Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.035
Filtrar
1.
J Environ Sci (China) ; 150: 14-24, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306391

RESUMEN

The mass production and widespread use of Pharmaceuticals and Personal Care Products (PPCPs) have posed a serious threat to the water environment and public health. In this work, a green metal-based Metal Organic Framework (MOF) Bi-NH2-BDC was prepared and characterized, and the adsorption characteristics of Bi-NH2-BDC were investigated with typical PPCPs-diclofenac sodium (DCF). It was found that DCF mainly covered the adsorbent surface as a single molecular layer, the adsorption reaction was a spontaneous, entropy-increasing exothermic process and the adsorption mechanisms between Bi-NH2-BDC and DCF were hydrogen bonding, π-π interactions and electrostatic interactions. In addition, Bi-NH2-BDC also had considerable photocatalytic properties, and its application in adsorbent desorption treatment effectively solved the problem of secondary pollution, achieving a green and sustainable adsorption desorption cycle.


Asunto(s)
Bismuto , Diclofenaco , Estructuras Metalorgánicas , Contaminantes Químicos del Agua , Diclofenaco/química , Adsorción , Contaminantes Químicos del Agua/química , Estructuras Metalorgánicas/química , Bismuto/química , Catálisis , Purificación del Agua/métodos
2.
J Environ Sci (China) ; 150: 645-656, 2025 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-39306436

RESUMEN

China's lakes are plagued by cadmium (Cd) pollution. Dissolved organic matter (DOM) significantly regulates Cd(II) transport properties at the sediment-water interface. Understanding the effects of different DOM components on the transportation properties of Cd(II) at the sediment-water interface is essential. In this study, typical DOM from different sources was selected to study Cd(II) mobility at the sediment-water interface. Results showed that terrestrial-derived DOM (fulvic acids, FA) and autochthonous-derived DOM (α-amylase, B1) inhibit Cd(II) sequestration by sediments (42.5% and 5.8%, respectively), while anthropogenic-derived DOM (sodium dodecyl benzene sulfonate, SDBS) increased the Cd(II) adsorption capacity by sediments by 2.8%. Fluorescence quenching coupling with parallel factor analysis (EEM-PARAFAC) was used to characterize different DOM components. The results showed that FA contains three kinds of components (C1, C3: protein-like components, C2: humic-like components); SDBS contains two kinds of components (C1, C2: protein-like components); B1 contains three kinds of components (C1, C2: protein-like components, C3: humic-like components).Three complex reaction models were used to characterize the ability of Cd(II) complex with DOM, and it was found that the humic-like component could hardly be complex with Cd(II). Accordingly, humic-like components compete for Cd(II) adsorption sites on the sediment surface and inhibit Cd(II) adsorption from sediments. Fourier transform infrared spectroscopy (FTIR) of the sediment surface before and after Cd(II) addition was analyzed and proved the competitive adsorption theory. This study provides a better understanding of the Cd(II) mobilization behavior at the sediment-water interface and indicates that the input of humic-like DOM will increase the bioavailability of Cd.


Asunto(s)
Cadmio , Sedimentos Geológicos , Sustancias Húmicas , Contaminantes Químicos del Agua , Cadmio/química , Cadmio/análisis , Sustancias Húmicas/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , China , Modelos Químicos , Lagos/química , Monitoreo del Ambiente , Benzopiranos
3.
J Environ Sci (China) ; 147: 101-113, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003032

RESUMEN

Control of N-nitrosodimethylamine (NDMA) in drinking water could be achieved by removing its precursors as one practical way. Herein, superfine powdered activated carbons with a diameter of about 1 µm (SPACs) were successfully prepared by grinding powdered activated carbon (PAC, D50=24.3 µm) and applied to remove model NDMA precursors, i.e. ranitidine (RAN) and nizatidine (NIZ). Results from grain diameter experiments demonstrated that the absorption velocity increased dramatically with decreasing particle size, and the maximum increase in k2 was 26.8-folds for RAN and 33.4-folds for NIZ. Moreover, kinetic experiments explained that rapid absorption could be attributed to the acceleration of intraparticle diffusion due to the shortening of the diffusion path. Furthermore, performance comparison experiments suggested that the removal of RAN and NIZ (C0=0.5 mg/L) could reach 61.3% and 60%, respectively, within 5 min, when the dosage of SAPC-1.1 (D50=1.1 µm) was merely 5 mg/L, while PAC-24.3 could only eliminate 17.5% and 18.6%. The adsorption isotherm was well defined by Langmuir isotherm model, indicating that the adsorption of RAN/NIZ was a monolayer coverage process. The adsorption of RAN or NIZ by SAPC-1.1 and PAC-24.3 was strongly pH dependent, and high adsorption capacity could be observed under the condition of pH > pka+1. The coexistence of humic acid (HA) had no significant effect on the adsorption performance because RAN/NIZ may be coupled with HA and removed simultaneously. The coexistence of anions had little effect on the adsorption also. This study is expected to provide an alternative strategy for drinking water safety triggered by NDMA.


Asunto(s)
Carbón Orgánico , Dimetilnitrosamina , Tamaño de la Partícula , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Dimetilnitrosamina/química , Cinética , Modelos Químicos
4.
J Environ Sci (China) ; 147: 665-676, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003081

RESUMEN

Microplastics (MPs) are of particular concern due to their ubiquitous occurrence and propensity to interact and concentrate various waterborne contaminants from aqueous surroundings. Studies on the interaction and joint toxicity of MPs on engineered nanoparticles (ENPs) are exhaustive, but limited research on the effect of MPs on the properties of ENPs in multi-solute systems. Here, the effect of MPs on adsorption ability of ENPs to antibiotics was investigated for the first time. The results demonstrated that MPs enhanced the adsorption affinity of ENPs to antibiotics and MPs before and after aging showed different effects on ENPs. Aged polyamide prevented aggregation of ZnONPs by introducing negative charges, whereas virgin polyamide affected ZnONPs with the help of electrostatic attraction. FT-IR and XPS analyses were used to probe the physicochemical interactions between ENPs and MPs. The results showed no chemical interaction and electrostatic interaction was the dominant force between them. Furthermore, the adsorption rate of antibiotics positively correlated with pH and humic acid but exhibited a negative correlation with ionic strength. Our study highlights that ENPs are highly capable of accumulating and transporting antibiotics in the presence of MPs, which could result in a widespread distribution of antibiotics and an expansion of their environmental risks and toxic effects on biota. It also improves our understanding of the mutual interaction of various co-existing contaminants in aqueous environments.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Óxido de Zinc , Adsorción , Microplásticos/química , Contaminantes Químicos del Agua/química , Óxido de Zinc/química , Nanopartículas/química , Modelos Químicos , Antibacterianos/química , Sustancias Húmicas
5.
J Environ Sci (China) ; 147: 677-687, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003082

RESUMEN

Due to their resistance to degradation, wide distribution, easy diffusion and potential uptake by organisms, microplastics (MPs) pollution has become a major environmental concern. In this study, PEG-modified Fe3O4 magnetic nanoparticles demonstrated superior adsorption efficiency against polyethylene (PE) microspheres compared to other adsorbents (bare Fe3O4, PEI/Fe3O4 and CA/Fe3O4). The maximum adsorption capacity of PE was found to be 2203 mg/g by adsorption isotherm analysis. PEG/Fe3O4 maintained a high adsorption capacity even at low temperature (5°C, 2163 mg/g), while neutral pH was favorable for MP adsorption. The presence of anions (Cl-, SO42-, HCO3-, NO3-) and of humic acids inhibited the adsorption of MPs. It is proposed that the adsorption process was mainly driven by intermolecular hydrogen bonding. Overall, the study demonstrated that PEG/Fe3O4 can potentially be used as an efficient control against MPs, thus improving the quality of the aquatic environment and of our water resources.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Cinética , Adsorción , Polietileno/química , Nanopartículas de Magnetita/química , Polietilenglicoles/química , Modelos Químicos
6.
J Environ Sci (China) ; 148: 263-273, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095162

RESUMEN

The adsorption of pollutants can not only promote the direct surface reaction, but also modify the catalyst itself to improve its photoelectric characteristics, which is rarely studied for water treatment with inorganic photocatalyst. A highly crystalline BiOBr (c-BiOBr) was synthesized by a two-step preparation process. Owing to the calcination, the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr. The complex of organic pollutant and [Bi2O2]2+ could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes (h+). Moreover, the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons, which would coupling with the photoexcitation to promote generate more O2•-. The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants. This work strongly deepens the understanding of the molecular modification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.


Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Catálisis , Bismuto/química , Purificación del Agua/métodos
7.
J Environ Sci (China) ; 148: 27-37, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095163

RESUMEN

Naphthenic acids, NAs, are a major contaminant of concern and a focus of much research around remediation of oil sand process affected waters, OSPW. Using activated carbon adsorbents are an attractive option given their low cost of fabrication and implementation. A deeper evaluation of the effect NA structural differences have on uptake affinity is warranted. Here we provide an in-depth exploration of NA adsorption including many more model NA species than have been assessed previously with evaluation of adsorption kinetics and isotherms at the relevant alkaline pH of OSPW using several different carbon adsorbents with pH buffering to simulate the behaviour of real OSPW. Uptake for the NA varied considerably regardless of the activated carbon used, ranging from 350 mg/g to near zero highlighting recalcitrant NAs. The equilibrium data was explored to identify structural features of these species and key physiochemical properties that influence adsorption. We found that certain NA will be resistant to adsorption when hydrophobic adsorbents are used. Adsorption isotherm modelling helped explore interactions occurring at the interface between NA and adsorbent surfaces. We identified the importance of NA hydrophobicity for activated carbon uptake. Evidence is also presented that indicates favorable hydrogen bonding between certain NA and surface site hydroxyl groups, demonstrating the importance of adsorbent surface functionality for NA uptake. This research highlights the challenges associated with removing NAs from OSPW through adsorption and also identifies how adsorbent surface chemistry modification can be used to increase the removal efficiency of recalcitrant NA species.


Asunto(s)
Ácidos Carboxílicos , Contaminantes Químicos del Agua , Adsorción , Ácidos Carboxílicos/química , Contaminantes Químicos del Agua/química , Carbón Orgánico/química , Modelos Químicos , Cinética , Concentración de Iones de Hidrógeno
8.
J Environ Sci (China) ; 148: 364-374, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095171

RESUMEN

Increasing nitrogen and phosphorus discharge and decreasing sediment input have made silicon (Si) a limiting element for diatoms in estuaries. Disturbances in nutrient structure and salinity fluctuation can greatly affect metal uptake by estuarine diatoms. However, the combined effects of Si and salinity on metal accumulation in these diatoms have not been evaluated. In this study, we aimed to investigate how salinity and Si availability combine to influence the adsorption of metals by a widely distributed diatom Phaeodactylum tricornutum. Our data indicate that replete Si and low salinity in seawater can enhance cadmium and copper adsorption onto the diatom surface. At the single-cell level, surface potential was a dominant factor determining metal adsorption, while surface roughness also contributed to the higher metal loading capacity at lower salinities. Using a combination of non-invasive micro-test technology, atomic force microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy, we demonstrate that the diversity and abundance of the functional groups embedded in diatom cell walls vary with salinity and Si supply. This results in a change in the cell surface potential and transient metal influx. Our study provides novel mechanisms to explain the highly variable metal adsorption capacity of a model estuarine diatom.


Asunto(s)
Diatomeas , Salinidad , Silicio , Contaminantes Químicos del Agua , Adsorción , Silicio/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Estuarios , Agua de Mar/química , Metales/química
9.
J Environ Sci (China) ; 148: 476-488, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095182

RESUMEN

In this study, non-thermal plasma (NTP) was employed to modify the Cu/TiO2 adsorbent to efficiently purify H2S in low-temperature and micro-oxygen environments. The effects of Cu loading amounts and atmospheres of NTP treatment on the adsorption-oxidation performance of the adsorbents were investigated. The NTP modification successfully boosted the H2S removal capacity to varying degrees, and the optimized adsorbent treated by air plasma (Cu/TiO2-Air) attained the best H2S breakthrough capacity of 113.29 mg H2S/gadsorbent, which was almost 5 times higher than that of the adsorbent without NTP modification. Further studies demonstrated that the superior performance of Cu/TiO2-Air was attributed to increased mesoporous volume, more exposure of active sites (CuO) and functional groups (amino groups and hydroxyl groups), enhanced Ti-O-Cu interaction, and the favorable ratio of active oxygen species. Additionally, the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicated the main reason for the deactivation was the consumption of the active components (CuO) and the agglomeration of reaction products (CuS and SO42-) occupying the active sites on the surface and the inner pores of the adsorbents.


Asunto(s)
Cobre , Sulfuro de Hidrógeno , Oxidación-Reducción , Titanio , Titanio/química , Adsorción , Cobre/química , Sulfuro de Hidrógeno/química , Contaminantes Atmosféricos/química , Gases em Plasma/química , Modelos Químicos
10.
J Environ Sci (China) ; 148: 553-566, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095188

RESUMEN

Organic matter (OM) derived from the decomposition of crop residues plays a key role as a sorbent for cadmium (Cd) immobilization. Few studies have explored the straw decomposition processes with the presence of minerals, and the effect of newly generated organo-mineral complexes on heavy metal adsorption. In this study, we investigated the variations in structure and composition during the rice straw decomposition with or without minerals (goethite and kaolinite), as well as the adsorption behavior and mechanisms by which straw decomposition affects Cd immobilization. The degree of humification of extracted straw organic matter was assessed using excitation-emission matrix (EEM) fluorescence and Ultraviolet-visible spectroscopy (UV-vis), while employing FTIR spectroscopy and XPS to characterize the adsorption mechanisms. The spectra analysis revealed the enrichment of highly aromatic and hydrophobic components, indicating that the degree of straw decomposition and humification were further intensified during incubation. Additionally, the existence of goethite (SG) accelerated the humification of OM. Sorption experiments revealed that the straw humification increased Cd adsorption capacity. Notably, SG exhibited significantly higher adsorption performance compared to the organic matter without minerals (RS) and the existence of kaolinite (SK). Further analysis using FT-IR spectroscopy and XPS verified that the primary mechanisms involved in Cd immobilization were complexion with -OH and -COOH, as well as the formation of Cd-π binds with aromatic C=C on the surface of solid OMs. These findings will facilitate understanding the interactions of the rice straw decomposing with soil minerals and its remediation effect on Cd-contaminated farmland.


Asunto(s)
Cadmio , Minerales , Oryza , Contaminantes del Suelo , Cadmio/química , Minerales/química , Oryza/química , Contaminantes del Suelo/química , Adsorción , Sustancias Húmicas/análisis , Caolín/química
11.
J Environ Sci (China) ; 148: 57-68, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095190

RESUMEN

The expandable graphite (EG) modified TiO2 nanocomposites were prepared by the high shear method using the TiO2 nanoparticles (NPs) and EG as precursors, in which the amount of EG doped in TiO2 was 10 wt.%. Followed by the impregnation method, adjusting the pH of the solution to 10, and using the electrostatic adsorption to achieve spatial confinement, the Pt elements were mainly distributed on the exposed TiO2, thus generating the Pt/10EG-TiO2-10 catalyst. The best CO oxidation activity with the excellent resistance to H2O and SO2 was obtained over the Pt/10EG-TiO2-10 catalyst: CO conversion after 36 hr of the reaction was ca. 85% under the harsh condition of 10 vol.% H2O and 100 ppm SO2 at a high gaseous hourly space velocity (GHSV) of 400,000 hr-1. Physicochemical properties of the catalysts were characterized by various techniques. The results showed that the electrostatic adsorption, which riveted the Pt elements mainly on the exposed TiO2 of the support surface, reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs, hence significantly improving CO oxidation activity over the Pt/10EG-TiO2-10 catalyst. The 10 wt.% EG doped in TiO2 caused the TiO2 support to form a more hydrophobic surface, which reduced the adsorption of H2O and SO2 on the catalyst, greatly inhibited deposition of the TiOSO4 and formation of the PtSO4 species as well as suppressed the oxidation of SO2, thus resulting in an improvement in the resistance to H2O and SO2 of the Pt/10EG-TiO2-10 catalyst.


Asunto(s)
Grafito , Oxidación-Reducción , Platino (Metal) , Dióxido de Azufre , Titanio , Titanio/química , Grafito/química , Dióxido de Azufre/química , Platino (Metal)/química , Catálisis , Monóxido de Carbono/química , Agua/química , Contaminantes Atmosféricos/química , Modelos Químicos
12.
J Environ Sci (China) ; 148: 637-649, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095196

RESUMEN

In this study, we investigated improving the performance of a layered double hydroxide (LDH) for the adsorption of As(III) and As(V) by controlling the morphology of LDH crystals. The LDH was synthesized via a simple coprecipitation method using barely soluble MgO as a precursor and succinic acid (SA) as a morphological control agent. Doping the LDH crystals with carboxylate ions (RCOO-) derived from SA caused the crystals to develop in a radial direction. This changed the pore characteristics and increased the density of active surface sites. Subsequently, SA/MgFe-LDH showed excellent affinity for As(III) and As(V) with maximum sorption densities of 2.42 and 1.60 mmol/g, respectively. By comparison, the pristine MgFe-LDH had sorption capacities of 1.56 and 1.31 mmol/g for As(III) and As(V), respectively. The LDH was effective over a wide pH range for As(III) adsorption (pH 3-8.5) and As(V) adsorption (pH 3-6.5). Using a combination of spectroscopy and sorption modeling calculations, the main sorption mechanism of As(III) and As(V) on SA/MgFe-LDH was identified as inner-sphere complexation via ligand exchange with hydroxyl group (-OH) and RCOO-. Specifically, bidentate As-Fe complexes were proposed for both As(III) and As(V) uptake, with the magnitude of formation varying with the initial As concentration. Importantly, the As-laden adsorbent had satisfactory stability in simulated real landfill leachate. These findings demonstrate that SA/MgFe-LDH exhibits considerable potential for remediation of As-contaminated water.


Asunto(s)
Arsénico , Hidróxidos , Óxido de Magnesio , Ácido Succínico , Contaminantes Químicos del Agua , Adsorción , Contaminantes Químicos del Agua/química , Cinética , Arsénico/química , Ácido Succínico/química , Hidróxidos/química , Óxido de Magnesio/química , Purificación del Agua/métodos , Modelos Químicos
13.
J Environ Sci (China) ; 148: 174-187, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095155

RESUMEN

Cost-effective CO2 adsorbents are gaining increasing attention as viable solutions for mitigating climate change. In this study, composites were synthesized by electrochemically combining the post-gasification residue of Macadamia nut shell with copper benzene-1,3,5-tricarboxylate (CuBTC). Among the different composites synthesized, the ratio of 1:1 between biochar and CuBTC (B 1:1) demonstrated the highest CO2 adsorption capacity. Under controlled laboratory conditions (0°C, 1 bar, without the influence of ambient moisture or CO2 diffusion limitations), B 1:1 achieved a CO2 adsorption capacity of 9.8 mmol/g, while under industrial-like conditions (25°C, 1 bar, taking into account the impact of ambient moisture and CO2 diffusion limitations within a bed of adsorbent), it reached 6.2 mmol/g. These values surpassed those reported for various advanced CO2 adsorbents investigated in previous studies. The superior performance of the B 1:1 composite can be attributed to the optimization of the number of active sites, porosity, and the preservation of the full physical and chemical surface properties of both parent materials. Furthermore, the composite exhibited a notable CO2/N2 selectivity and improved stability under moisture conditions. These favorable characteristics make B 1:1 a promising candidate for industrial applications.


Asunto(s)
Dióxido de Carbono , Estructuras Metalorgánicas , Dióxido de Carbono/química , Adsorción , Estructuras Metalorgánicas/química , Contaminantes Atmosféricos/química , Carbón Orgánico/química
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124945, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39163768

RESUMEN

Pd speciation induced by the combined effect of CO and water on Pd/SSZ-13 samples prepared by both impregnation and ion exchange was examined by FT-IR spectroscopy of CO adsorbed at room temperature and at liquid nitrogen temperature on anhydrous and hydrated samples. Starting from the literature findings related to the CO reducing effect on Pd cations, the present work gives precise spectroscopic evidences on how water is necessary in this process not only for compensating with H+ the zeolite exchange sites set free by Pd reduction, but also for mobilizing isolated Pd2+/Pd+ cations and making possible the reduction reactions. The aggregation of some Pd+ sites, just formed by the reduction and mobilized by the hydration, gives rise to the formation of Pd2O particles. Also, Pd0(100) sites are observed with CO on hydrated sample, formed by the aggregation and reduction of isolated Pd cations. Moreover, Pd0(111) sites are formed on the surface of PdOx particles during CO outgassing. The observation of the combined effect of water and CO allowed to define assignments of IR bands related to carbonyls of Pd in different oxidation states and coordination degrees.

15.
J Environ Sci (China) ; 149: 209-220, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181635

RESUMEN

Monolithic aerogels are promising candidates for use in atmospheric environmental purification due to their structural advantages, such as fine building block size together with high specific surface area, abundant pore structure, etc. Additionally, monolithic aerogels possess a unique monolithic macrostructure that sets them apart from aerogel powders and nanoparticles in practical environmental clean-up applications. This review delves into the available synthesis strategies and atmospheric environmental applications of monolithic aerogels, covering types of monolithic aerogels including SiO2, graphene, metal oxides and their combinations, along with their preparation methods. In particular, recent developments for VOC adsorption, CO2 capture, catalytic oxidation of VOCs and catalytic reduction of CO2 are highlighted. Finally, challenges and future opportunities for monolithic aerogels in the atmospheric environmental purification field are proposed. This review provides valuable insights for designing and utilizing monolithic aerogel-based functional materials.


Asunto(s)
Contaminantes Atmosféricos , Geles , Contaminantes Atmosféricos/química , Geles/química , Atmósfera/química , Adsorción , Dióxido de Carbono/química , Restauración y Remediación Ambiental/métodos , Dióxido de Silicio/química
16.
J Environ Sci (China) ; 149: 21-34, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181636

RESUMEN

During the water treatment process, chlorination and ultraviolet (UV) sterilization can modify microplastics (MPs) and alter their physicochemical properties, causing various changes between MPs and other pollutants. In this study, the impact of chlorination and UV modification on the physicochemical properties of polystyrene (PS) and polyvinyl chloride (PVC) were investigated, and the adsorption behavior of pefloxacin (PEF) before and after modification was examined. The effect of pH, ionic strength, dissolved organic matter, heavy metal ions and other water environmental conditions on adsorption behavior was revealed. The results showed that PS had a higher adsorption capacity of PEF than PVC, and the modification increased the presence of O-containing functional groups in the MPs, thereby enhancing the adsorption capacity of both materials. Chlorination had a more significant impact on the physicochemical properties of MPs compared to UV irradiation within the same time period, leading to better adsorption performance of chlorination. The optimal pH for adsorption was found to be 6, and NaCl, sodium alginate and Cu2+ would inhibit adsorption to varying degrees, among which the inhibition caused by pH was the strongest. Chlorination and UV modification would weaken the inhibitory effect of environmental factors on the adsorption of PEF by MPs. The main mechanisms of adsorption involved electrostatic interaction and hydrogen bonding. The study clarified the effects of modification on the physicochemical properties of MPs, providing reference for subsequent biotoxicity analysis and environmental protection studies.


Asunto(s)
Halogenación , Pefloxacina , Poliestirenos , Cloruro de Polivinilo , Rayos Ultravioleta , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cloruro de Polivinilo/química , Contaminantes Químicos del Agua/química , Poliestirenos/química , Purificación del Agua/métodos , Pefloxacina/química , Concentración de Iones de Hidrógeno
17.
J Environ Sci (China) ; 149: 651-662, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181675

RESUMEN

Fischer-Tropsch synthesis (FTS) wastewater retaining low-carbon alcohols and acids are organic pollutants as a limiting factor for FTS industrialization. In this work, the structure-capacity relationships between alcohol-acid adsorption and surface species on graphene were reported, shedding light into their intricate interactions. The graphene oxide (GO) and reduced graphene oxide (rGO) were synthesized via improved Hummers method with flake graphite (G). The physicochemical properties of samples were characterized via SEM, XRD, XPS, FT-IR, and Raman. The alcohol-acid adsorption behaviors and adsorption quantities on G, GO, and rGO were measured via theoretical and experimental method. It was revealed that the presence of COOH, C=O and CO species on graphene occupy the adsorption sites and increase the interactions of water with graphene, which are unfavorable for alcohol-acid adsorption. The equilibrium adsorption quantities of alcohols and acids grow in pace with carbon number. The monolayer adsorption occurs on graphene was verified via model fitting. rGO has the highest FTS modeling wastewater adsorption quantity (110 mg/g) due to the reduction of oxygen species. These novel findings provide a foundation for the alcohol-acid wastewater treatment, as well as the design and development of high-performance carbon-based adsorbent materials.


Asunto(s)
Alcoholes , Grafito , Aguas Residuales , Contaminantes Químicos del Agua , Grafito/química , Adsorción , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Alcoholes/química , Eliminación de Residuos Líquidos/métodos , Modelos Químicos , Ácidos/química
18.
J Environ Sci (China) ; 149: 79-87, 2025 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-39181680

RESUMEN

Nano zero-valent iron (nZVI) is a promising phosphate adsorbent for advanced phosphate removal. However, the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance, accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate. In this study, we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites. As expected, the stronger anti-passivation ability of oxalate modified nZVI (OX-nZVI) strongly favored its phosphate adsorption. Interestingly, the oxalate modification endowed the surface Fe(III) sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites, by in situ forming a Fe(III)-phosphate-oxalate ternary complex, therefore enabling an advanced phosphate removal process. At an initial phosphate concentration of 1.00 mg P/L, pH of 6.0 and a dosage of 0.3 g/L of adsorbents, OX-nZVI exhibited faster phosphate removal rate (0.11 g/mg/min) and lower residual phosphate level (0.02 mg P/L) than nZVI (0.055 g/mg/min and 0.19 mg P/L). This study sheds light on the importance of site manipulation in the development of high-performance adsorbents, and offers a facile surface modification strategy to prepare superior iron-based materials for advanced phosphate removal.


Asunto(s)
Hierro , Oxalatos , Fosfatos , Contaminantes Químicos del Agua , Fosfatos/química , Adsorción , Hierro/química , Contaminantes Químicos del Agua/química , Oxalatos/química , Purificación del Agua/métodos , Modelos Químicos
19.
Artículo en Inglés | MEDLINE | ID: mdl-39322931

RESUMEN

Industrial effluents, especially those containing dyes, have become the main cause of contamination of water resources. In this context, Brazilian bentonite/MgO composites, with excellent adsorptive properties, were prepared and investigated for their effectiveness in removing cationic and anionic dyes from aqueous solutions. The new adsorbents were obtained using Brazilian bentonites and MgO using the mechanochemical method followed by heat treatment (at 700 °C for 4 h). Different characterization techniques were used for the chemical, mineralogical, thermal, surface, and morphological analysis of the raw clays and the composites. The experimental adsorption isotherms were quantified under different conditions of initial concentration, contact time, pH, adsorbent dosage, and temperature variation to interpret the adsorption mechanism of the crystal violet (CV) and Congo red (CR) dyes. The modeling results were obtained from the empirical Sips equation and Pseudo Second Order (PSO) kinetics, indicating that the adsorption of molecules is a heterogeneous phenomenon that occurs in a monolayer on the surface (ns > 1), with the adsorption rate determined by chemisorption. The composites showed the best removal efficiency performance compared to the raw bentonites, with an increase of 12% for the CV dye and 46% for the CR dye. In addition, the qmax values obtained were 423.02 mg/g and 479.86 mg/g (AM01). This research underscores the potential of Brazilian bentonite/MgO composites as a promising solution for the removal of cationic and anionic dyes from water, offering hope for future applications in the field of environmental engineering and materials science.

20.
Int J Biol Macromol ; 280(Pt 2): 135763, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313054

RESUMEN

Magnetic nanoparticles modified with tetraethyl orthosilicate (Fe3O4@TEOS) and bovine serum albumin (Fe3O4@TEOS@BSA) were evaluated as sorbent in albumin depletion from human serum samples by magnetic dispersive solid phase extraction. Characterization studies were carried out by X-ray diffraction, thermogravimetry, Fourier transform infrared spectroscopy, zeta potential, and scanning electron microscopy. Both nanoparticles also showed high thermal stability and pH-dependent surface charges. The human serum albumin adsorption protocol was optimized using a central composite rotatable design. Nanoparticle mass, pH, and albumin concentration were the most influential variables. Avrami's fractional order and Freundlich isotherm models best fitted the data for human albumin adsorption kinetic and isotherm studies for Fe3O4@TEOS and Fe3O4@TEOS@BSA, and the maximum adsorption capacities were 11.93 and 14.89 mg g-1, respectively. The protein desorption was influenced by the pH of samples and eluent volume. Electrophoresis in a polyacrylamide gel containing sodium dodecyl sulfate showed different patterns of serum protein bands when consecutive depletions were performed. The Fe3O4@TEOS showed greater affinity for HSA and efficiency in depletion. The process was versatile, and the depleted albumin proportion could be controlled by the nanoparticle masses. The proposed method is a powerful sample preparation technique for rapid, reliable, and specific depletion of albumin.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...