Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Plants (Basel) ; 13(19)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39409577

RESUMEN

The floating freshwater fern Azolla is the only plant that retains an endocyanobiont, Nostoc azollae (aka Anabaena azollae), during its sexual and asexual reproduction. The increased interest in Azolla as a potential source of food and its unique evolutionary history have raised questions about its cyanotoxin content and genome. Cyanotoxins are potent toxins synthesized by cyanobacteria which have an anti-herbivore effect but have also been linked to neurodegenerative disorders including Alzheimer's and Parkinson's diseases, liver and kidney failure, muscle paralysis, and other severe health issues. In this study, we investigated 48 accessions of Azolla-Nostoc symbiosis for the presence of genes coding microcystin, nodularin, cylindrospermopsin and saxitoxin, and BLAST analysis for anatoxin-a. We also investigated the presence of the neurotoxin ß-N-methylamino-L-alanine (BMAA) in Azolla and N. azollae through LC-MS/MS. The PCR amplification of saxitoxin, cylindrospermospin, microcystin, and nodularin genes showed that Azolla and its cyanobiont N. azollae do not have the genes to synthesize these cyanotoxins. Additionally, the matching of the anatoxin-a gene to the sequenced N. azollae genome does not indicate the presence of the anatoxin-a gene. The LC-MS/MS analysis showed that BMAA and its isomers AEG and DAB are absent from Azolla and Nostoc azollae. Azolla therefore has the potential to safely feed millions of people due to its rapid growth while free-floating on shallow fresh water without the need for nitrogen fertilizers.

2.
Mar Pollut Bull ; 209(Pt A): 117054, 2024 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-39393227

RESUMEN

Platinum nanoparticles (PtNPs) are one of the widely used NPs, which contribute to potential risks to the aquatic ecosystem. However, PtNPs toxicity in phytoplankton remains inadequately understood, with significant gaps in knowledge regarding their biochemical bases and species-specific responses. Herein, we investigated the impact of PtNPs on two cyanobacterial species (Anabaena laxa and Nostoc muscorum) to explore the harmful pathways triggered by PtNPs in cyanobacteria, which may help in selecting appropriate biomarkers for PtNPs pollution in aquatic environments. We studied the effect of PtNPs on growth, oxidative stress markers, and antioxidant defense systems of the two species. The obtained results showed that PtNPs reduced the level of chlorophyll. Furthermore, they induced dose-dependent oxidative stress to the two species, expressed by significant increases in H2O2, malondialdehyde (MDA), and protein oxidation (p < 0.05). Stress-induced oxidative damages were more pronounced in N. muscorum, yet the two cyanobacterial species showed higher levels (p < 0.05) of antioxidant metabolites and antioxidant enzymes to combat oxidative stress. Compared to N. muscorum, A. laxa invested more in the induction of antioxidant metabolites including FRAP, polyphenols, flavonoids, and glutathione (GSH), as well as in antioxidant enzymes such as POX, CAT, GR, and GPX. Overall, A. laxa species could be exploited as efficient biomarkers for monitoring PtNPs-induced ecotoxicology. Further investigation of bio-absorption and uptake of PtNPs by microalgae is recommended for developing algae-based bioremediation technologies.

3.
Fish Shellfish Immunol ; 154: 109912, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299405

RESUMEN

This study aimed to select high-quality promoters to construct trans-vp28 gene Anabaena sp. PCC7120 and feed Litopenaeus vannamei to assess the effect of L.vannamei against white spot syndrome virus (WSSV). Transgenic algae were created using five plasmids containing PrbcL, Pcpc560, Ptrc, Ptac, and PpsbA. According to the gene expression efficiency and the growth index of transgenic algae, Pcpc560 was determined to be the most efficient promoter. Shrimps were continuously fed trans-vp28 gene Anabaena sp. PCC7120 for one week and then challenged with WSSV. After the challenge, the transgenic algae group (vp28-7120 group) was continuously immunized [continuous immunization for 0 days (vp28-7120-0d); continuous immunization for 2 days (vp28-7120-2d); continuous immunization for 4 days (vp28-7120-4d)]. After seven days, the daily survival rate of each experimental group was continuously tracked. Following the viral challenge, the hepatopancreas samples were assayed for their levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), thioredoxin peroxidase (TPX), acid phosphatase (ACP), and alkaline phosphatase (AKP) at varying time intervals. In comparison to the positive control group (challenge and no vaccination) and the wild-type group (challenge, fed wild-type Anabaena sp. PCC7120), the vp28-7120 group (challenge, fed trans-vp28 gene Anabaena sp. PCC7120) exhibited a remarkable increase in survival rates, reaching 50 % (vp28-7120-0d), 76.67 % (vp28-7120-2d), and 80 % (vp28-7120-4d). Furthermore, the vp28-7120 group consistently displayed significantly higher activities of SOD, CAT, GSH-Px, ACP, and AKP, while exhibiting notably lower TPX activity, when compared to the control group. These results indicate that the Pcpc560 promoter effectively elevated the expression level of the exogenous vp28 gene and spurred the growth of the trans-vp28 gene Anabaena sp. PCC7120. Consequently, trans-vp28 gene Anabaena sp. PCC7120 significantly bolstered the immunity of L.vannamei. Therefore, utilizing the Pcpc560 promoter to develop trans-vp28 gene Anabaena sp. PCC7120 based oral vaccine is highly beneficial for industrial-scale cultivation, advancing its commercialization prospects.

4.
Molecules ; 29(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39339484

RESUMEN

Drug overuse harms the biosphere, leading to disturbances in ecosystems' functioning. Consequently, more and more actions are being taken to minimise the harmful impact of xenopharmaceuticals on the environment. One of the innovative solutions is using biosorbents-natural materials such as cells or biopolymers-to remove environmental pollutants; however, this focuses mainly on the removal of metal ions and colourants. Therefore, this study investigated the biosorption ability of selected pharmaceuticals-paracetamol, diclofenac, and ibuprofen-by the biomass of the cyanobacteria Anabaena sp. and Chroococcidiopsis thermalis, using the LC-MS/MS technique. The viability of the cyanobacteria was assessed by determining photosynthetic pigments in cells using a UV-VIS spectrophotometer. The results indicate that both tested species can be effective biosorbents for paracetamol and diclofenac. At the same time, the tested compounds did not have a toxic effect on the tested cyanobacterial species and, in some cases, stimulated their cell growth. Furthermore, the Anabaena sp. can effectively biotransform DCF into its dimer.


Asunto(s)
Anabaena , Anabaena/metabolismo , Diclofenaco/química , Diclofenaco/metabolismo , Cianobacterias/metabolismo , Cianobacterias/química , Biodegradación Ambiental , Espectrometría de Masas en Tándem , Adsorción , Biomasa , Acetaminofén/química , Acetaminofén/metabolismo , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/química
5.
FEMS Microbiol Ecol ; 100(10)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39227168

RESUMEN

Untargeted genetic approaches can be used to explore the high metabolic versatility of cyanobacteria. In this context, a comprehensive metagenomic shotgun analysis was performed on a population of Dolichospermum lemmermannii collected during a surface bloom in Lake Garda in the summer of 2020. Using a phylogenomic approach, the almost complete metagenome-assembled genome obtained from the analysis allowed to clarify the taxonomic position of the species within the genus Dolichospermum and contributed to frame the taxonomy of this genus within the ADA group (Anabaena/Dolichospermum/Aphanizomenon). In addition to common functional traits represented in the central metabolism of photosynthetic cyanobacteria, the genome annotation uncovered some distinctive and adaptive traits that helped define the factors that promote and maintain bloom-forming heterocytous nitrogen-fixing Nostocales in oligotrophic lakes. In addition, genetic clusters were identified that potentially encode several secondary metabolites that were previously unknown in the populations evolving in the southern Alpine Lake district. These included geosmin, anabaenopetins, and other bioactive compounds. The results expanded the knowledge of the distinctive competitive traits that drive algal blooms and provided guidance for more targeted analyses of cyanobacterial metabolites with implications for human health and water resource use.


Asunto(s)
Lagos , Metagenoma , Metagenómica , Filogenia , Lagos/microbiología , Eutrofización , Cianobacterias/genética , Cianobacterias/clasificación , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Aphanizomenon/genética , Aphanizomenon/crecimiento & desarrollo , Aphanizomenon/metabolismo
6.
Plants (Basel) ; 13(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39124224

RESUMEN

Azolla is the only plant with a co-evolving nitrogen-fixing (diazotrophic) cyanobacterial symbiont (cyanobiont), Nostoc azollae, resulting from whole-genome duplication (WGD) 80 million years ago in Azolla's ancestor. Additional genes from the WGD resulted in genetic, biochemical, and morphological changes in the plant that enabled the transmission of the cyanobiont to successive generations via its megaspores. The resulting permanent symbiosis and co-evolution led to the loss, downregulation, or conversion of non-essential genes to pseudogenes in the cyanobiont, changing it from a free-living organism to an obligate symbiont. The upregulation of other genes in the cyanobiont increased its atmospheric dinitrogen fixation and the provision of nitrogen-based products to the plant. As a result, Azolla can double its biomass in less than two days free-floating on fresh water and sequester large amounts of atmospheric CO2, giving it the potential to mitigate anthropogenic climate change through carbon capture and storage. Azolla's biomass can also provide local, low-cost food, biofertiliser, feed, and biofuel that are urgently needed as our population increases by a billion every twelve years. This paper integrates data from biology, genetics, geology, and palaeontology to identify the location, timing and mechanism for the acquisition of a co-evolving diazotrophic cyanobiont by Azolla's ancestor in the Late Cretaceous (Campanian) of North America.

7.
Mol Genet Metab Rep ; 39: 101084, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38694233

RESUMEN

Phenylketonuria (PKU) is a genetic disorder caused by deficiency of the enzyme phenylalanine hydroxylase (PAH), which results in phenylalanine (Phe) accumulation in the blood and brain, and requires lifelong treatment to keep blood Phe in a safe range. Pegvaliase is an enzyme-substitution therapy approved for individuals with PKU and uncontrolled blood Phe concentrations (>600 µmol/L) despite prior management. Aggregated results from the PRISM clinical trials demonstrated substantial and sustained reductions in blood Phe with a manageable safety profile, but also noted individual variation in time to and dose needed for a first response. This analysis reports longer-term aggregate findings and characterizes individual participant responses to pegvaliase using final data from the randomized trials PRISM-1 (NCT01819727) and PRISM-2 (NCT01889862), and the open-label extension study 165-304 (NCT03694353). In 261 adult participants with a mean of 36.6 months of pegvaliase treatment, 71.3%, 65.1%, and 59.4% achieved clinically significant blood Phe levels of ≤600, ≤360, and ≤ 120 µmol/L, respectively. Some participants achieved blood Phe reductions with <20 mg/day pegvaliase, although most required higher doses. Based on Kaplan-Meier analysis, median (minimum, maximum) time to first achievement of a blood Phe threshold of ≤600, ≤360, or ≤ 120 µmol/L was 4.4 (0.0, 54.0), 8.0 (0.0, 57.0), and 11.6 (0.0, 66.0) months, respectively. Once achieved, blood Phe levels remained below clinical threshold in most participants. Sustained Phe response (SPR), a new method described within for measuring durability of blood Phe response, was achieved by 85.5%, 84.7%, and 78.1% of blood Phe responders at blood Phe thresholds of ≤600, ≤360, or ≤ 120 µmol/L, respectively. Longer-term safety data were consistent with previous reports, with the most common adverse events (AEs) being arthralgia, injection site reactions, headache, and injection site erythema. The incidence of most AEs, including hypersensitivity AEs, was higher during the early treatment phase (≤6 months) than later during treatment. In conclusion, using data from three key pegvaliase clinical trials, participants treated with pegvaliase were able to reach clinically significant blood Phe reductions to clinical thresholds of ≤600, ≤360, or ≤ 120 µmol/L during early treatment, with safety profiles improving from early to sustained treatment. This study also supports the use of participant-level data and new ways of looking at durable blood Phe responses to better characterize patients' individual PKU treatment journeys.

8.
Ying Yong Sheng Tai Xue Bao ; 35(2): 516-522, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38523110

RESUMEN

Biological soil crusts are of great significance for environment health and sustainable development in arid and semi-arid areas. Cyanobacteria, Microcoleus vaginatus, Scytonema sp., Nostoc sp., and Anabaena sp. are the dominant species in microbial community of biological soil crusts worldwide. Considering their broad application prospect, it is meaningful to cultivate them extensively. We examined the effects of temperature (10, 20, 25, 30, 35 ℃) and initial pH (4, 6, 8, 10, 12) on biomass and solution pH towards the four species of cyanobacteria with liquid culture in laboratory. The results showed that the biomass of the four cyanobacterial species grew slowly under 20 ℃, and that all species could grow in 25-35 ℃, with the highest growth rate at 25 and 30 ℃. The optimum culture temperature of different cyanobacterial species was slightly different. The optimum culture temperature was 25-30 ℃ for Scytonema sp. and Nostoc sp., and 30 ℃ for M. vaginatus and Anabaena sp. The four cyanobacterial species had a strong ability to adjust solution pH and proliferate in five different initial pH conditions. The highest maximum biomass and specific growth rate were recorded in the culture environment with initial pH of 4, while the lowest maximum biomass and specific growth rate were observed in initial pH of 12. Our results would provide scientific basis for the propagation of dominant cyanobacteria in biological soil crusts.


Asunto(s)
Cianobacterias , Clima Desértico , Temperatura , Suelo , Concentración de Iones de Hidrógeno , Microbiología del Suelo
9.
Sci Rep ; 14(1): 6857, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514668

RESUMEN

Concerns over environmental issues exists and desire to decrease of their extent, have directed efforts toward green energy production. Growth behavior of Anabaena vaginicola was determined in a photobioreator which illuminated internally (IIPBR) using LED bar light. Excessive heat generated in the IIPBR was taken care of by applying a novel air-cooled system. Further note in experimentation was to find favorable cultivation conditions in the IIPBR for A. vaginicola growth and its lipids production capacity. The following results are expressed: 80 µmol photons m-2 s-1 as light intensity, 0.5 g/l as NaNO3, and 120 ml/min as CO2 amount being expressed in terms of aeration rate. The findings were interpreted in terms of a two-component system where the genes encoded to the relevant proteins are present in cyanobacteria and their expressiveness depends on environmental stress. By determining growth rate constant as 0.11 d-1, the productivity in terms of biomass formation was calculated as 202.6 mg L-1 d-1. While rate of lipids production by the test cyanobacterium is 15.65 mg L-1 d-1. Based on total energy used for IIPBR performance, biomass productivity per unit power input equals to 0.74 g W-1 d-1 and this is in favorable position compared with other photobioreactors.


Asunto(s)
Cianobacterias , Microalgas , Fotobiorreactores , Luz , Biomasa , Lípidos , Microalgas/metabolismo
10.
ACS Synth Biol ; 13(3): 901-912, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38445989

RESUMEN

In genome engineering, the integration of incoming DNA has been dependent on enzymes produced by dividing cells, which has been a bottleneck toward increasing DNA insertion frequencies and accuracy. Recently, RNA-guided transposition with CRISPR-associated transposase (CAST) was reported as highly effective and specific in Escherichia coli. Here, we developed Golden Gate vectors to test CAST in filamentous cyanobacteria and to show that it is effective in Anabaena sp. strain PCC 7120. The comparatively large plasmids containing CAST and the engineered transposon were successfully transferred into Anabaena via conjugation using either suicide or replicative plasmids. Single guide (sg) RNA encoding the leading but not the reverse complement strand of the target were effective with the protospacer-associated motif (PAM) sequence included in the sgRNA. In four out of six cases analyzed over two distinct target loci, the insertion site was exactly 63 bases after the PAM. CAST on a replicating plasmid was toxic, which could be used to cure the plasmid. In all six cases analyzed, only the transposon cargo defined by the sequence ranging from left and right elements was inserted at the target loci; therefore, RNA-guided transposition resulted from cut and paste. No endogenous transposons were remobilized by exposure to CAST enzymes. This work is foundational for genome editing by RNA-guided transposition in filamentous cyanobacteria, whether in culture or in complex communities.


Asunto(s)
Anabaena , Cianobacterias , Humanos , ARN Guía de Sistemas CRISPR-Cas , ARN , Plásmidos/genética , Anabaena/genética , Cianobacterias/genética , ADN , Escherichia coli/genética , Elementos Transponibles de ADN/genética
11.
Harmful Algae ; 133: 102600, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38485438

RESUMEN

Dolichospermum is a cyanobacterial genus commonly associated with toxic blooms in lakes and brackish water bodies worldwide, and is a long-term resident of Lake Stechlin, northeastern Germany. In recent decades, shifts in the phosphorus loading and phytoplankton species composition have seen increased biomass of Dolichospermum during summer blooms from 1998, peaking around 2005, and declining after 2020. Cyanobacteria are known to rapidly adapt to new environments, facilitated by genome adaptation. To investigate the changes in genomic features that may have occurred in Lake Stechlin Dolichospermum during this time of increased phosphorus loading and higher biomass, whole genome sequence analysis was performed on samples of ten akinetes isolated from ten, 1 cm segments of a sediment core, representing a ∼45-year period from 1970 to 2017. Comparison of these genomes with genomes of extant isolates revealed a clade of Dolichospermum that clustered with the ADA-6 genus complex, with remarkable genome stability, without gene gain or loss events in response to recent environmental changes. The genome characteristics indicate that this species is suited to a deep-chlorophyll maximum, including additional light-harvesting and phosphorus scavenging genes. Population SNP analysis revealed two sub-populations that shifted in dominance as the lake transitioned between oligotrophic and eutrophic conditions. Overall, the results show little change within the population, despite diversity between extant populations from different geographic locations and the in-lake changes in phosphorus concentrations.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Cianobacterias/genética , Fitoplancton , Biomasa , Fósforo
12.
Environ Res ; 249: 118310, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38331154

RESUMEN

Organophosphorus (OP) insecticides are widely used for on-field pest control, constituting about 38% of global pesticide consumption. Insecticide tolerance has been recorded in microorganisms isolated from the contaminated soil. However, the cross-tolerance of laboratory-enriched cultures remains poorly understood. A chlorpyrifos tolerant (T) strain of Anabaena sp. PCC 7119 was developed through continuous enrichment of the wild strain (W). The cross-tolerance of the T strain to the OP insecticide dimethoate was assessed by measuring photosynthetic performance, key enzyme activities and degradation potential. The presence of dimethoate led to a significant reduction in the growth and pigment content of the W strain. In contrast, the T strain demonstrated improved growth and metabolic performance. Chl a and carotenoids were degraded faster than phycobiliproteins in both strains. The T strain exhibited superior photosynthetic performance, metabolic efficiency and photosystem functions, than of W strain, at both the tested dimethoate concentrations (100 and 200 µM). The treated T strain had more or less a normal OJIP fluorescence transient and bioenergetic functions, while the W strain showed a greater fluorescence rise at ≤ 300 µs indicating the inhibition of electron donation to PS II, and at 2 ms due to reduced electron release beyond QA. The T strain had significantly higher levels of esterase and phosphatases, further enhanced by insecticide treatment. Dimethoate degradation efficiency of the T strain was significantly higher than of the W strain. T strain also removed chlorpyrifos more efficiently than W strain at both the tested concentrations. The BCFs of both chlorpyrifos and dimethoate were lower in the T strain compared to the W strain. These findings suggest that the enriched strain exhibits promising results in withstanding dimethoate toxicity and could be explored for its potential as a bioremediating organism for OP degradation.


Asunto(s)
Anabaena , Cloropirifos , Dimetoato , Insecticidas , Cloropirifos/toxicidad , Dimetoato/toxicidad , Anabaena/efectos de los fármacos , Insecticidas/toxicidad , Fotosíntesis/efectos de los fármacos
13.
Microorganisms ; 12(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38399735

RESUMEN

The production of isolated metallic nanoparticles with multifunctionalized properties, such as size and shape, is crucial for biomedical, photocatalytic, and energy storage or remediation applications. This study investigates the initial particle formations of gold nanoparticles (AuNPs) bioproduced in the cyanobacteria Anabaena sp. using high-resolution transmission electron microscopy images for digital image analysis. The developed method enabled the discovery of cerium nanoparticles (CeNPs), which were biosynthesized in the cyanobacteria Calothrix desertica. The particle size distributions for AuNPs and CeNPs were analyzed. After 10 h, the average equivalent circular diameter for AuNPs was 4.8 nm, while for CeNPs, it was approximately 5.2 nm after 25 h. The initial shape of AuNPs was sub-round to round, while the shape of CeNPs was more roundish due to their amorphous structure and formation restricted to heterocysts. The local PSDs indicate that the maturation of AuNPs begins in the middle of vegetative cells and near the cell membrane, compared to the other regions of the cell.

14.
Arch Microbiol ; 206(3): 105, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363385

RESUMEN

Colonization of the cyanobacteria in the Bishnupur terracotta temples, one of the heritage sites of West Bengal, India is in an alarming state of deterioration now. Among the cyanobacteria Anabaena sp. (VBCCA 052002) has been isolated from most of the crust samples of terracotta monuments of Bishnupur. The identification was done using micromorphological characters and confirmed by 16S rRNA gene sequencing. The isolated strain produces enormous exopolysaccharides, which are extracted, hydrolyzed, and analyzed by HPLC. We have studied desiccation tolerance in this cyanobacterium and found biosynthesis of trehalose with an increase in durations of desiccation. The in vitro experiment shows that Chlorophyll-a and carotenoid content increase with fourteen days of desiccation, and cellular carbohydrates increase continuously. However, cellular protein decreases with desiccation. To gain insights into the survival strategies and biodeterioration mechanisms of Anabaena sp. in the desiccated conditions of the Bishnupur monuments, the present study focuses on the physiological aspects of the cyanobacteria under controlled in vitro conditions. Our study indicates that in desiccation conditions, trehalose biosynthesis takes place in Anabaena sp. As a result of the excessive sugar and polysaccharide produced, it adheres to the surface of the terracotta structure. The continuous contraction and expansion of these polysaccharides contribute to the biodeterioration of these monuments.


Asunto(s)
Anabaena , Desecación , ARN Ribosómico 16S/genética , Trehalosa/metabolismo , Anabaena/metabolismo , Polisacáridos/metabolismo
15.
Harmful Algae ; 132: 102582, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38331546

RESUMEN

Benthic cyanobacterial mats (BCMs) are becoming increasingly abundant on coral reefs worldwide. High growth rates and prolific toxin production give them the potential to cause widespread coral recruitment failure through allelopathic effects, but few studies have made the link between their toxicity for coral larvae and in situ toxin concentrations. Here we investigated the allelopathic effects of the benthic cyanobacterium Anabaena sp.1 on larvae of the coral Pocillopora acuta. This cyanobacterium produces several non-ribosomal cyclic lipopeptides of the laxaphycin family with cytotoxic properties. Therefore, we measured the concentration of laxaphycins A and B in Anabaena mats and in the water column and tested their effects on coral larvae. We found that Anabaena crude extract reduces both larval survivorship and settlement and that laxaphycin B reduces settlement. When larvae were exposed to both laxaphycins, there was a reduction in both larval survival and settlement. In the natural reef environment, laxaphycin A and B concentrations increased with increasing proximity to Anabaena mats, with concentrations being consistently above LC50 and EC50 thresholds within a 1 cm distance of the mats. This study demonstrates that laxaphycins reduce the survival and inhibit the settlement of coral larvae at concentrations found near Anabaena mats in situ. It further shows a combined effect between two cyanobacterial metabolites. As BCMs become more common, more of their secondary metabolites might be released in the water column. Their occurrence will lead to a reduction in coral recruitment rates, contributing to the continuing decline of coral reefs and shift in community structure.


Asunto(s)
Antozoos , Cianobacterias , Animales , Larva , Arrecifes de Coral , Agua
16.
Microorganisms ; 12(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38258001

RESUMEN

Unsaturated diacylglycerols are a class of antioxidant compounds with the potential to positively impact human health. Their ability to combat oxidative stress through radical scavenger activity underscores their significance in the context of preventive and therapeutic strategies. In this paper we highlight the role of Anabaena flos-aquae as a producer of unsaturated mono and diacylglycerols, and then demonstrate the antioxidant activity of its methanolic extract, which has as its main components a variety of acylglycerol analogues. This finding was revealed using a sustainable strategy in which the One Strain Many Compounds (OSMAC) cultivation in microscale was coupled with a bioinformatic approach to analyze a large dataset of mass spectrometry data using the molecular networking analyses. This strategy reduces time and costs, avoiding long and expensive steps of purification and obtaining informative data on the metabolic composition of the extracts. This study highlights the role of Anabaena as a sustainable and green source of novel bioactive compounds.

17.
mSystems ; 9(1): e0070023, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38079111

RESUMEN

Circadian clock arrays in multicellular filaments of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120 display remarkable spatio-temporal coherence under nitrogen-replete conditions. To shed light on the interplay between circadian clocks and the formation of developmental patterns, we followed the expression of a clock-controlled gene under nitrogen deprivation, at the level of individual cells. Our experiments showed that differentiation into heterocysts took place preferentially within a limited interval of the circadian clock cycle, that gene expression in different vegetative intervals along a developed filament was discoordinated, and that the circadian clock was active in individual heterocysts. Furthermore, Anabaena mutants lacking the kaiABC genes encoding the circadian clock core components produced heterocysts but failed in diazotrophy. Therefore, genes related to some aspect of nitrogen fixation, rather than early or mid-heterocyst differentiation genes, are likely affected by the absence of the clock. A bioinformatics analysis supports the notion that RpaA may play a role as master regulator of clock outputs in Anabaena, the temporal control of differentiation by the circadian clock and the involvement of the clock in proper diazotrophic growth. Together, these results suggest that under nitrogen-deficient conditions, the clock coherent unit in Anabaena is reduced from a full filament under nitrogen-rich conditions to the vegetative cell interval between heterocysts.IMPORTANCECircadian clocks, from unicellular organisms to animals, temporally align biological processes to day and night cycles. We study the dynamics of a circadian clock-controlled gene at the individual cell level in the multicellular filamentous cyanobacterium Anabaena, under nitrogen-stress conditions. Under these conditions, some cells along filaments differentiate to carry out atmospheric nitrogen fixation and lose their capability for oxygenic photosynthesis. We found that clock synchronization is limited to organismic units of contiguous photosynthetic cells, contrary to nitrogen-replete conditions in which clocks are synchronized over a whole filament. We provided evidence that the circadian clock regulates the process of differentiation, allowing it to occur preferentially within a limited time window during the circadian clock period. Lastly, we present evidence that the signal from the core clock to clock-regulated genes is conveyed in Anabaena as in unicellular cyanobacteria.


Asunto(s)
Anabaena , Relojes Circadianos , Cianobacterias , Relojes Circadianos/genética , Anabaena/genética , Cianobacterias/metabolismo , Diferenciación Celular/genética , Nitrógeno/metabolismo
18.
Plant Cell Physiol ; 65(6): 975-985, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38147500

RESUMEN

DesC1 and DesC2, which are fatty acid desaturases found in cyanobacteria, are responsible for introducing a double bond at the Δ9 position of fatty-acyl chains, which are subsequently esterified to the sn-1 and sn-2 positions of the glycerol moiety, respectively. However, since the discovery of these two desaturases in the Antarctic cyanobacterium Nostoc sp. SO-36, no further research has been reported. This study presents a comprehensive characterization of DesC1 and DesC2 through targeted mutagenesis and transformation using two cyanobacteria strains: Anabaena sp. PCC 7120, comprising both desaturases, and Synechocystis sp. PCC 6803, containing a single Δ9 desaturase (hereafter referred to as DesCs) sharing similarity with DesC1 in amino acid sequence. The results suggested that both DesC1 and DesC2 were essential in Anabaena sp. PCC 7120 and that DesC1, but not DesC2, complemented DesCs in Synechocystis sp. PCC 6803. In addition, DesC2 from Anabaena sp. PCC 7120 desaturated fatty acids esterified to the sn-2 position of the glycerol moiety in Synechocystis sp. PCC 6803.


Asunto(s)
Anabaena , Proteínas Bacterianas , Ácido Graso Desaturasas , Synechocystis , Ácido Graso Desaturasas/metabolismo , Ácido Graso Desaturasas/genética , Synechocystis/enzimología , Synechocystis/genética , Anabaena/enzimología , Anabaena/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ácidos Grasos/metabolismo , Cianobacterias/enzimología , Cianobacterias/genética , Secuencia de Aminoácidos
19.
Biochem Biophys Res Commun ; 682: 316-324, 2023 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-37837752

RESUMEN

Muscle cell cultivation, specifically the culture of artificial meat from livestock-derived cells in serum-free media is an emerging technology and has attracted much attention. However, till now, the high cost of production and environmental load have been significant deterrents. This study aims to provide an alternate growth-promoting substance that is free from animal derivatives and lowers nitrogen pollution. We have extracted water-soluble compounds from the filamentous nitrogen-fixing cyanobacteria Anabaena sp. PCC 7120 by the ultrasonication method. The heat-inactivated and molecular weight separation experiments were conducted to identify the bioactive compound present in the extract. Finally, the compounds soluble in water (CW) containing the water-soluble pigment protein, phycocyanin as a bioactive compound, was added as a growth supplement to cultivate muscle cells such as C2C12 muscle cells and quail muscle clone 7 (QM7) cells to analyze the effectiveness of the extract. The results indicated that CW had a positive role in muscle cell proliferation. A three-dimensional (3-D) cell-dense structure was fabricated by culturing QM7 cells using the extract. Furthermore, the nitrogen-fixing cyanobacterial extract has vast potential for cultured meat production without animal sera in the near future.


Asunto(s)
Anabaena , Cianobacterias , Nitrógeno/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Anabaena/metabolismo , Músculos/metabolismo , Proliferación Celular , Regulación Bacteriana de la Expresión Génica
20.
Toxins (Basel) ; 15(9)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37756009

RESUMEN

Blue-green algae, or cyanobacteria, may be prevalent in our rivers and tap water. These minuscule bacteria can grow swiftly and form blooms in warm, nutrient-rich water. Toxins produced by cyanobacteria can pollute rivers and streams and harm the liver and nervous system in humans. This review highlights the properties of 25 toxin types produced by 12 different cyanobacteria genera. The review also covered strategies for reducing and controlling cyanobacteria issues. These include using physical or chemical treatments, cutting back on fertilizer input, algal lawn scrubbers, and antagonistic microorganisms for biocontrol. Micro-, nano- and ultrafiltration techniques could be used for the removal of internal and extracellular cyanotoxins, in addition to powdered or granular activated carbon, ozonation, sedimentation, ultraviolet radiation, potassium permanganate, free chlorine, and pre-treatment oxidation techniques. The efficiency of treatment techniques for removing intracellular and extracellular cyanotoxins is also demonstrated. These approaches aim to lessen the risks of cyanobacterial blooms and associated toxins. Effective management of cyanobacteria in water systems depends on early detection and quick action. Cyanobacteria cells and their toxins can be detected using microscopy, molecular methods, chromatography, and spectroscopy. Understanding the causes of blooms and the many ways for their detection and elimination will help the management of this crucial environmental issue.


Asunto(s)
Agua Potable , Humanos , Lagos , Rayos Ultravioleta , Difusión , Toxinas de Cianobacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...