Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.664
Filtrar
1.
J Colloid Interface Sci ; 678(Pt A): 732-741, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39217689

RESUMEN

Meta-aramid (PMIA) fabrics are typically problematic to dye owing to their extremely crystalline structure and high compactness. Herein, Dimethyl sulfoxide (DMSO) and electrolyte as hydrogen bond regulators were selected to improve the dyeability of PIMA dyed with cationic dyes. The PMIA shows both high dyeing and mechanical properties as a result of the synergistic effect of DMSO and electrolyte in the system, which destructs hydrogen bonding networks and increase interaction energy density between dye molecules and PMIA, confirmed by a series of characterization and molecular dynamics simulations. In the DMSO/NaCl/PMIA system, while maintaining excellent mechanical (breaking strength and elongation at break of 24.6Mpa and 37.6 %, respectively) and thermal properties, PMIA not only obtained the best dyeability, increasing the Dye uptake from 20 % to 70.62 % and the K/S value from 2.92 to 18.02, but also achieved excellent colour fastness (fastness to dry and wet rubbing, fastness to light, and fastness to washing of 4-5, 3-4, 3-4 and 4-5, respectively). Simulated results and experimental data verified that the DMSO/NaCl system optimally synergizes hydrogen bond regulation for PMIA and achieves the best dyeing effects for cationic dyes, manifesting its great potential in the PMIA wearability area.

2.
Int J Pharm ; : 124651, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218326

RESUMEN

Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.

3.
J Pharm Sci ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222748

RESUMEN

Twenty-five years ago, Hancock and Parks asked a provocative question: "what is the true solubility advantage for amorphous pharmaceuticals?" Difficulties in determining the amorphous solubility have since been overcome due to significant advances in theoretical understanding and experimental methods. The amorphous solubility is now understood to be the concentration after the drug undergoes liquid-liquid or liquid-glass phase separation, forming a water-saturated drug-rich phase in metastable equilibrium with an aqueous phase containing molecularly dissolved drug. While crystalline solubility is an essential parameter impacting the absorption of crystalline drug formulations, amorphous solubility is a vital factor for considering absorption from supersaturating formulations. However, the amorphous solubility of drugs is complex, especially in the presence of formulation additives and gastrointestinal components, and concentration-based measurements may not indicate the maximum drug thermodynamic activity. This review discusses the concept of the amorphous solubility advantage, including a historical perspective, theoretical considerations, experimental methods for amorphous solubility measurement, and the contribution of supersaturation and amorphous solubility to drug absorption. Leveraging amorphous solubility and understanding the associated physicochemical principles can lead to more effective development strategies for poorly water-soluble drugs, ultimately benefiting therapeutic outcomes.

4.
Angew Chem Int Ed Engl ; : e202414234, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225452

RESUMEN

Manipulating the atomic structure of the catalyst and tailoring the dissociative water-hydrogen bonding network at the catalyst-electrolyte interface is essential for propelling alkaline hydrogen evolution reactions (HER) and hydrazine oxidation reaction (HzOR), but remains a great challenge. Herein, we constructed an advanced a-RuMo/NiMoO4/NF heterogeneous electrocatalysts with amorphous RuMo alloy nanoclusters anchored to amorphous NiMoO4 skeletons on Ni foam by a heteroatom implantation strategy. Theoretical calculations and in-situ Raman tests show that the amorphous and alloying structure of a-RuMo/NiMoO4/NF not only induces the directional evolution of interfacial H2O, but also lowers the d-band center (from -0.43 to -2.22 eV) of a-RuMo/NiMoO4/NF, the Gibbs free energy of hydrogen adsorption (ΔGH*, from -1.29 to -0.06 eV), and the energy barrier of HzOR (ΔGN2(g) = 1.50 eV to ΔGN2* = 0.47 eV). Profiting from these favorable factors, the a-RuMo/NiMoO4/NF exhibits excellent electrocatalytic performances, especially at large current densities, with an overpotential of 13 and 129 mV to reach 10 and 1000 mA cm-2 for HER. While for HzOR, it needs only -91 and 276 mV to deliver 10 and 500 mA cm-2, respectively. Further, the constructed a-RuMo/NiMoO4/NF||a-RuMo/NiMoO4/NF electrolyzer demands only 7 and 420 mV to afford 10 and 500 mA cm-2.

5.
Adv Sci (Weinh) ; : e2403587, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39206711

RESUMEN

Copper (Cu) is widely used as an industrial electrode due to its high electrical conductivity, mechanical properties, and cost-effectiveness. However, Cu is susceptible to corrosion, which degrades device performance over time. Although various methods (alloying, physical passivation, surface treatment, etc.) are introduced to address the corrosion issue, they can cause decreased conductivity or vertical insulation. Here, using the nitrogen-doped amorphous carbon (a-C:N) thin film is proposed as a substrate on which Cu is directly deposited. This simple method significantly inhibits corrosion of ultrathin Cu (<20 nm) films in humid conditions, enabling the fabrication of ultrathin electronic circuit boards without corrosion under ambient conditions. This study investigates the origin of corrosion resistance through comprehensive microscopic/spectroscopic characterizations and density-functional theory (DFT) calculations: i) diffusion of Cu atoms into the a-C:N driven by stable C-Cu-N bond formation, ii) diffusion of N atoms from the a-C:N to the Cu layer heading the top surface, which is the thermodynamically preferred location for N, and iii) the doped N atoms in Cu layer suppress the inclusion of O into the Cu lattice. By leveraging the ultrathinness and deformability of the circuit board, a transparent electrode and a crumpleable LED lighting device are demonstrated.

6.
Eur J Pharm Biopharm ; : 114475, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216557

RESUMEN

Sulfasalazine (SULF), a sulfonamide antibiotic, has been utilized in the treatment of rheumatoid arthritis (RA) and inflammatory bowel disease (IBD) since its discovery. However, its poor water solubility causes the high daily doses (1---3 g) for patients, which may lead to the intolerable toxic and side effects for their lifelong treatment for RA and IBD. In this work, two water-soluble natural anti-inflammatory alkaloids, matrine (MAR) and sophoridine (SPD), were employed to construct the co-amorphous systems of SULF for addressing its solubility issue. These newly obtained co-amorphous forms of SULF were comprehensively characterized by powder X-ray diffraction (PXRD), temperature-modulated differential scanning calorimetry (mDSC), Fourier-transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). We also investigated their dissolution behavior, including powder dissolution, in vitro release, and intrinsic dissolution rate. Both co-amorphous systems exhibited superior dissolution performance compared to crystalline SULF. The underlying mechanism responsible for the enhanced dissolution behaviors in co-amorphous systems were also elucidated. These mechanisms include the inhibition of nucleation, complexation, increased hydrophilicity, and robust intermolecular interactions in aqueous solutions. Importantly, these co-amorphous systems demonstrated satisfactory physical stability under various storage conditions. Network pharmacological analysis was utilized to investigate the potential therapeutic targets of both co-amorphous systems against RA, revealing similar yet distinct multi-target synergistic therapeutic mechanisms in the treatment of this condition. Our study suggests these drug-drug co-amorphous systems hold promise for optimizing SULF dosage in the future and providing a potential drug combination strategy.

7.
Pharmaceutics ; 16(8)2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39204344

RESUMEN

Curcumin and piperine are plant compounds known for their health-promoting properties, but their use in the prevention or treatment of various diseases is limited by their poor solubility. To overcome this drawback, the curcumin-piperine amorphous polymer-phospholipid dispersions were prepared by hot melt extrusion technology. X-ray powder diffraction indicated the formation of amorphous systems. Differential scanning calorimetry confirmed amorphization and provided information on the good miscibility of the active compound-polymer-phospholipid dispersions. Owing to Fourier-transform infrared spectroscopy, the intermolecular interactions in systems were investigated. In the biopharmaceutical properties assessment, the improvement in solubility as well as the maintenance of the supersaturation state were confirmed. Moreover, PAMPA models simulating the gastrointestinal tract and blood-brain barrier showed enhanced permeability of active compounds presented in dispersions compared to the crystalline form of individual compounds. The presented paper suggests that polymer-phospholipid dispersions advantageously impact the bioaccessibility of poorly soluble active compounds.

8.
Pharmaceutics ; 16(8)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39204347

RESUMEN

Amorphous Indomethacin has enhanced bioavailability over its crystalline forms, yet amorphous forms can still possess a wide variety of structures. Here, Empirical Potential Structure Refinement (EPSR) has been used to provide accurate molecular models on the structure of five different amorphous Indomethacin samples, that are consistent with their high-energy X-ray diffraction patterns. It is found that the majority of molecules in amorphous Indomethacin are non-bonded or bonded to one neighboring molecule via a single hydrogen bond, in contrast to the doubly bonded dimers found in the crystalline state. The EPSR models further indicate a substantial variation in hydrogen bonding between different amorphous forms, leading to a diversity of chain structures not found in any known crystal structures. The majority of hydrogen bonds are associated with the carboxylic acid group, although a significant number of amide hydrogen bonding interactions are also found in the models. Evidence of some dipole-dipole interactions are also observed in the more structurally ordered models. The results are consistent with a distribution of Z-isomer intramolecular type conformations in the more disordered structures, that distort when stronger intermolecular hydrogen bonding occurs. The findings are supported by 1H and 2H NMR studies of the hydrogen bond dynamics in amorphous Indomethacin.

9.
Pharmaceutics ; 16(8)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39204380

RESUMEN

The present study investigated the effect of different polymers and manufacturing methods (hot melt extrusion, HME, and spray drying, SD) on the solid state, stability and pharmaceutical performance of amorphous solid dispersions. In the present manuscript, a combination of different binary amorphous solid dispersions containing 20% and 30% of drug loadings were prepared using SD and HME. The developed solid-state properties of the dispersions were evaluated using small- and wide-angle X-ray scattering (WAXS) and modulated differential scanning calorimetry (mDSC). The molecular interaction between the active pharmaceutical ingredients (APIs) and polymers were investigated via infrared (IR) and Raman spectroscopy. The in vitro release profile of the solid dispersions was also evaluated to compare the rate and extend of drug dissolution as a function of method of preparation. Thereafter, the effect of accelerated stability conditions on the physicochemical properties of the solid dispersions were also evaluated. The results demonstrated higher stability of Soluplus® (SOL) polymer-based solid dispersions as compared to hydroxypropyl methylcellulose (HPMC)-based solid dispersions. Moreover, the stability of the solid dispersions was found to be higher in the case of API having high glass transition temperature (Tg) and demonstrated higher interaction with the polymeric groups. Interestingly, the stability of the melt-extruded dispersions was found to be slightly higher as compared to the SD formulations. However, the down-processing of melt-extruded strands plays critical role in inducing the API crystal nuclei formation. In summary, the findings strongly indicate that the particulate properties significantly influence the performance of the product.

10.
Pharmaceutics ; 16(8)2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39204405

RESUMEN

Poor water solubility is an important challenge in the development of oral patient-friendly solid dosage forms. This study aimed to prepare orodispersible tablets with solid dispersions of a poorly water-soluble drug fenofibrate and a co-processed excipient consisting of mesoporous silica and isomalt. This co-processed excipient, developed in a previous study, exhibited improved flow and compression properties compared to pure silica while maintaining a high specific surface area for drug adsorption. Rotary evaporation was used to formulate solid dispersions with different amounts of fenofibrate, which were evaluated for solid state properties and drug release. The solid dispersion with 30% fenofibrate showed no signs of crystallinity and had a significantly improved dissolution rate, making it the optimal sample for formulation or orodispersible tablets. The aim was to produce tablets with minimal amounts of additional excipients while achieving a drug release profile similar to the uncompressed solid dispersion. The compressed formulations met the requirements for orodispersible tablets in terms of disintegration time, and the drug release from best formulation approximated the profile of uncompressed solid dispersion. Future research should focus on reducing the disintegration time and tablet size to enhance patient acceptability further.

11.
Pharmaceutics ; 16(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39204447

RESUMEN

Mesoporous silica particles (MSPs) have been investigated as potential carriers to increase the apparent solubility and dissolution rate of poorly water-soluble drugs by physically stabilising the amorphous nature of the loaded drug. In preparing such systems, it is recognized that the loading method has a critical impact on the physical state and performance of the drug. To date, there has been very limited investigation into the use of electrospraying for loading drugs into mesoporous silica. In this study, we further explore the use of this approach, in particular as a means of producing amorphous and high drug-loaded MSPs; the study includes an investigation of the effect of drug loading and MSP concentration on the formulation performance and process. A comparison with rotary evaporation, a more widely utilised loading technique, was conducted to assess the relative effectiveness of electrospraying. The physical state of the drug in the formulations was assessed using powder X-ray diffraction (PXRD) and differential scanning calorimetry (DSC). The drug release profiles were determined by a comparative in vitro drug release test. Electrospraying successfully produced formulations containing amorphous drug even at a high drug loading. In contrast, while itraconazole was present in amorphous form at the lower drug-loaded formulations produced by rotary evaporation, the drug was in the crystalline state at the higher loadings. The percentage of drug released was enhanced up to ten times compared to that of pure itraconazole for all the formulations apart from the highest loaded (crystalline) formulation prepared by rotary evaporation. Supersaturation for at least six hours was maintained by the formulations loaded with up to 30 mg/mL itraconazole produced by electrospraying. Overall, the results of this study demonstrate that electrospraying is capable of producing amorphous drug-loaded MSPs at high loadings, with associated favourable release characteristics. A comparison with the standard rotary evaporation approach indicates that electrospraying may be more effective for the production of higher loadings of amorphous material.

12.
J Colloid Interface Sci ; 677(Pt B): 608-616, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39154452

RESUMEN

Aqueous zinc-ion batteries (AZIBs) are expected to be a promising large-scale energy storage system owing to their intrinsic safety and low cost. Nevertheless, the development of AZIBs is still plagued by the design and fabrication of advanced cathode materials. Herein, the amorphous vanadium pentoxide and hollow porous carbon spheres (AVO-HPCS) hybrid is elaborately designed as AZIBs cathode material by integrating vacuum drying and annealing strategy. Amorphous vanadium pentoxide provides abundant active sites and isotropic ion diffusion channels. Meanwhile, the hollow porous carbon sphere not only provides a stable conductive network, but also enhances the stability during charging/discharging process. Consequently, the AVO-HPCS exhibits a capacity of 474 mAh/g at 0.5 A/g and long-term cycle stability. Moreover, the corresponding reversible insertion/extraction mechanism is elucidated by ex-situ X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Furthermore, the flexible pouch battery with AVO-HPCS cathode shows high comprehensive performance. Hence, this work provides insights into the development of advanced amorphous cathode materials for AZIBs.

13.
Food Chem ; 460(Pt 3): 140785, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39121770

RESUMEN

Egg white protein is widely used in food, chemical, medical and other fields due to its excellent thermal gel properties. However, the regularity of egg white thermal gel (EWTG) by temperature influence is still unknown. In this study, we investigated the potential mechanism of temperature (75-95 °C, 15 min) gradient changes inducing thermal aggregation and gel formation of EWTG. The results showed that changes in textural characteristics and water holding capacity (WHC) of EWTGs depended on switching in protein aggregation morphology (spherical shape - chain shape - regiment shape) and gel network structure differences ("irregular bead-like" - "regular lamellar structure"). In addition, proteomics indicated that the generation of amorphous protein aggregates at 95 °C might be related to Mucin 5B as the aggregation core. The research revealed the EWTG formation from "whole egg white protein" to "single molecules", aiming to provide a reference for quality control in gel food processing.

14.
J Colloid Interface Sci ; 677(Pt A): 853-862, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39126803

RESUMEN

The admire activity, selective and corrosion resistance electrocatalysts for oxygen evolution reaction (OER) are the bottleneck restricting seawater electrolysis owing to the side reactions of chloride ions (Cl-). Herein, we developed a local amorphous S-modified NiFe-LDH ultrathin nanosheets with large spacing on NiFe foam (la-S-NiFe-LDH/NFF) in-situ via the fast H2O2 assisted etching-anion regulation, resulting in a superior OER catalytic activity for seawater electrolysis. Benefitting from the local amorphous architecture induced by S, enhanced the metal-oxygen covalency, triggered lattice oxygen activity, and reduced the desorption energy of O2, the la-S-NiFe-LDH/NFF accelerated the OER progress via the lattice-oxygen-mediated (LOM) mechanism. Additionally, the preferential adsorbed OH- and reconstructed SO42- cooperated to prevent the proximity and erosion of Cl- and enhanced the corrosion resistance for seawater electrolysis. The assembled electrolyzer of Pt/C || la-S-NiFe-LDH/NFF possessed an industrial level of 500 mA cm-2 at 1.83 V potential for seawater electrolysis, and sustained response for 100 h.

15.
AAPS PharmSciTech ; 25(6): 183, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138765

RESUMEN

The dissolution and bioavailability challenges posed by poorly water-soluble drugs continue to drive innovation in pharmaceutical formulation design. Nintedanib (NDNB) is a typical BCS class II drug that has been utilized to treat idiopathic pulmonary fibrosis (IPF). Due to the low solubility, its oral bioavailability is relatively low, limiting its therapeutical effectiveness. It is crucial to enhance the dissolution and the oral bioavailability of NDNB. In this study, we focused on the preparation of amorphous solid dispersions (ASD) using hot melt extrusion (HME). The formulation employed Kollidon® VA64 (VA64) as the polymer matrix, blended with the NDNB at a ratio of 9:1. HME was conducted at temperatures ranging from 80 °C to 220 °C. The successful preparation of ASD was confirmed through various tests including polarized light microscopy (PLM), X-ray powder diffraction (XRPD), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The in-vitro cumulative release of NDNB-ASD in 2 h in a pH 6.8 medium was 8.3-fold higher than that of NDNB (p < 0.0001). In a pH 7.4 medium, it was 10 times higher (p < 0.0001). In the in-vivo pharmacokinetic experiments, the area under curve (AUC) of NDNB-ASD was 5.3-fold higher than that of NDNB and 2.2 times higher than that of commercially available soft capsules (Ofev®) (p < 0.0001). There was no recrystallization after 6 months under accelarated storage test. Our study indicated that NDNB-ASD can enhance the absorption of NDNB, thus providing a promising method to improve NDNB bioavailability in oral dosages.


Asunto(s)
Disponibilidad Biológica , Indoles , Solubilidad , Indoles/farmacocinética , Indoles/química , Indoles/administración & dosificación , Administración Oral , Animales , Química Farmacéutica/métodos , Rastreo Diferencial de Calorimetría/métodos , Difracción de Rayos X/métodos , Masculino , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Composición de Medicamentos/métodos , Conejos , Polímeros/química , Tecnología de Extrusión de Fusión en Caliente/métodos , Liberación de Fármacos
16.
Bioelectrochemistry ; 160: 108794, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39142024

RESUMEN

Accurate, convenient, label-free, and cost-effective biomolecules detection platforms are currently in high demand. In this study, we showcased the utilization of electrolyte-gated InGaZnO field-effect transistors (IGZO FETs) featuring a large on-off current ratio of over 106 and a low subthreshold slope of 78.5 mV/dec. In the DNA biosensor, the modification of target DNA changed the effective gate voltage of IGZO FETs, enabling an impressive low detection limit of 0.1 pM and a wide linear detection range from 0.1 pM to 1 µM. This label-free detection method also exhibits high selectivity, allowing for the discrimination of single-base mismatch. Furthermore, the reuse of gate electrodes and channel films offers cost-saving benefits and simplifies device fabrication processes. The electrolyte-gated IGZO FET biosensor presented in this study shows great promise for achieving low-cost and highly sensitive detection of various biomolecules.

17.
Eur J Pharm Biopharm ; : 114453, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39134099

RESUMEN

Increasing attention is being afforded to understanding the bidirectional relationship that exists between oral drugs and the gut microbiota. Often overlooked, however, is the impact that pharmaceutical excipients exert on the gut microbiota. Subsequently, in this study, we contrasted the pharmacokinetic performance and gut microbiota interactions between two commonly employed formulations for poorly soluble compounds, namely 1) an amorphous solid dispersion (ASD) stabilised by poly(vinyl pyrrolidone) K-30, and 2) a lipid nanoemulsion (LNE) comprised of medium chain glycerides and lecithin. The poorly soluble antipsychotic, lurasidone, was formulated with ASD and LNE due to its rate-limiting dissolution, poor oral bioavailability, and significant food effect. Both the ASD and LNE were shown to facilitate lurasidone supersaturation within in vitro dissolution studies simulating the gastrointestinal environment. This translated into profound improvements in oral pharmacokinetics in rats, with the ASD and LNE exerting comparable ∼ 2.5-fold improvements in lurasidone bioavailability, compared to the pure drug. The oral formulations imparted contrasting effects on the gut microbiota, with the LNE depleting the richness and abundance of the microbial ecosystem, as evidenced through reductions in alpha diversity (Chao1 index) and operational taxonomical units (OTUs). In contrast, the ASD exerted a 'gut neutral' effect, whereby a mild enrichment of alpha diversity and OTUs was observed. Importantly, this suggests that ASDs are effective solubility-enhancing formulations that can be used without comprising the integrity of the gut microbiota - an integral consideration in the treatment of mental health disorders, such as schizophrenia, due to the role of the gut microbiota in regulating mood and cognition.

18.
J Colloid Interface Sci ; 677(Pt B): 406-416, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39153244

RESUMEN

Exploring advanced electrocatalyst for the oxygen evolution reaction (OER) is of great importance in pursuing efficient and sustainable hydrogen production via electrolytic water splitting. Considering the structure-activity-stability relationship for designing advanced OER catalysts, two-dimensional (2D) porous catalyst with single crystallinity is deemed to be an ideal platform which could simultaneously endow enriched active sites, facile mass and charge transport ability as well as robust structural stability. Herein, we proposed a facile 2D confined topotactic phase transformation approach, which realizes the fabrication of highly porous single-crystalline Co3O4 nanosheets with in-situ surface modification of amorphous Co-Pi active species. Benefitted from the highly exposed undercoordinated cobalt sites, facilitated mass transport and facile 2D charge transfer pathway, the Co-Pi/Co3O4 hybrid porous nanosheets display enhanced OER activity with obvious pre-oxidation-induced activation. In addition, the operational stability was significantly improved owing to the strengthened structural stability which effectively buffers the internal strains and avoids the structural collapse during the electrochemical process. This work proposed a facile and mild method for the synthesis of amorphous/single-crystalline hybrid porous materials, and the achievement of synergistic modulation of active site density and charge transfer ability via targeted microstructural construction will shed light on catalyst design in the future.

19.
Heliyon ; 10(15): e35320, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39166004

RESUMEN

The method of preparing borax by low-temperature soda roasting and water leaching of boron-rich blast furnace slag (BRBFS) is a novel method for extracting boron from BRBFS. In order to further improve the water leaching rate of boron, this article mainly studied the low-temperature soda roasting kinetics of BRBFS. The effects of roasting temperature and Na2CO3 addition on the water leaching rate of boron were investigated. The results demonstrate that when the amount of Na2CO3 added is four times of the theoretical amount, the kinetics of NaBO2 formation can be described by the Nucleation (Avrami) model in the temperature range of 600-700 °C. The corresponding apparent activation energy is 54.45 kJ/mol, and the apparent frequency factor is 215.16 h-1. It was found that at a roasting temperature of 700 °C,when the amount of sodium carbonate added is twice, three times, and four times of the theoretical amount, the kinetics of NaBO2 formation matches with 3-D Diffusion (Jander) model, Nucleation and Growth (Avrami-Erofeev) model, and Nucleation (Avrami) model, respectively. With an increase in the amount of Na2CO3 added, the rate-controlling step for the formation of NaBO2 transitions from being diffusion-controlled to nucleation-controlled.

20.
Small ; : e2404205, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39161199

RESUMEN

Highly-efficient and cost-effective electrocatalysts toward the oxygen evolution reaction (OER) are crucial for advancing sustainable energy technologies. Herein, a novel approach leveraging corrosion engineering is presented to facilitate the in situ growth of amorphous cobalt-iron hydroxides on nickel-iron foam (CoFe(OH)x-m/NFF) within a NaCl-CoCl2 aqueous solution. By adjusting the concentration of the solution, the compositions can tailored and morphologies of these hydroxides to optimize the OER electrocatalytic performance. Specifically, the CoFe(OH)x-500/NFF electrode manifests as distinctive 3D flower-like clusters composed of remarkably thin nanosheets, measuring a mere 1 nm in thickness. By virtue of the amorphous and ultrathin nanosheet structure, the CoFe(OH)x-500/NFF electrode exhibits superior OER activity, characterized by notably low overpotentials (η100, 274 mV) and an exceptionally small Tafel slope of 40.54 mV dec-1. Moreover, the electrode's performance remains robust, maintaining low overpotentials for 168 h at 100 mA cm-2. In situ Raman spectroscopy indicates that the hydroxides experience surface structural reconstruction and transform into high-valent CoFeO2 with active Co(IV)-O sites during the OER. Theoretical calculations underscore the critical role of the NiFe substrate in enhancing the electrode's OER activity by improving electrical conductivity and modifying the adsorption energy of reaction intermediates, thereby reducing the energy barrier for the reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...