-female risk ratio was 0.98 for colistin and 0.71 for amikacin. Conclusion: Increased frequency of MDR supports the need for continuous surveillance to determine the prevalence and evolution of MDR Acinetobacter spp. in Pakistan. Colistin, tigecyclines, and ertapenem remain the possible line of drugs to treat MDR Acinetobacter.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...