Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 12: 1415258, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144255

RESUMEN

Background: Tuberous sclerosis is a multi-system disorder caused by mutations in either TSC1 or TSC2. The majority of affected patients (85%-90%) have heterozygous variants, and a smaller number (around 5%) have mosaic variants. Despite using various techniques, some patients still have "no mutation identified" (NMI). Methods: We hypothesized that the causal variants of patients with NMI may be structural variants or deep intronic variants. To investigate this, we sequenced the DNA of 26 tuberous sclerosis patients with NMI using targeted long-read sequencing. Results: We identified likely pathogenic/pathogenic variants in 13 of the cases, of which 6 were large deletions, four were InDels, two were deep intronic variants, one had retrotransposon insertion in either TSC1 or TSC2, and one was complex rearrangement. Furthermore, there was a de novo Alu element insertion with a high suspicion of pathogenicity that was classified as a variant of unknown significance. Conclusion: Our findings expand the current knowledge of known pathogenic variants related to tuberous sclerosis, particularly uncovering mosaic complex structural variations and retrotransposon insertions that have not been previously reported in tuberous sclerosis. Our findings suggest a higher prevalence of mosaicism among tuberous sclerosis patients than previously recognized. Our results indicate that long-read sequencing is a valuable approach for tuberous sclerosis cases with no mutation identified (NMI).

2.
Yi Chuan ; 46(7): 570-580, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39016090

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe X-linked recessive genetic disorder caused by mutations in the DMD gene, which leads to a deficiency of the dystrophin protein. The main mutation types of this gene include exon deletions and duplications, point mutations, and insertions. These mutations disrupt the normal expression of dystrophin, ultimately leading to the disease. In this study, we reported a case of DMD caused by an insertion mutation in exon 59 (E59) of the DMD gene. The affected child exhibited significant abnormalities in related biochemical markers, early symptoms of DMD, and multiple gray hair. His mother and sister were carriers with slightly abnormal biochemical markers. The mother had mild clinical symptoms, while the sister had no clinical symptoms. Other family members were genetically and physically normal. Sequencing and sequence alignment revealed that the inserted fragment was an Alu element from the AluYa5 subfamily. This insertion produced two stop codons and a polyadenylate (polyA) tail. To understand the impact of this insertion on the DMD gene and its association with clinical symptoms, exonic splicing enhancer (ESE) prediction indicated that the insertion did not affect the splicing of E59. Therefore, we speculated that the insertion sequence would be present in the mRNA sequence of the DMD gene. The two stop codons and polyA tail likely terminate translation, preventing the production of functional dystrophin protein, which may be the mechanism leading to DMD. In addition to typical DMD symptoms, the child also exhibited premature graying of hair. This study reports, for the first time, a case of DMD caused by the insertion of an Alu element into the coding region of the DMD gene. This finding provides clues for studying gene mutations induced by Alu sequence insertion and expands the understanding of DMD gene mutations.


Asunto(s)
Elementos Alu , Distrofina , Distrofia Muscular de Duchenne , Mutagénesis Insercional , Distrofia Muscular de Duchenne/genética , Humanos , Elementos Alu/genética , Distrofina/genética , Masculino , Secuencia de Bases , Cabello/metabolismo , Femenino , Exones/genética , Niño , Datos de Secuencia Molecular
3.
Genes (Basel) ; 15(4)2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674434

RESUMEN

Oxidative phosphorylation involves a complex multi-enzymatic mitochondrial machinery critical for proper functioning of the cell, and defects herein cause a wide range of diseases called "primary mitochondrial disorders" (PMDs). Mutations in about 400 nuclear and 37 mitochondrial genes have been documented to cause PMDs, which have an estimated birth prevalence of 1:5000. Here, we describe a 4-year-old female presenting from early childhood with psychomotor delay and white matter signal changes affecting several brain regions, including the brainstem, in addition to lactic and phytanic acidosis, compatible with Leigh syndrome, a genetically heterogeneous subgroup of PMDs. Whole genome sequencing of the family trio identified a homozygous 12.9 Kb deletion, entirely overlapping the NDUFA4 gene. Sanger sequencing of the breakpoints revealed that the genomic rearrangement was likely triggered by Alu elements flanking the gene. NDUFA4 encodes for a subunit of the respiratory chain Complex IV, whose activity was significantly reduced in the patient's fibroblasts. In one family, dysfunction of NDUFA4 was previously documented as causing mitochondrial Complex IV deficiency nuclear type 21 (MC4DN21, OMIM 619065), a relatively mild form of Leigh syndrome. Our finding confirms the loss of NDUFA4 function as an ultra-rare cause of Complex IV defect, clinically presenting as Leigh syndrome.


Asunto(s)
Complejo I de Transporte de Electrón , Enfermedad de Leigh , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/patología , Femenino , Preescolar , Complejo IV de Transporte de Electrones/genética , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología , Linaje , Eliminación de Secuencia
4.
Comput Biol Med ; 166: 107546, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37826952

RESUMEN

Cervical cancer, the second most common female malignant tumor, seriously threatens women's health and lives. Despite the availability of the HPV vaccine, effective treatment options for cervical cancer are still lacking. New research perspectives now clarify that RNA editing dysregulation and changes in circRNA expression are jointly involved in disease pathogenesis, so molecular changes associated with circRNA and RNA editing may provide clues for the development of new therapeutic strategies for cervical cancer. In this study, we designed a series of pipelines to identify and analyze dysregulated RNA editing events in circRNAs. Our findings indicate a decrease in A-to-I RNA editing levels in cervical cancer compared to normal tissues, and editing may influence the back-splicing process of circRNAs through structural modifications of Alu elements. Moreover, our research reveals that RNA editing could modulate circRNA biogenesis by influencing RNA binding protein (RBP) binding on a transcriptome-wide scale, as well as influence the expression and coding potential of circRNAs. Importantly, we identified three RNA editing sites that could serve as potential biomarkers. In summary, our study presents a comprehensive landscape of RNA editing perturbations in circRNAs, providing new insights into the complex relationship between RNA editing and circRNA dysregulation in cervical cancer.

5.
BMC Med ; 21(1): 254, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443018

RESUMEN

BACKGROUND: Schizophrenia and bipolar disorder (BD) are believed to share clinical symptoms, genetic risk, etiological factors, and pathogenic mechanisms. We previously reported that single nucleotide polymorphisms spanning chromosome 3p21.1 showed significant associations with both schizophrenia and BD, and a risk SNP rs2251219 was in linkage disequilibrium with a human specific Alu polymorphism rs71052682, which showed enhancer effects on transcriptional activities using luciferase reporter assays in U251 and U87MG cells. METHODS: CRISPR/Cas9-directed genome editing, real-time quantitative PCR, and public Hi-C data were utilized to investigate the correlation between the Alu polymorphism rs71052682 and NISCH. Primary neuronal culture, immunofluorescence staining, co-immunoprecipitation, lentiviral vector production, intracranial stereotaxic injection, behavioral assessment, and drug treatment were used to examine the physiological impacts of Nischarin (encoded by NISCH). RESULTS: Deleting the Alu sequence in U251 and U87MG cells reduced mRNA expression of NISCH, the gene locates 180 kb from rs71052682, and Hi-C data in brain tissues confirmed the extensive chromatin contacts. These data suggested that the genetic risk of schizophrenia and BD predicted elevated NISCH expression, which was also consistent with the observed higher NISCH mRNA levels in the brain tissues from psychiatric patients compared with controls. We then found that overexpression of NISCH resulted in a significantly decreased density of mushroom dendritic spines with a simultaneously increased density of thin dendritic spines in primary cultured neurons. Intriguingly, elevated expression of this gene in mice also led to impaired spatial working memory in the Y-maze. Given that Nischarin is the target of anti-hypertensive agents clonidine and tizanidine, which have shown therapeutic effects in patients with schizophrenia and patients with BD in preliminary clinical trials, we demonstrated that treatment with those antihypertensive drugs could reduce NISCH mRNA expression and rescue the impaired working memory in mice. CONCLUSIONS: We identify a psychiatric risk gene NISCH at 3p21.1 GWAS locus influencing dendritic spine morphogenesis and cognitive function, and Nischarin may have potentials for future therapeutic development.


Asunto(s)
Espinas Dendríticas , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Animales , Estudio de Asociación del Genoma Completo/métodos , Cognición , Polimorfismo de Nucleótido Simple/genética , Morfogénesis , ARN Mensajero
6.
Free Radic Biol Med ; 206: 94-105, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37353175

RESUMEN

There is accumulating evidence that pro-inflammatory features are inherent to mitochondrial DNA and oxidized DNA species. 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) is the most frequently studied oxidatively generated lesion. Modified DNA reaches the circulation upon cell apoptosis, necrosis or neutrophil extracellular trap (NET) formation. Standard chromatography-based techniques for the assessment of 8-oxodGuo imply degradation of DNA to a single base level, thus precluding the attribution to a nuclear or mitochondrial origin. We therefore aimed to establish a protocol for the concomitant assessment of oxidized mitochondrial and nuclear DNA from human plasma samples. We applied immunoprecipitation (IP) for 8-oxodGuo to separate oxidized from non-oxidized DNA species and subsequent quantitative polymerase chain reaction (qPCR) to assign them to their subcellular source. The IP procedure failed when applied directly to plasma samples, i.e. isotype control precipitated similar amounts of DNA as the specific 8-oxodGuo antibody. In contrast, DNA isolation from plasma prior to the IP process provided assay specificity with little impact on DNA oxidation status. We further optimized sensitivity and efficiency of qPCR analysis by reducing amplicon length and targeting repetitive nuclear DNA elements. When the established protocol was applied to plasma samples of abdominal aortic aneurysm (AAA) patients and control subjects, the AAA cohort displayed significantly elevated circulating non-oxidized and total nuclear DNA and a trend for increased levels of oxidized mitochondrial DNA. An enrichment of mitochondrial versus nuclear DNA within the oxidized DNA fraction was seen for AAA patients. Regarding the potential source of circulating DNA, we observed a significant correlation of markers of neutrophil activation and NET formation with nuclear DNA, independent of oxidation status. Thus, the established method provides a tool to detect and distinguish the release of oxidized nuclear and mitochondrial DNA in human plasma and offers a refined biomarker to monitor disease conditions of pro-inflammatory cell and tissue destruction.


Asunto(s)
Aneurisma de la Aorta Abdominal , Desoxiguanosina , Humanos , 8-Hidroxi-2'-Desoxicoguanosina , ADN Mitocondrial/genética , Oxidación-Reducción , Aneurisma de la Aorta Abdominal/genética
7.
BMC Geriatr ; 22(1): 427, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578164

RESUMEN

BACKGROUND: Aldehyde dehydrogenase 1 (encoded by ALDH1A1) has been shown to protect against Parkinson's disease (PD) by reducing toxic metabolites of dopamine. We herein revealed an antisense Alu element insertion/deletion polymorphism in intron 4 of ALDH1A1, and hypothesized that it might play a role in PD.  METHODS: A Han Chinese cohort comprising 488 PD patients and 515 controls was recruited to validate the Alu insertion/deletion polymorphism following a previous study of tag-single nucleotide polymorphisms, where rs7043217 was shown to be significantly associated with PD. Functional analyses of the Alu element insertion were performed. RESULTS: The Alu element of ALDH1A1 was identified to be a variant of Yb8 subfamily and termed as Yb8c4. The antisense Yb8c4 insertion/deletion polymorphism (named asYb8c4ins and asYb8c4del, respectively) appeared to be in a complete linkage disequilibrium with rs7043217 and was validated to be significantly associated with PD susceptibility with asYb8c4ins serving as a risk allele (P = 0.030, OR = 1.224, 95% CI = 1.020-1.470). Multiple functional analyses including ALDH1A1 mRNA expression in blood cells of carriers, and reporters of EGFP and luciferase showed that the asYb8c4ins had a suppressive activity on gene transcription. Mechanistic explorations suggested that the asYb8c4ins induced no changes in CpG methylation and mRNA splicing of ALDH1A1 and appeared no binding of transcription factors. CONCLUSIONS: Our results consolidate an involvement of ALDH1 in PD pathogenesis. The asYb8c4 polymorphism may be a functional output of its linkage disequilibrium-linked single nucleotide polymorphisms.


Asunto(s)
Enfermedad de Parkinson , Familia de Aldehído Deshidrogenasa 1 , Pueblo Asiatico/genética , Estudios de Casos y Controles , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple/genética , ARN Mensajero , Retinal-Deshidrogenasa/genética
8.
Hum Mutat ; 42(11): 1422-1428, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34405929

RESUMEN

Isolated complex I deficiency is the most common cause of pediatric mitochondrial disease. Exome sequencing (ES) has revealed many complex I causative genes. However, there are limitations associated with identifying causative genes by ES analysis. In this study, we performed multiomics analysis to reveal the causal variants. We here report two cases with mitochondrial complex I deficiency. In both cases, ES identified a novel c.580G>A (p.Glu194Lys) variant in NDUFV2. One case additionally harbored c.427C>T (p.Arg143*), but no other variants were observed in the other case. RNA sequencing showed aberrant exon splicing of NDUFV2 in the unsolved case. Genome sequencing revealed a novel heterozygous deletion in NDUFV2, which included one exon and resulted in exon skipping. Detailed examination of the breakpoint revealed that an Alu insertion-mediated rearrangement caused the deletion. Our report reveals that combined use of transcriptome sequencing and GS was effective for diagnosing cases that were unresolved by ES.


Asunto(s)
Elementos Alu , Complejo I de Transporte de Electrón/deficiencia , Eliminación de Gen , Genoma Humano , Mutación INDEL , Enfermedades Mitocondriales/genética , NADH Deshidrogenasa/genética , Análisis de Secuencia de ARN/métodos , Complejo I de Transporte de Electrón/genética , Femenino , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/diagnóstico , Linaje
9.
Genes Chromosomes Cancer ; 60(8): 586-590, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33896072

RESUMEN

Atypical teratoid/rhabdoid tumor (AT/RT) is a malignant brain tumor predominantly occurring in infants. Biallelic SMARCB1 mutations causing loss of nuclear SMARCB1/INI1 protein expression represent the characteristic genetic lesion. Pathogenic SMARCB1 mutations comprise single nucleotide variants, small insertions/deletions, large deletions, which may be also present in the germline (rhabdoid tumor predisposition syndrome 1), as well as somatic copy-number neutral loss of heterozygosity (LOH). In some SMARCB1-deficient AT/RT underlying biallelic mutations cannot be identified. Here we report the case of a 24-months-old girl diagnosed with a large brain tumor. The malignant rhabdoid tumor showed loss of nuclear SMARCB1/INI1 protein expression and the diagnosis of AT/RT was confirmed by DNA methylation profiling. While FISH, MLPA, Sanger sequencing and DNA methylation data-based imbalance analysis did not disclose alterations affecting SMARCB1, OncoScan array analysis revealed a 28.29 Mb sized region of copy-number neutral LOH on chromosome 22q involving the SMARCB1 locus. Targeted next-generation sequencing did also not detect a single nucleotide variant but instead revealed insertion of an AluY element into exon 2 of SMARCB1. Specific PCR-based Sanger sequencing verified the Alu insertion (SMARCB1 c.199_200 Alu ins) resulting in a frame-shift truncation not present in the patient's germline. In conclusion, transposable element insertion represents a hitherto not widely recognized mechanism of SMARCB1 disruption in AT/RT, which might not be detected by several widely applied conventional diagnostics assays. This finding has particular clinical implications, if rhabdoid predisposition syndrome 1 is suspected, but germline SMARCB1 alterations cannot be identified.


Asunto(s)
Neoplasias Encefálicas/genética , Tumor Rabdoide/genética , Proteína SMARCB1/genética , Teratoma/genética , Neoplasias Encefálicas/patología , Elementos Transponibles de ADN , Femenino , Humanos , Lactante , Mutagénesis Insercional , Tumor Rabdoide/patología , Teratoma/patología
10.
Clin Chim Acta ; 517: 23-30, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33607070

RESUMEN

AIMS: To investigate a family with clinical symptoms of maple syrup urine disease and reveal a genetic cause underlying this disease. METHODS: Targeted capture sequencing was used to screen for mutations in the patient. Real-Time PCR was carried out to perform exon 1, 5, 9 CNV analysis of samples from the patient's father, mother and sister. Whole genome sequencing was performed to map the approximate location of the break points of the gross deletion. Long-range PCR and Sanger sequencing were performed to identify the length of the deletion and to locate the break points. RESULTS: The patient is a compound heterozygous mutation including a small deletion mutation (c.1227_1229del chr19: 41930402) and a gross novel deletion including exon1-9 in BCKDHA. The junction site of the gross deletion was localized within a microhomologous sequence in two Alu elements. CONCLUSIONS: This study is the first time report on rearrangement sequences in BCKDHA mediated by Alu element, which resulted in MSUD. Our results may also offer new insights into the formation and pathogenicity of MSUD, and may be useful to genetic counseling and genetic testing.


Asunto(s)
Enfermedad de la Orina de Jarabe de Arce , Exones/genética , Humanos , Enfermedad de la Orina de Jarabe de Arce/genética , Mutación , Reacción en Cadena de la Polimerasa , Secuenciación Completa del Genoma
11.
Int J Reprod Biomed ; 18(8): 571-578, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32930675

RESUMEN

BACKGROUND: Tissue plasminogen activator (t-PA) is a protein involved in the fibrinolytic system that catalyzes the conversion of plasminogen into the active plasmin. The activity of t-PA is controlled by plasminogen activator inhibitor-1. t-PA has crucial functions during spermatogenesis. One polymorphism was reported for t-PA gene, either the presence of a 300-bp Alu-repeat (Alu + ) or its absence (Alu - ). OBJECTIVE: The current work aimed at studying the association between Alu polymorphism in the t-PA gene and male infertility. MATERIALS AND METHODS: Using polymerase chain reaction on genomic DNA isolated from the blood of 79 participants, a region polymorphic for Alu element insertion in t-PA gene was amplified. In addition, total t-PA concentration, plasminogen activator inhibitor-1 /t-PA complex concentration, and t-PA activity in seminal plasma were measured by enzyme-linked immunosorbent assay. RESULTS: The results indicate that the percentage of infertile participants (n = 50) who were homozygous for t-PA Alu insertion (Alu + / + ), heterozygous Alu + / - or homozygous for t-PA Alu deletion (Alu - / - ) did not change significantly (p = 0.43, 0.81, and 0.85, respectively) when compared with the control participants (n = 29). On the other hand, a significant decrease (p = 0.0001) of t-PA total concentration in seminal plasma was observed in the infertile group in comparison with the control group. However, the results indicate that there is no association between the t-PA Alu different genotypes and the total t-PA seminal concentration in the infertile group when compared to the control group (p = 0.63). CONCLUSION: Data obtained from the current study does not support an association between t-PA Alu polymorphism and t-PA seminal concentration or male infertility.

12.
Int J Legal Med ; 134(6): 2053-2059, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32929592

RESUMEN

The InnoTyper 21® Human Identification kit consists of amelogenin and 20 bi-allelic Alus, retrotransposon markers existing abundantly in human genome. The InnoTyper 21® kit produces shorter amplicons (60-125 bp) than conventional short tandem repeat (STR) genotyping kit, then it is effective on the analysis of challengeable forensic samples including insufficient or highly degraded DNAs. Also, as the genotyping with InnoTyper21® kit is compatible with PCR and capillary electrophoresis, it is easy to incorporate into the workflow in forensic laboratories. In the internal validation of InnoTyper21® kit on sensitivity, degradation, and mixture studies for the evaluation in this study, we acquired full profiles on analyzing small concentration DNA (as low as 25 pg) and highly degraded DNA (up to 105 degradation index value). Through the Korean population study, forensic statistical parameters were investigated and a specific variant of T insertion in NBC51 was confirmed in six samples. Comparison of Korean population with five populations or 1000 Genomes Project data show Korean specific substructure. It is expected that the InnoTyper 21® kit will be used into the actual forensic cases, utilizing the population study investigated through this research.


Asunto(s)
Alelos , Elementos Alu , Pueblo Asiatico/genética , Dermatoglifia del ADN/métodos , Sitios Genéticos , Electroforesis Capilar , Femenino , Antropología Forense/métodos , Humanos , Masculino , Reacción en Cadena de la Polimerasa , República de Corea/etnología , Sensibilidad y Especificidad
13.
Haemophilia ; 26(5): 847-854, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32812322

RESUMEN

INTRODUCTION: With current molecular diagnosis, about 1 to 5% of haemophilia A (HA) patients remain genetically unresolved. In these cases, deep intronic variation or structural variation disrupting the F8 gene could be causal. AIM: To identify the causal variation in four genetically unresolved mild-to-severe HA patients using an F8 mRNA analysis approach. METHODS: Ectopic F8 mRNA analysis was performed in four unrelated HA patients. An in vitro minigene assay was performed in order to confirm the deleterious splicing impact of each variation identified. RESULTS: In all probands, mRNA analysis revealed an aberrant splicing pattern, and sequencing of the corresponding intronic region found a deep intronic substitution. Two of these were new variations: c.2113+601G>A and c.1443+602A>G, while the c.143+1567A>G, found in two patients, has previously been reported. The c.1443+602A>G and the c.143+1567A>G variants both led to the creation of a de novo acceptor or donor splice site, respectively. Moreover, the c.143+1567A>G was found in 3/6 patients with genetically unresolved moderate HA registered in our laboratory. Haplotype analysis performed in all patients carrying the c.143+1567A>G variation suggests that this variation could be a recurrent variation. The c.2113+601G>A led to the exonization of a 122-bp antisense AluY element by increasing the strength of a pre-existing cryptic 5' splice site. For each point variation, in vitro splicing analysis confirmed its deleterious impact on splicing of the F8 transcript. CONCLUSION: We identified three deep intronic variations, leading to an aberrant mRNA splicing process as HA causing variation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Hemofilia A/genética , Intrones/genética , Femenino , Humanos , Masculino
14.
Gene ; 754: 144861, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32531454

RESUMEN

Alu sequences are the most abundant repetitive elements in the human genome, and have proliferated to more than one million copies in the human genome. Primate-specific Alu sequences account for ~10% of the human genome, and their spread within the genome has the potential to generate new exons. The new exons produced by Alu elements appear in various primate genes, and their functions have been elucidated. Here, we identified a new exon in the insulin-like 3 gene (INSL3), which evolved ~50 million years ago, and led to a splicing variant with 31 extra amino acid residues in addition to the original 95 nucleotides (NTs) of INSL3. The Alu-INSL3 isoform underwent diverse changes during primate evolution; we identified that human Alu-INSL3 might be on its way to functionality and has potential to antagonize LGR8-INSL3 function. Therefore, the present study is designed to provide an example of the evolutionary trajectory of a variant peptide hormone antagonist that caused by the insertion of an Alu element in primates.


Asunto(s)
Evolución Molecular , Insulina/genética , Primates/genética , Proteínas/genética , Empalme del ARN/genética , Elementos Alu , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Humanos , Isoformas de Proteínas , Homología de Secuencia
15.
Mol Biol Evol ; 37(6): 1679-1693, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32068872

RESUMEN

To understand the genomic basis accounting for the phenotypic differences between human and apes, we compare the matrices consisting of the cis-element frequencies in the proximal regulatory regions of their genomes. One such frequency matrix is represented by a robust singular value decomposition. For each singular value, the negative and positive ends of the sorted motif eigenvector correspond to the dual ends of the sorted gene eigenvector, respectively, comprising a dual eigen-module defined by cis-regulatory element frequencies (CREF). The CREF eigen-modules at levels 1, 2, 3, and 6 are highly conserved across humans, chimpanzees, and orangutans. The key biological processes embedded in the top three CREF eigen-modules are reproduction versus embryogenesis, fetal maturation versus immune system, and stress responses versus mitosis. Although the divergence at the nucleotide level between the chimpanzee and human genome was small, their cis-element frequency matrices crossed a singularity point, at which the fourth and fifth singular values were identical. The CREF eigen-modules corresponding to the fourth and fifth singular values were reorganized along the evolution from apes to human. Interestingly, the fourth sorted gene eigenvector encodes the phenotypes unique to human such as long-term memory, language development, and social behavior. The number of motifs present on Alu elements increases substantially at the fourth level. The motif analysis together with the cases of human-specific Alu insertions suggests that mutations related to Alu elements play a critical role in the evolution of the human-phenotypic gene eigenvector.


Asunto(s)
Elementos Alu , Evolución Biológica , Genoma Humano , Hominidae/genética , Elementos Reguladores de la Transcripción , Animales , Proteínas de Ciclo Celular/genética , Cognición , Desarrollo Embrionario/genética , Humanos , Desarrollo del Lenguaje , Memoria a Largo Plazo , Fenotipo , Conducta Social
16.
J Thromb Haemost ; 18(5): 1087-1093, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32073743

RESUMEN

BACKGROUND: Recently, our group has reported a 13-bp deletion in a poly(T)-track in the F8 intron 13 as the causative variant in approximately 6% of all cases of mild haemophilia A (HA) in France. The systematic screening of mild HA patients for this deletion identified individuals carrying deletions from 9 to 14-bp in the same region. AIMS: To demonstrate that these highly prevalent deletions could result from a recurrent molecular mechanism and to determine the clinical significance of deletions other than 13-bp in size. METHODS: Haplotype analysis using five polymorphic markers was performed in 71 unrelated French mild hemophilia A patients. Minigene analysis was performed to study the splicing impact of deletions from 1 to 14-bp. RESULTS: A peculiar haplotype (H1) was identified in 22.5% of patients carrying the 13-bp deletion. Haplotypes differing from H1 only for the two most distal markers were found in more than the half of patients. These results confirmed the founder effect origin for the 13-bp deletion. However, the 9 patients carrying other sizes of deletion had a different haplotype suggesting that these deletions arose independently. Supporting the recurrent mechanism hypothesis, similar deletions were also found in 3/19 genetically unresolved mild Canadian patients. In vitro splicing analysis confirmed that deletions larger than 9-bp had a deleterious impact on splicing of F8 transcript. CONCLUSION: We demonstrated that the poly(T)-track in F8 intron 13 is a deletion hotspot. We recommend that deletions in this region should be specifically investigated in all genetically unresolved mild HA patients.


Asunto(s)
Hemofilia A , Canadá , Análisis Mutacional de ADN , Factor VIII/genética , Efecto Fundador , Francia/epidemiología , Hemofilia A/diagnóstico , Hemofilia A/epidemiología , Hemofilia A/genética , Humanos , Intrones , Mutación
17.
Thyroid ; 30(5): 780-782, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31868128

RESUMEN

The thyroglobulin (TG) gene encodes a protein required for thyroid hormone synthesis and iodine storage. Deleterious TG mutations produce congenital hypothyroidism (CH) often presenting with undetectable serum TG. Alu elements, common throughout the human genome, have a poly(dA) region in the 3' end of the strand. Herein two of four siblings of a consanguineous Sudanese family with CH, goiter, high initial serum thyrotropin, and undetectable TG were found to have a novel frameshift insertion of an Alu element within an exon of the TG gene: c.7909ins p.Y3637Ffs. This report demonstrates a novel Alu element insertion within TG causing CH.


Asunto(s)
Elementos Alu , Hipotiroidismo Congénito/genética , Mutagénesis Insercional , Tiroglobulina/genética , Niño , Preescolar , Hipotiroidismo Congénito/sangre , Hipotiroidismo Congénito/tratamiento farmacológico , Femenino , Humanos , Tiroglobulina/sangre , Tiroxina/uso terapéutico
18.
Mob DNA ; 10: 46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31788036

RESUMEN

BACKGROUND: Baboons (genus Papio) and geladas (Theropithecus gelada) are now generally recognized as close phylogenetic relatives, though morphologically quite distinct and generally classified in separate genera. Primate specific Alu retrotransposons are well-established genomic markers for the study of phylogenetic and population genetic relationships. We previously reported a computational reconstruction of Papio phylogeny using large-scale whole genome sequence (WGS) analysis of Alu insertion polymorphisms. Recently, high coverage WGS was generated for Theropithecus gelada. The objective of this study was to apply the high-throughput "poly-Detect" method to computationally determine the number of Alu insertion polymorphisms shared by T. gelada and Papio, and vice versa, by each individual Papio species and T. gelada. Secondly, we performed locus-specific polymerase chain reaction (PCR) assays on a diverse DNA panel to complement the computational data. RESULTS: We identified 27,700 Alu insertions from T. gelada WGS that were also present among six Papio species, with nearly half (12,956) remaining unfixed among 12 Papio individuals. Similarly, each of the six Papio species had species-indicative Alu insertions that were also present in T. gelada. In general, P. kindae shared more insertion polymorphisms with T. gelada than did any of the other five Papio species. PCR-based genotype data provided additional support for the computational findings. CONCLUSIONS: Our discovery that several thousand Alu insertion polymorphisms are shared by T. gelada and Papio baboons suggests a much more permeable reproductive barrier between the two genera then previously suspected. Their intertwined evolution likely involves a long history of admixture, gene flow and incomplete lineage sorting.

19.
Biochim Biophys Acta Gene Regul Mech ; 1862(11-12): 194410, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31421281

RESUMEN

Circular RNAs are a recently discovered class of RNAs formed by covalently linking the 5' and 3' end of an RNA. Pre-mRNAs generate circular RNAs through a back-splicing mechanism. Whereas in linear splicing a 5' splice site is connected to a downstream 3' splice site, in back-splicing the 5' splice site is connected to an upstream 3' splice site. Both mechanisms use the spliceosome for catalysis. For back-splicing to occur, the back-splice sites must frequently be brought into close proximity, which is achieved through the formation of secondary structures in the pre-mRNA. In general, these pre-mRNA structures are formed by RNA base pairing between complementary sequences flanking the back-splicing sites. Proteins can abolish these RNA structures through binding to one of the complementary strands. However, proteins can also promote back-splicing without strong RNA structures through multimerization after binding to intronic regions flanking circular exons. In humans, Alu-elements comprising around 11% of the human genome are the best-characterized elements generating structures promoting circular RNA formation. Thus, intronic pre-mRNA structures contribute to the formation of circular RNAs.


Asunto(s)
Precursores del ARN/química , Empalme del ARN , ARN Circular/química , Elementos Alu , Emparejamiento Base , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Señales de Poliadenilación de ARN 3' , Sitios de Empalme de ARN , Empalmosomas/química , Empalmosomas/genética
20.
Front Mol Neurosci ; 11: 163, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29875629

RESUMEN

Compared to sites in protein-coding sequences many more targets undergoing adenosine to inosine (A-to-I) RNA editing were discovered in non-coding regions of human cerebral transcripts, particularly in genetic transposable elements called retrotransposons. We review here the interaction mechanisms of RNA editing and retrotransposons and their impact on normal function and human neurological diseases. Exemplarily, A-to-I editing of retrotransposons embedded in protein-coding mRNAs can contribute to protein abundance and function via circular RNA formation, alternative splicing, and exonization or silencing of retrotransposons. Interactions leading to disease are not very well understood. We describe human diseases with involvement of the central nervous system including inborn errors of metabolism, neurodevelopmental disorders, neuroinflammatory and neurodegenerative and paroxysmal diseases, in which retrotransposons (Alu and/or L1 elements) appear to be causally involved in genetic rearrangements. Sole binding of single-stranded retrotransposon transcripts by RNA editing enzymes rather than enzymatic deamination may have a homeostatic effect on retrotransposon turnover. We also review evidence in support of the emerging pathophysiological function of A-to-I editing of retrotransposons in inflammation and its implication for different neurological diseases including amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's and Parkinson's disease, and epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...