Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Stem Cell Rev Rep ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145857

RESUMEN

Osteoarthritis (OA) is a prevalent musculoskeletal disease affecting middle-aged and elderly individuals, with knee pain as a common complaint. Standard therapy approaches generally attempt to alleviate pain and inflammation, using various pharmacological and non-pharmacological options. However, the efficacy of these therapies in long-term tissue repair remains debated. As an alternative, regenerative medicine offers a promising strategy, with decreased adverse event rates and increasing evidence of safety and efficacy. This review will outline current advances in regenerative medicine for knee OA, emphasizing outpatient clinic-based therapies that use orthobiological and non-biological products. Different strategies based on orthobiologics are discussed as potential regenerative options for the management of knee OA. Cell-free therapies including platelet-rich plasma, autologous anti-inflammatories, exosomes, human placenta extract, and mitochondrial transplantation are discussed, focusing on their potential for cartilage regeneration. Additionally, cell-based therapies with regenerative properties including bone marrow aspirate concentrate, adipose stromal vascular fraction, microfat, nanofat, stem cell therapy, and genetically modified cells as part of orthobiologics, are being investigated. Also, this study is looking into non-biological approaches such as using gold-induced cytokines, extracorporeal shockwave therapy, and ozone therapy. The mechanisms of action, effectiveness, and clinical applications of each therapy are being explored, providing insights into their role in the management of knee OA.

2.
Vestn Otorinolaringol ; 89(2): 21-27, 2024.
Artículo en Ruso | MEDLINE | ID: mdl-38805459

RESUMEN

Nasal septal perforation (NSP) is a complex problem in otorhinolaryngology, which leads to impaired nasal breathing and dryness in the nose. This reduces the patient's quality of life and leads to psychological discomfort. The treatment of nasal septum perforation is selected taking into account the clinical manifestations, perforation parameters and general condition of the patient. Currently, a large number of different surgical methods have been described in order to closing the defect of nasal septum. To date, there is no universally accepted method for closing NSP, which stimulates the search and development of new treatment options. OBJECTIVE: Under experimental conditions, to study a new method for closing nasal septum perforation using a collagen scaffold together with adipose stromal vascular fraction containing multipotent mesenchymal stromal cells. MATERIAL AND METHODS: The experiment was carried out on a model of nasal septum perforation in 24 male rabbits divided into four groups, depending on the construct, implanted into the defect zone: the 1st group was the control group - without the introduction of implantation material; the 2nd group - collagen scaffold without adipose stromal vascular fraction; the 3rd group - collagen scaffold with xenogenic adipose stromal vascular fraction; the 4th group - collagen scaffold with allogeneic adipose stromal vascular fraction with further dynamic evaluation of endoscopic control on day 14, after 1 month, 3 months, and 6 months. At month 6, the animals were removed from the experiment, followed by morphological examination in color with hematoxylin and eosin, as well as safranin and methyl green. RESULTS: As a result of the experiment using adipose stromal vascular fraction of allogeneic and xenogenic origin, closing of perforation of the nasal septum of a rabbit for 3 months of dynamic endoscopic control, as well as according to morphological research, was demonstrated. CONCLUSION: Our study showed that the use of adipose stromal vascular fraction containing not only endothelial cells and pericytes, but also multipotent mesenchymal stromal cells in combination with a collagen scaffold closes the perforation of the nasal septum in a rabbit, without increasing the risk of violations of habitual vital activity.


Asunto(s)
Tejido Adiposo , Modelos Animales de Enfermedad , Perforación del Tabique Nasal , Animales , Conejos , Perforación del Tabique Nasal/cirugía , Perforación del Tabique Nasal/etiología , Tejido Adiposo/trasplante , Andamios del Tejido , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Tabique Nasal/cirugía , Resultado del Tratamiento , Colágeno
3.
J Clin Med ; 11(21)2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36362468

RESUMEN

Adipose stromal vascular fraction (SVF) has a versatile cellular system for biologically augmented therapies. However, there have been no clinical studies investigating the benefits of the augmentation of anterior cruciate ligament reconstruction (ACLR) with SVF. We conducted a retrospective study in assessing the effects of intraoperative SVF administration on the functional outcomes in young patients with ACLR. The enrolled patients were divided into the control group (ACLR only) and the SVF group (ACLR with SVF). The functional outcomes in both groups were assessed by the Lysholm knee scoring system, the Tegner activity scale, and the International Knee Documentation Committee (IKDC) subjective evaluation form, and compared at several time points during a 12-month follow-up. We found that the sex distribution and pre-surgery scores were similar in the two groups, whereas the mean age of the SVF group was higher than that of the control group (p = 0.046). The between-group analysis and generalized estimating equation model analysis revealed that, while patients in the SVF group significantly improved all their functional outcomes at 12 months after surgery, this improvement was not significantly different from the results of patients in the control group (Lysholm, p = 0.553; Tegner, p = 0.197; IKDC, p = 0.486). No side effects were observed in either group. We concluded that the intraoperative administration of SVF does not improve or accelerate functional recovery after ACLR in young patients.

4.
Stem Cell Rev Rep ; 17(4): 1362-1373, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33469783

RESUMEN

Gathering a better grasp on the adipose stromal vascular fraction (SVF) is demanding among clinicians for osteoarthritis (OA) care because of its promising but multifaceted clinical outcomes. The aim of this preclinical in vitro study was to test whether the mechanical approach with Hy-Tissue SVF system, a class IIa CE marked device of adipose tissue micro-fragmentation, influences the biological features and functions of SVF. We compared mechanical generated-SVF (mSVF) with the enzymatic generated-SVF (eSVF) by testing cell survival, phenotype, differentiation, and paracrine properties using ELISA assays. Both adipose SVF showed 80% viable cells and enrichment for CD-44 marker. The mSVF product preserved the functions of cell populations within the adipose tissue; however, it displayed lowered nucleated cell recovery and CFU-F than eSVF. As for multipotency, mSVF and eSVF showed similar differentiation commitment for osteochondral lineages. Both adipose SVF exhibited an increased release of VEGF, HGF, IGF-1 and PDGF-bb, involved in pathways mediating osteochondral repair and cell migration. Both mSVF and eSVF also displayed high release for the anti-inflammatory cytokine IL-10. After in vitro culture, supernatants from both mSVF and eSVF groups showed a low release of cytokines except for IL-10, thereby giving evidence of functional changes after culture expansion. In this study, mSVF showed active cell populations in the adipose tissue comparable to eSVF with excellent survival, differentiation and paracrine properties under a new mechanical adipose tissue micro-fragmentation system; thereby suggesting its potential use as a minimally invasive technique for OA treatment.


Asunto(s)
Tejido Adiposo , Interleucina-10 , Osteoartritis , Fracción Vascular Estromal , Animales , Diferenciación Celular , Osteoartritis/terapia , Conejos
5.
Regen Ther ; 8: 9-14, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30271860

RESUMEN

INTRODUCTION: Autologous transplantation of adipose stromal vascular fraction (SVF) is a cost-effective and technically accessible option for cell therapy. Clinical study of SVF transplantation for male stress urinary incontinence (SUI) is underway, but the effectiveness remains unknown for female SUI, majority of which is caused by childbirth trauma. METHODS: Vaginal Distension (VD) rats were generated as in vivo model for female SUI. To quantitate the severity of SUI, leak point pressure (LPP) was measured by placing a bladder catheter. There was a characteristic waveform of LPP with two-peaks, and we counted the second peak as an LPP value. Adipose SVF was separated from inguinal fat and delivered into external urethral sphincter (EUS) through transperineal injection. LPP was measured 7 or 14 days after SVF transplantation. Tissue damage and collagen synthesis around the EUS were visualized by Masson's trichrome and eosin staining. Antibody against α-smooth muscle actin (α-SMA) was used to stain smooth muscle or activated stromal cells. Donor SVF cells were distinguished from recipient EUS tissue by tracking with GFP transgene. RESULTS: VD procedure decreased the frequency at which the normal LPP waveform appeared and lowered the LPP value. SVF injection normalized the waveform as well as the level of LPP. VD disrupted histological structure of EUS and SVF failed to differentiate into striatal muscles. Instead, SVF increased α-SMA positive cells and collagen synthesis but the phenomena depended on VD stimulus. GFP tracking indicated that the transplanted SVF cells persisted for four weeks and synthesized α-SMA protein simultaneously. CONCLUSIONS: Autologous transplantation of adipose SVF displayed bulking effects through collagen synthesis. However, such heterotopic activation was dependent on tissue damage.

6.
Stem Cells Transl Med ; 4(4): 369-80, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25722428

RESUMEN

Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure-dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b(+) cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b(+) cell being the relevant cell type, SVF-derived F4/80-positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b(+) cell-dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide-dependent mechanism that required CD11b(+) cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement.


Asunto(s)
Tejido Adiposo/citología , Arterias/citología , Células del Estroma/citología , Sistema Vasomotor/metabolismo , Adipocitos/citología , Animales , Arterias/metabolismo , Antígeno CD11b/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...