RESUMEN
The presence of pesticide residues in Agrocybe aegerita has raised an extensive concern. In this paper, based on a 3-year monitoring survey, the dietary exposure risks through A. aegerita consumption for different population subgroups were assessed using both deterministic and semi-probabilistic approaches under the best-case and the worst-case scenarios. Among the 52 targeted pesticides, 28 different compounds were identified in the concentration range of 0.005-3.610 mg/kg, and 87.4 % of samples contained one or more pesticide residues. The most frequently detected pesticide was chlormequat, followed by chlorfenapyr and cyhalothrin. The overall risk assessment results indicated extremely low chronic, acute, and cumulative dietary exposure risks for consumers. Using the ranking matrix, intake risks of pesticides were ranked, revealing endsoluran, chlorpyrifos, and methamidophos to be in the high-risk group. Finally, considering various factors such as the toxicity and risk assessment outcomes of each positive pesticide, use suggestions were proposed for A. aegerita cultivation.
RESUMEN
Agrocybe aegerita, one of the edible mushroom varieties, is popular among consumers for its umami taste. Umami peptides, including EV, EG, EY, ENG, ECG, DEL, DDL, PEG, PEEL, DGPL, and EDCS are the main umami compounds in A. aegerita. In this study, when the concentration of these 11 umami peptides was 5 mg/mL, the corresponding relative umami intensity (measured by MSG concentration) ranged from 4.457 to 5.240 mg/mL, with DDL being the highest. All umami peptides exhibited better umami taste under neutral and weakly acidic conditions (pH 6-7). EY and ENG, with a higher umami intensity at 70 °C, were more suitable for a wide application in thermally processed foods. Additionally, the relationship between the structure and strength of umami peptides was explored using a three-dimensional quantitative structure-activity relationship model with an R2 of 0.987. Overall, umami peptides in A. aegerita possess strong potential for application in food processing.
Asunto(s)
Agrocybe , Péptidos , Relación Estructura-Actividad Cuantitativa , Gusto , Péptidos/química , Agrocybe/química , Humanos , Aromatizantes/químicaRESUMEN
Residual pesticides in Agrocybe aegerita mushroom have emerged as a significant concern and bring much uncertainty due to processing procedures. In this study, a modified QuEChERS sample preparation procedure and UPLC-MS/MS were used to analyze the residual levels of four commonly used pesticides in A. aegerita from field to product processing. The field results showed that dissipation of these targeted chemicals was consistent with the first-order kinetics, and the half-life time ranged from 20.4 h to 47.6 h. The terminal residues of the four pesticides at harvest time ranged from 9.81 to 4412.56 µg/kg in raw mushroom. The processing factors (PFs) of clothianidin, diflubenzuron, chlorbenzuron, and pyridaben ranged from 0.119 to 0.808 for the drying process and from 0.191 to 1 for the washing process. By integrating the data from the field trials, the PFs, and the consumption survey, the chronic dietary risks of the target chemicals via A. aegerita intake ranged from 2.41 × 10-5 to 5.69 × 10-2 for children and from 6.34 × 10-6 to 1.88 × 10-2 for adults, which are considerably below the threshold of 1, indicating no unacceptable risk to consumers in the Fujian province of China. This research offers foundational data for appropriate use and the maximum residue limit (MRL) establishment for these four insecticides in A. aegerita.
RESUMEN
The objective of this study was to examine the impacts of the combing of Agrocybe aegerita polysaccharides (AAPS) with Bifidobacterium lactis Bb-12 (Bb-12) on antioxidant activity, anti-aging properties, and modulation of gut microbiota. The results demonstrated that the AAPS and Bb-12 complex significantly increased the average lifespan of male and female Drosophila melanogaster under natural aging conditions (p < 0.05), with an improvement of 8.42% and 9.79%, respectively. Additionally, the complex enhanced their climbing ability and increased antioxidant enzyme activity, protecting them from oxidative damage induced by H2O2. In D-galactose induced aging mice, the addition of AAPS and Bb-12 resulted in significantly increase in antioxidant enzyme activity, regulation of aging-related biomarker levels, changed gut microbiota diversity, restoration of microbial structure, and increased abundance of beneficial bacteria, particularly lactobacilli, in the intestines. These findings suggested that the complex of AAPS and Bb-12 had the potential to serve as a dietary supplement against organism aging and oxidative stress.
RESUMEN
In the present study, ethanol extract obtained from the mycelial culture of Agrocybe aegerita was evaluated for its antioxidant activity as well for its potential to inhibit the virulence factor responsible for quorum-sensing activity and antibiofilm activity of pathogenic Pseudomonas aeruginosa PAO1 strain. The extract of mushroom at different concentrations showed percentage inhibition in a dose-dependent manner for DPPH and nitric oxide assays with the lowest as 38.56 ± 0.11% and 38.87 ± 0.04% at 50 µg/mL and the highest as 85.63 ± 0.12% and 82.34 ± 0.12% at 200 µg/mL. FTIR analysis confirmed the presence of functional group -OH, O-H bending bonds, C=C stretching, pyranose ring, and H-C-H stretch, confirming the presence of phenol, carotenoid, and ascorbic acid. HPLC analysis revealed that the concentration of gallic acid present in the extract is 27.94 mg/100 g which is significantly (p < 0.05) more than the concentration of rutin (i.e., 7.35 mg/100 g). GC-MS analysis revealed the presence of 5-methyl-1-heptanol, 2-heptadecenal, phthalic acid, butyl hept-4-yl ester, 2-dodecanol, benzoic acid, TMS derivative. The extract showed significantly (p < 0.05) more inhibition of pyocyanin (61.32%) and pyoverdine (54.02%). At higher concentrations of mushroom extract, there was a significant (p < 0.05) reduction (56.32%) in the swarming motility of the test organism. The extract showed 72.35% inhibition in biofilm formation. Therefore, it has been concluded from the present study that mushroom extract, which is rich in phenolic compounds interferes with the virulence factor responsible for quorum sensing, thereby inhibiting biofilm formation, and can be utilized as therapeutic agents against multi-drug resistant pathogenic microorganisms.
RESUMEN
Unspecific peroxygenase (UPO) presents a wide range of biotechnological applications. This study targets the use of by-products from bioethanol synthesis to produce UPO by Agrocybe aegerita. Solid-state and submerged fermentations (SSF and SmF) were evaluated, achieving the highest titers of UPO and laccase in SmF using vinasse as nutrients source. Optimized UPO production of 331 U/L was achieved in 50% (v:v) vinasse with an inoculum grown for 14 days. These conditions were scaled-up to a 4 L reactor, achieving a UPO activity of 265 U/L. Fungal proteome expression was analyzed before and after UPO activity appeared by shotgun mass spectrometry proteomics. Laccase, dye-decolorizing peroxidases (DyP), lectins and proteins involved in reactive oxygen species (ROS) production and control were detected (in addition to UPO). Interestingly, the metabolism of complex sugars and nitrogen sources had a different activity at the beginning and end of the submerged fermentation.
Asunto(s)
Agrocybe , Proteómica , LacasaRESUMEN
Mushrooms are capable of bioconverting organic residues into food. Understanding the relationship between high-quality yields and substrate biomass from these residues is critical for mushroom farms when choosing new strains. The objective of this exploratory study was, therefore, to analyze whether exotic mushrooms, namely, Pleurotus eryngii, Flammulina velutipes, and Agrocybe aegerita, could biologically convert the substrate into edible mushrooms as effectively as Lentinula edodes (baseline). Five experiments were carried out. Biological efficiency, biodegradability coefficient, mass balance and chemical characterization of the substrate were evaluated. Strategically hydrating the sawdust enabled L. edodes to achieve the greatest biodegradability and biological efficiency of 0.5 and 94.2 kg dt-1, respectively. The values for L. edodes on wheat straw without hydration were 0.2 and 68.8 kg dt-1, respectively. From 1000 kg of fresh substrate, P. eryngii produced 150.1 kg of edible mushrooms, making it technically competitive with L. edodes on wheat straw (195.9 kg). Hence, P. eryngii was the most reliable option for scaling among the exotic mushrooms. The analytical insights from our study provide further knowledge to advance the field's prominence in high-throughput mushroom-producing systems, particularly for exotic mushrooms.
RESUMEN
Polysaccharides extracted from Agrocybe aegerita (AAPS) have various physiological effects. In this study, we used the naturally aging Drosophila melanogaster and D-galactose-induced aging mice as animal models to study the anti-aging effects of AAPS via the alleviation of oxidative stress and regulation of gut microbiota. Results showed that AAPS could significantly prolong lifespan and alleviate oxidative stress induced by H2O2 of Drosophila melanogaster. In addition, AAPS significantly increased the activities of antioxidant enzymes in Drosophila melanogaster and mice, and reduced the content of MDA. Furthermore, AAPS reshaped the disordered intestinal flora, increased the abundance ratio of Firmicutes to Bacteroidetes, and increased the abundance of beneficial bacteria Lactobacillus. Our results demonstrated that AAPS had good antioxidant and potential anti-aging effects in vivo.
RESUMEN
Unspecific peroxygenases (UPOs), the extracellular enzymes capable of oxygenating a potpourri of aliphatic and aromatic substrates with a peroxide as co-substrate, come out with a new reaction: carbon-chain shortening during the conversion of fatty acids with the well-known UPOs from Coprinopsis cinerea (rCciUPO) and Cyclocybe (Agrocybe) aegerita (AaeUPO). Although a pathway (Cα-oxidation) for shortening the hydrocarbon chain of saturated fatty acids has already been reported for the UPO from Marasmius rotula (MroUPO), it turned out that rCciUPO and AaeUPO shorten the chain length of both saturated and unsaturated fatty acids in a different way. Thus, the reaction sequence does not necessarily start at the Cα-carbon (adjacent to the carboxyl group), as in the case of MroUPO, but proceeds through the subterminal (ω-1 and ω-2) carbons of the chain via several oxygenations. This new type of shortening leads to the formation of a dicarboxylic fatty acid reduced in size by two carbon atoms in the first step, which can subsequently be further shortened, carbon by carbon, by the UPO Cα-oxidation mechanism.
RESUMEN
The market for plant protein-based substitutes for cheeses is growing, but the sensory properties are distinctively different from the original products. Hence, natural and vegan cheesy flavors are needed to aromatize the products. A cheesy, sweaty and parmesan-like aroma was produced by fermentation of soy drink with Agrocybe aegerita. Aroma dilution analysis revealed short-chain fatty acids (SCFAs) as main influencing cheesy odorants analyzed by gas chromatography-mass spectrometry-olfactometry. In comparison to the five cheese varieties, the SCFA profile of the fermented soy drink revealed similarities with Parmesan and Emmental cheese. Meanwhile, principal component analysis showed an approximation of the aroma profile after fermentation with A. aegerita to those of cheeses. 3-Methylbutanoic acid was synthesized from the protein fraction, while the oil fraction contributed to the formation of unbranched SCFAs like butanoic acid. Accordingly, the production of these compounds can be increased by addition of the fractions.
Asunto(s)
Queso , Compuestos Orgánicos Volátiles , Agrocybe , Queso/análisis , Fermentación , Odorantes , Gusto , Compuestos Orgánicos Volátiles/análisisRESUMEN
Ageritin is the prototype of a new ribotoxin-like protein family, which has been recently identified also in basidiomycetes. The protein exhibits specific RNase activity through the cleavage of a single phosphodiester bond located at sarcin/ricin loop of the large rRNA, thus inhibiting protein biosynthesis at early stages. Conversely to other ribotoxins, its activity requires the presence of divalent cations. In the present study, we report the activity of Ageritin on both prokaryotic and eukaryotic cells showing that the protein has a prominent effect on cancer cells viability and no effects on eukaryotic and bacterial cells. In order to rationalize these findings, the ability of the protein to interact with various liposomes mimicking normal, cancer and bacterial cell membranes was explored. The collected results indicate that Ageritin can interact with DPPC/DPPS/Chol vesicles, used as a model of cancer cell membranes, and with DPPC/DPPG vesicles, used as a model of bacterial cell membranes, suggesting a selective interaction with anionic lipids. However, a different perturbation of the two model membranes, mediated by cholesterol redistribution, was observed and this might be at the basis of Ageritin selective toxicity towards cancer cells.
Asunto(s)
Membrana Celular/metabolismo , Micotoxinas/farmacología , Neoplasias/metabolismo , Ribonucleasas/farmacología , Agrocybe/química , Animales , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Basidiomycota/química , Calorimetría/métodos , Línea Celular , Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colesterol/metabolismo , Liposomas/metabolismo , Ratones , Micotoxinas/toxicidad , Neoplasias/tratamiento farmacológico , Biosíntesis de Proteínas/efectos de los fármacos , ARN Ribosómico/metabolismo , Ribonucleasas/metabolismo , Ribonucleasas/toxicidad , Ribosomas/metabolismoRESUMEN
Ageritin is a specific ribonuclease, extracted from the edible mushroom Cyclocybe aegerita (synonym Agrocybe aegerita), which cleaves a single phosphodiester bond located within the universally conserved alpha-sarcin loop (SRL) of 23-28S rRNAs. This cleavage leads to the inhibition of protein biosynthesis, followed by cellular death through apoptosis. The structural and enzymatic properties show that Ageritin is the prototype of a novel specific ribonucleases family named 'ribotoxin-like proteins', recently found in fruiting bodies of other edible basidiomycetes mushrooms (e.g., Ostreatin from Pleurotus ostreatus, Edulitins from Boletus edulis, and Gambositin from Calocybe gambosa). Although the putative role of this toxin, present in high amount in fruiting body (>2.5 mg per 100 g) of C. aegerita, is unknown, its antifungal and insecticidal actions strongly support a role in defense mechanisms. Thus, in this review, we focus on structural, biological, antipathogenic, and enzymatic characteristics of this ribotoxin-like protein. We also highlight its biological relevance and potential biotechnological applications in agriculture as a bio-pesticide and in biomedicine as a therapeutic and diagnostic agent.
Asunto(s)
Agaricales/enzimología , Cuerpos Fructíferos de los Hongos/enzimología , Micotoxinas/metabolismo , Ribonucleasas/metabolismo , Agaricales/genética , Animales , Antifúngicos/farmacología , Antineoplásicos/farmacología , Antivirales/farmacología , Agentes de Control Biológico/farmacología , Cuerpos Fructíferos de los Hongos/genética , Humanos , Micotoxinas/genética , Micotoxinas/farmacología , Filogenia , Conformación Proteica , Ribonucleasas/genética , Ribonucleasas/farmacología , Relación Estructura-ActividadRESUMEN
The edible mushroom Agrocybe aegerita produces a ribotoxin-like protein known as Ageritin. In this work, the gene encoding Ageritin was characterized by sequence analysis. It contains several typical features of fungal genes such as three short introns (60, 55 and 69 bp) located at the 5' region of the coding sequence and typical splice junctions. This sequence codes for a precursor of 156 amino acids (~17-kDa) containing an additional N-terminal peptide of 21 amino acid residues, absent in the purified toxin (135 amino acid residues; ~15-kDa). The presence of 17-kDa and 15-kDa forms was investigated by Western blot in specific parts of fruiting body and in mycelia of A. aegerita. Data show that the 15-kDa Ageritin is the only form retrieved in the fruiting body and the principal form in mycelium. The immunolocalization by confocal laser scanning microscopy and transmission electron microscopy proves that Ageritin has vacuolar localization in hyphae. Coupling these data with a bioinformatics approach, we suggest that the N-terminal peptide of Ageritin (not found in the purified toxin) is a new signal peptide in fungi involved in intracellular routing from endoplasmic reticulum to vacuole, necessary for self-defense of A. aegerita ribosomes from Ageritin toxicity.
Asunto(s)
Agrocybe/genética , Citotoxinas/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Proteínas Fúngicas/genética , Micelio/metabolismo , Ribonucleasas/genética , Agrocybe/metabolismo , Agrocybe/ultraestructura , Secuencia de Aminoácidos , Biología Computacional , Citotoxinas/biosíntesis , Citotoxinas/aislamiento & purificación , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Exones , Cuerpos Fructíferos de los Hongos/ultraestructura , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/aislamiento & purificación , Expresión Génica , Intrones , Micelio/ultraestructura , Sistemas de Lectura Abierta , Señales de Clasificación de Proteína/genética , Transporte de Proteínas , Ribonucleasas/biosíntesis , Ribonucleasas/aislamiento & purificación , Ribosomas/genética , Ribosomas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vacuolas/metabolismo , Vacuolas/ultraestructuraRESUMEN
Ageritin, a specific ribonuclease, damaging the largest rRNA in the highly conserved α-sarcin/ricin stem-loop (SRL) has been well characterized from edible mushroom Agrocybe aegerita. Given its peculiar characteristic, Ageritin is the prototype of a new ribotoxins family expressed in basidiomycetes. In this framework, we report the characterization of Met-Ageritin, an isoform of Ageritin with an additional N-terminal methionyl residue. This difference affects the enzymatic features of this toxin despite is able to release α-fragment when acting on yeast, rabbit or Trichoderma asperellum ribosomes. Met-Ageritin inhibits protein synthesis in vitro with an IC50â¯=â¯2.8â¯nM that is 21-fold lower than that of Ageritin, while not show endonuclease activity on DNA. Subsequently, we explored the antifungal activity of both isoforms against T. asperellum, pathogen for A. aegerita and Saccharomyces cerevisiae, used as eukaryotic model microorganism. The presence of an additional N-terminal methionyl residue in Met-Ageritin abolishes antifungal activity towards T. asperellum, while neither of two isoforms is able to inhibit the growth of S. cerevisiae. Overall, these data highlight the importance of the N-terminal region of this toxin that likely alters the conformational state of this enzyme considering the presence in this region of metal binding sites necessary for explicate enzymatic activity.
Asunto(s)
Agrocybe/química , Antifúngicos/farmacología , Ribonucleasas/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Cuerpos Fructíferos de los Hongos/química , Conformación Proteica , Ribonucleasas/química , Ribonucleasas/aislamiento & purificaciónRESUMEN
Acute liver failure (ALF) can be the consequence of various etiologies, which immune response plays a pivotal role in the pathogenesis. For the diversity of etiologies, more animal models are still needed in this field. Here, we developed a new acute liver injury mouse model induced by a fungal lectin AAGL (Agrocybe aegerita galectin). Intravenous injection of AAGL could induce the infiltration and activation of T, NKT and NK cells in liver and T cell played an important role in the pathogenesis. However, compared with the widely used concanavalin A model, AAGL model showed different immune mechanism. Transcriptome analysis of live tissue suggested that inflammation mediated by chemokine and cytokine signaling pathway was different between AAGL and Con A model. Fluorescent quantitative PCR verification assay showed that IL-1ß was expressed much higher in AAGL-treated mice and anti-IL-1ß could ameliorate AAGL-induced liver injury by inhibiting NF-κB and p38 signaling pathway. The expression of CXCL9 which was responsible for T cell infiltration in liver was also inhibited in AAGL model. We found a critical role of IL-1ß in the pathogenesis of AAGL model through recruiting T cells to liver, which highlighted that IL-1ß antibody might be a candidate therapy for ALF.
Asunto(s)
Agrocybe/patogenicidad , Galectinas/toxicidad , Interleucina-1beta/fisiología , Fallo Hepático Agudo/etiología , Hígado/lesiones , Linfocitos T/patología , Animales , Anticuerpos/farmacología , Anticuerpos/uso terapéutico , Movimiento Celular , Concanavalina A/toxicidad , Interleucina-1beta/inmunología , RatonesRESUMEN
BACKGROUND: Unspecific peroxygenases (UPO) (EC 1.11.2.1) represent an intriguing oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity. With over 300 identified substrates, UPOs catalyze numerous oxidations including 1- or 2- electron oxygenation, selective oxyfunctionalizations, which make them most significant in organic syntheses and potentially attractive as industrial biocatalysts. There are very few UPOs available with distinct properties, notably, MroUPO which shows behavior ranging between UPO and another heme-thiolate peroxidase, called Chloroperoxidase (CPO). It prompted us to search for more UPOs in fungal kingdom which led us to studying their relationship with CPO. RESULTS: In this study, we searched for novel UPOs in more than 800 fungal genomes and found 113 putative UPO-encoding sequences distributed in 35 different fungal species (or strains), amongst which single sequence per species were subjected to phylogeny study along with CPOs. Our phylogenetic study show that the UPOs are distributed in Basidiomycota and Ascomycota phyla of fungi. The sequence analysis helped to classify the UPOs into five distinct subfamilies: classic AaeUPO and four new subfamilies with potential new traits. We have also shown that each of these five subfamilies (supported by) have their own signature motifs. Surprisingly, some of the CPOs appeared to be a type of UPOs indicating that they were previously identified incorrectly. Selection pressure was observed on important motifs in UPOs which could have driven their functional divergence. Furthermore, the sites having different evolutionary rates caused by the functional divergence were also identified on some motifs along with the other relevant amino acid residues. Finally, we predicted critical amino acids responsible for the functional divergence in the UPOs and identified some sequence differences among UPOs, CPOs, and MroUPO to predict it's ranging behavior. CONCLUSION: This study discovers new UPOs, provides a glimpse of their evolution from CPOs, and presents new insight on their functional divergence. We present a new classification of UPOs and shed new light on its phylogenetics. These different UPOs may exhibit a wide range of characteristics and specificities which may help in various fields of synthetic chemistry and industrial biocatalysts, and may as well lead to an advancement towards the understanding of physiological role of UPOs in fungi.
Asunto(s)
Evolución Molecular , Oxigenasas de Función Mixta/metabolismo , Familia de Multigenes , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ascomicetos/enzimología , Basidiomycota/enzimología , Secuencia Conservada , Variación Genética , Funciones de Verosimilitud , Oxigenasas de Función Mixta/química , Filogenia , Selección GenéticaRESUMEN
Lectin is a protein with multiple functions. In this study, the full-length cDNA of the Agrocybe aegerita lectin (AAL) gene was cloned, recombinant AAL (AAL-His) was expressed, and the activities of AAL-His were analyzed. Northern blot analysis showed that the major AAL transcript is approximately 900 bp. Sequence analysis showed that the coding region of AAL is 489 bp with a transcription start site located 39 nucleotides upstream of the translation initiation codon. In an agglutination test, AAL-His agglutinated rabbit erythrocytes at 12.5⯵g/ml. AAL-His also showed antiviral activity in protecting shrimp from white spot syndrome virus (WSSV) infection. This anti-WSSV effect might be due to the binding of AAL-His on WSSV virions via the direct interactions with four WSSV structural proteins, VP39B, VP41B, VP53A and VP216. AAL demonstrates the potential for development as an anti-WSSV agent for shrimp culture. It also implies that these four AAL interaction WSSV proteins may play important roles in virus infection.
Asunto(s)
Agrocybe/genética , Antígenos Fúngicos/genética , Infecciones por Virus ADN/inmunología , Lectinas/genética , Penaeidae/inmunología , Transgenes/genética , Virus del Síndrome de la Mancha Blanca 1/fisiología , Animales , Antivirales/metabolismo , Clonación Molecular , Agregación Eritrocitaria , Inmunidad Innata , Lectinas/metabolismo , Penaeidae/virología , Unión Proteica , Proteínas Virales/metabolismoRESUMEN
Here, we report the amino acid sequence of Ageritin, the first ribotoxin-like protein from basidiomycetes (Agrocybe aegerita). This protein consists of 135 amino acid residues with a theoretical molecular mass of 14,801.80 Da (experimental mass 14,802.84 Da, [M + H+]+). Unlike both the classic ribotoxins and homologous RNases T1 family from ascomycetes, Ageritin has a single free cysteinyl residue and does not show homology with known RNases endowed with the specific enzymatic activity on the universally conserved Sarcin Ricin Loop. On the other hand, our 3D homology study shows that Ageritin has a structural core consisting of an antiparallel ß-sheet and an adjacent long α-helix, typical of ribotoxins and RNase T1 family, although the sheet has an orthogonal arrangement with respect to them. Thus, Ageritin is the first prototype of novel ribotoxin-like protein family from fungi.
Asunto(s)
Basidiomycota/química , Micotoxinas/química , Secuencia de Aminoácidos , Secuencia de Bases , Basidiomycota/genética , Cromatografía Liquida , Biología Computacional , ADN Complementario/genética , Genoma Fúngico , Conformación Proteica , Homología de Secuencia de Aminoácido , Espectrometría de Masas en TándemRESUMEN
The inhibition of arginase from Leishmania spp. is considered a promising approach to the leishmaniasis treatment. In this study, the potential of a fucogalactan isolated from the medicinal mushroom Agrocybe aegerita was evaluated against arginase (ARG) from Leishmania amazonensis. The polysaccharide was obtained via aqueous extraction, and purified by freeze thawing and precipitation with Fehling solution. Its chemical structure was established by monosaccharide composition, methylation analysis, partial acid hydrolysis, and NMR spectroscopy. The data indicated that it is a fucogalactan (FG-Aa; Mw = 13.8 kDa), having a (1â6)-linked α-D-Galp main-chain partially substituted in O-2 by non-reducing end-units of α-L-Fucp. FG-Aa showed significant inhibitory activity on ARG with IC50potency of 5.82 ± 0.57 µM. The mechanism of ARG inhibition by the heterogalactan was the competitive type, with Kiof 1.54 ± 0.15 µM. This is the first report of an inhibitory activity of arginase from L. amazonensis by biopolymers, which encourages us to investigate further polysaccharides as a new class of ARG inhibitors.
Asunto(s)
Agrocybe/química , Arginasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Polisacáridos Fúngicos/química , Galactanos/química , Leishmania/enzimología , Proteínas Protozoarias/antagonistas & inhibidores , Arginasa/química , Proteínas Protozoarias/químicaRESUMEN
Ageritin has been recently described as the first ribotoxin-like from Basidiomycota division (mushroom Agrocybe aegerita) with known antitumor activity (BBA 2017, 1861: 1113-1121). By investigating structural, catalytic and binding properties, we demonstrate that Ageritin is a unique ribotoxin-like protein. Indeed, typical of the ribotoxin family, it shows the specific ribonucleolytic activity against the ribosomal Sarcin-Ricin Loop in a rabbit reticulocytes assay. However, it displays several elements of novelty, as this activity is strongly metal-dependent and completely suppressed in the presence of EDTA, different from other representative members of the ribotoxin family. Consistently, we prove that Ageritin is able to bind magnesium ions with low micromolar affinity. We also show that Ageritin is significantly more stable than other ribotoxins in thermal and chemical denaturation experiments. These peculiar features make Ageritin the prototype of a new ribotoxin-like family present in basidiomycetes. Finally, given its high stability, this enzyme is a promising candidate as a new tool in immunoconjugates and nanoconstructs.