Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Plant Physiol ; 294: 154193, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422632

RESUMEN

Androgenetically-derived haploids can be obtained by inducing embryogenesis in microspores. Thus, full homozygosity is achieved in a single generation, oppositely to conventional plant breeding programs. Here, the metabolite profile of embryogenic microspores of Triticum aestivum was acquired and integrated with transcriptomic existing data from the same samples in an effort to identify the key metabolic processes occurring during the early stages of microspore embryogenesis. Primary metabolites and transcription profiles were identified at three time points: prior to and immediately following a low temperature pre-treatment given to uninuclear microspores, and after the first nuclear division. This is the first time an integrative -omics analysis is reported in microspore embryogenesis in T. aestivum. The key findings were that the energy produced during the pre-treatment was obtained from the tricarboxylic acid (TCA) cycle and from starch degradation, while starch storage resumed after the first nuclear division. Intermediates of the TCA cycle were highly demanded from a very active amino acid metabolism. The transcription profiles of genes encoding enzymes involved in amino acid synthesis differed from the metabolite profiles. The abundance of glutamine synthetase was correlated with that of glutamine. Cytosolic glutamine synthetase isoform 1 was found predominantly after the nuclear division. Overall, energy production was shown to represent a major component of the de-differentiation process induced by the pre-treatment, supporting a highly active amino acid metabolism.


Asunto(s)
Glutamato-Amoníaco Ligasa , Triticum , Triticum/genética , Glutamato-Amoníaco Ligasa/metabolismo , Polen , Desarrollo Embrionario , Almidón/metabolismo , Aminoácidos/metabolismo
2.
Protoplasma ; 261(2): 367-376, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37910230

RESUMEN

The haploid and doubled haploid plants serve as valuable tools for breeders due to their ability to expedite the mapping of genes of agronomic importance, as well as accelerate the breeding cycle for generation of novel hybrids and improved homogenous varieties. Successful anther/microspore culture largely depends on the use of microspores at appropriate developmental stages at the time of culture, which can be specific for each plant species and genotype. In the present study, we described the visible morphological characteristics of flower buds and anthers at different developmental stages to identify the optimal microspore stage within the anther/buds of two pepper hybrids, Indra and Lakshmi. This information enabled us to predict the suitable microspore stage for successful haploid production. To enhance the visualization of nuclei in the pepper microspores, different concentrations of FeCl3 were employed as a mordant to Carnoy's fixative I, followed by DAPI staining. A clear and distinct nucleus was observed using DAPI staining procedures in the pepper microspores when fixed in Carnoy's solution containing ferric chloride (40-90 µl) as mordant. The use of mordant thus facilitated the efficient cytological analysis of the pepper microspores. Present results indicate that, to achieve efficient haploid production, flower buds with an average length of 4.4 to 5.02 mm for the hybrid Indra and 5.15 to 5.40 mm for the hybrid Lakshmi should be utilized. Additionally, these buds should have a calyx covering approximately 80-90% of the total bud length. We observed that in such buds, microspores are in the late-uninucleate and early binucleate stage which has been reported to be the most conducive stage for androgenesis induction in pepper.


Asunto(s)
Gametogénesis en la Planta , Indoles , Fitomejoramiento , Fijadores , Genotipo , Haploidia
3.
Life (Basel) ; 13(10)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37895352

RESUMEN

In cereal breeding, in vitro androgenesis methods are frequently applied to achieve doubled haploid (DH) plants. The aim of this study was to determine the effects of genotype (three registered varieties and eight F1 crossing combinations) and induction medium (W14mf and P4mf) on anther cultures (ACs) of triticale (×Triticosecale Wittmack). Androgenesis was induced in the treatment of each tested genotype, and the genotype significantly influenced the efficiency of AC, including in embryo-like structures (ELSs), albinos, green plantlets, and transplanted plantlets. The utilized medium also had a significant effect on the number of ELSs, albinos, and transplanted plantlets. Both media were suitable for AC in triticale DH plant production. The efficiency of AC was higher when using the P4mf medium (103.7 ELS/100 anthers, 19.7 green plantlets/100 anthers) than when using the W14mf medium (90.0 ELS/100 anthers, 17.0 green plantlets/100 anthers). However, the green plantlet regeneration efficiency of microspore-derived structures was 18.0% when using the W14mf medium, while this value was 15.9% in the case of ELSs induced with the P4mf medium. After nursery seed evaluation and propagation (DH1), the genetic homogeneity of the offspring generation (DH2) was tested using a molecular genetic method. Most of the tested DH lines showed homogeneity and were progressed into a breeding program after agronomic selection. Some DH lines showed inhomogeneity, which could be explained by the outcross inclination of triticale. We would like to call breeders' attention to the outcross character of triticale and emphasize the vigilant propagation and maintenance of the triticale DH lines in breeding programs. Due to the outcross nature of triticale, even in self-pollinated genotypes, breeders should focus on careful maintenance, along with isolation in the case of line propagations, in triticale breeding programs.

4.
Plants (Basel) ; 12(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687363

RESUMEN

Haploid plants are of significant interest to crop breeders due to their ability to expedite the development of inbred lines. Chromosome-doubling of haploids, produced by either in vitro or in vivo methods, results in fully homozygous doubled haploids. For nearly five decades, in vitro methods of anther and microspore culture have been attempted in many crops. In rice, in vitro methods are used with some success in japonica cultivars, although indica types have remained recalcitrant to a large extent. This review aims to explore the reasons for the lack of success of in vitro methods in indica rice and discuss new advancements in in vivo haploid induction protocols in other cereals and their relevance to rice. In particular, the current level of understanding of in vivo haploid inducer systems that utilize MTL and CENH3 mutants is analyzed in detail. One notable advantage of in vivo haploid induction systems is that they do not require tissue culture competence. This makes these methods more accessible and potentially transformative for research, offering a pragmatic approach to improving indica rice cultivars. By embracing these in vivo methods and harnessing the power of gene editing technologies like CRISPR/Cas9 systems, breeders can reshape their approach to indica rice improvement.

5.
Fish Physiol Biochem ; 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37296321

RESUMEN

Induced development of haploid embryos (H) with only paternal (androgenesis) or maternal (gynogenesis) chromosomes requires irradiation of eggs before fertilization or activation of eggs with irradiated spermatozoa, respectively. To provide doubled haploids (DHs), androgenetic and gynogenetic haploid zygotes need to be subjected to the thermal or high hydrostatic pressure (HHP) shock to suppress the first mitotic cleavage and to double paternal or maternal haploid set of chromosomes. Androgenesis and mitotic gynogenesis (mito-gynogenesis) result in the generation of fully homozygous individuals in a single generation. DHs have been utilized in selective breeding programs, in studies concerning the phenotypic consequences of recessive alleles and to evaluate the impact of sex chromosomes on the early ontogeny. Moreover, the use of DHs for the NGS approach radically improves de novo the assembly of the genomes. However, reduced survival of the doubled haploids limits the wide application of androgenotes and gynogenotes. The high mortality of DHs may be only partly explained by the expression of recessive traits. Observed inter-clutch variation in the survival of DHs developing in eggs originating from different females make it necessary to take a closer look at the quality of the eggs used during induced androgenesis and gynogenesis. Moreover, the developmental competence of eggs that are subjected to irradiation before fertilization in order to deactivate maternal chromosomes when undergoing induced androgenesis and exposed to the physical shock after fertilization that leads to the duplication of the zygotes in both mito-gynogenesis and androgenesis may be also altered as irradiation and sublethal values of temperatures and hydrostatic pressure are considered as harmful for the cell organelles and biomolecules. Here, recently provided results concerning the morphological, biochemical, genomic, and transcriptomic characteristics of fish eggs showing high and low competence for androgenesis and mito-gynogenesis are reviewed.

6.
Curr Issues Mol Biol ; 45(5): 4431-4450, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37232751

RESUMEN

Rapeseed is one of the most important oil crops in the world. Increasing demand for oil and limited agronomic capabilities of present-day rapeseed result in the need for rapid development of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in plant breeding as well as genetic research. Brassica napus is considered a model species for DH production based on microspore embryogenesis; however, the molecular mechanisms underlying microspore reprogramming are still vague. It is known that morphological changes are accompanied by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more efficient methods for DH rapeseed production have been reported. This review covers new findings and advances in Brassica napus DH production as well as the latest reports related to agronomically important traits in molecular studies employing the double haploid rapeseed lines.

7.
Plants (Basel) ; 12(9)2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37176830

RESUMEN

Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks-low induction rate, genotype dependency, albinism-restrict the widespread utilization of in vitro anther culture in rice breeding, especially in Oryza sativa ssp. indica (indica) genotypes, while an improved efficient protocol can shorten the process of breeding. Three different induction media (N6NDK, N6NDZ, Ali-1) and four plant regeneration media (mMSNBK1, MSNBK3, MSNBKZ1, MSNBKZ2) were tested with five indica rice genotypes to increase the efficiency of in vitro androgenesis (number of calli and regenerated green plantlets). The production of calli was more efficient on the N6NDK medium with an average 88.26 calli/100 anthers and N6NDZ medium with an average of 103.88 calli/100 anthers as compared to Ali-1 with an average of 6.96 calli/100 anthers. The production of green plantlets was greater when calli was produced on N6NDK medium (2.15 green plantlets/100 anthers) compared when produced on to N6NDZ medium (1.18 green plantlets/100 anthers). Highest green plantlets production (4.7 green plantlets/100 anthers) was achieved when mMSNBK1 plant regeneration medium was used on calli produced utilizing N6NDK induction medium. In the best overall treatment (N6NDK induction medium and mMSNBK1 plant regeneration medium), four tested genotypes produced green plantlets. However, the genotype influenced the efficiency, and the green plantlets production ranged from 0.4 green plantlets/100 anthers to 8.4 green plantlets/100 anthers. The ploidy level of 106 acclimatized indica rice plantlets were characterized with flow cytometric analyses to calculate the percentage of spontaneous chromosome doubling. Altogether, 48 haploid-, 55 diploid-, 2 tetraploid- and 1 mixoploid plantlets were identified among the regenerant plantlets, and the spontaneous chromosome doubling percentage was 51.89%. Utilization of DH plants have been integrated as a routine method in the Hungarian rice breeding program. The tetraploid lines can be explored for their potential to offer new scopes for rice research and breeding directions in the future.

8.
Stem Cell Reports ; 18(4): 817-828, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37001516

RESUMEN

Genomic imprinting underlies the mammalian requirement for sexual reproduction. Nonetheless, the relative contribution of the two parental genomes during human development is not fully understood. Specifically, a fascinating question is whether the formation of the gonad, which holds the ability to reproduce, depends on equal contribution from both parental genomes. Here, we differentiated androgenetic and parthenogenetic human pluripotent stem cells (hPSCs) into ovarian granulosa-like cells (GLCs). We show that in contrast to biparental and androgenetic cells, parthenogenetic hPSCs present a reduced capacity to differentiate into GLCs. We further identify the paternally expressed gene IGF2 as the most upregulated imprinted gene upon differentiation. Remarkably, while IGF2 knockout androgenetic cells fail to differentiate into GLCs, the differentiation of parthenogenetic cells supplemented with IGF2 is partly rescued. Thus, our findings unravel a surprising essentiality of genes that are only expressed from the paternal genome to the development of the female reproductive system.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Animales , Humanos , Femenino , Impresión Genómica , Diferenciación Celular/genética , Partenogénesis/genética , Células de la Granulosa , Mamíferos
9.
Biol Rev Camb Philos Soc ; 98(2): 677-695, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36457233

RESUMEN

Genomic imprinting is known from flowering plants and mammals but has not been confirmed for the Hymenoptera even though the eusocial Hymenoptera are prime candidates for this peculiar form of gene expression. Here, the kin selection theory of genomic imprinting is reviewed and applied to the eusocial Hymenoptera. The evidence for imprinting in eusocial Hymenoptera with the typical mode of reproduction, involving the sexual production of diploid female offspring, which develop into workers or gynes, and the arrhenotokous parthenogenesis of haploid males, is also reviewed briefly. However, the focus of this review is how atypical modes of reproduction, involving thelytokous parthenogenesis, hybridisation and androgenesis, may also select for imprinting. In particular, naturally occurring hybridisation in several genera of ants may provide useful tests of the role of kin selection in the evolution of imprinting. Hybridisation is expected to disrupt the coadaptation of antagonistically imprinted loci, and thus affect the phenotypes of hybrids. Some of the limited data available on hybrid worker reproduction and on colony sex ratios support predictions about patterns of imprinting derived from kin selection theory.


Asunto(s)
Hormigas , Impresión Genómica , Animales , Masculino , Hormigas/genética , Partenogénesis , Reproducción , Razón de Masculinidad , Mamíferos
10.
Vavilovskii Zhurnal Genet Selektsii ; 27(8): 1022-1030, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38239970

RESUMEN

Doubled haploid technology is a valuable biotechnological approach in plant breeding that enables one to quickly create new varieties through the single-stage production of homozygous lines. The aim of this study was to assess the indicators of in vitro androgenesis in the anther culture of the initial breeding material of varieties and combinations of F1 and F2 and to identify promising accessions with good responsiveness. For that purpose, the plant material that proved promising for the breeding programs of Siberian Research Institute of Plant Production and Breeding (SibRIPP

11.
Plants (Basel) ; 11(24)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36559559

RESUMEN

Doubled haploid (DH) plant production, such as anther culture (AC), is an effective tool used in modern rice breeding programs. The improved efficient protocols applied can shorten the process of breeding. The effect of combinations of plant growth regulators (2.5 mg/L NAA, 1 mg/L 2,4-D and 0.5 mg/L kinetin; 2 mg/L 2,4-D and 0.5 mg/L BAP) in the induction medium were compared in AC for five rice breeding materials and combinations. Induction of calli ranged from 264.6 ± 67.07 to 468.8 ± 123.2 calli/100 anthers in AC of rice genotypes. Two basal media (MS and N6) and two combinations of growth regulators (1 mg/L NAA, 1 mg/L BAP and 1 mg/L kinetin; 1.5 mg/L BAP, 0.5 mg/L NAA and 0.5 mg/L kinetin) were used as regeneration media. The in vitro green plant production was the highest with the application of the N6NDK induction medium (NAA, 2,4-D and kinetin) and the MS-based regeneration medium (1 mg/L NAA, 1 mg/BAP and 1 mg/L kinetin) in anther culture of the '1009' genotype (95.2 green plantlets/100 anthers). The mean of five genotypes was 24.48 green plantlets/100 anthers for the best treatment. Flow cytometric analyses conducted identified the microspore origin of the haploid calli produced in AC, while the uniformity of spontaneous DH plants was checked in the DH1 and DH2 generations. Spontaneous chromosome doubling ranged from 38.1% to 57.9% (mean 42.1%), depending on the breeding source. The generated and selected DH lines were tested in micro- and small-plot field experiments to identify promising lines for a pedigree breeding program. The improved AC method was integrated in a Hungarian temperate rice pedigree breeding program.

13.
Plants (Basel) ; 11(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36365372

RESUMEN

The genus Helianthus comprises 52 species and 19 subspecies, with the cultivated sunflower (Helianthus annuus L.) representing one of the most important oilseed crops in the world, which is also of value for fodder and technical purposes. Currently, the leading direction in sunflower breeding is to produce highly effective heterosis F1 hybrids with increased resistance to biotic and abiotic stresses. The production of inbred parental lines via repeated self-pollination takes 4-8 years, and the creation of a commercial hybrid can take as long as 10 years. However, the use of doubled haploid technology allows for the obtainment of inbred lines in one generation, shortening the time needed for hybrid production. Moreover, it allows for the introgression of the valuable genes present in the wild Helianthus species into cultivated sunflowers. Additionally, this technology makes it possible to manipulate the ploidy level, thereby restoring fertility in interspecific hybridization. This review systematizes and analyzes the knowledge available thus far about the production of haploid and dihaploid Helianthus plants using male (isolated anther and microspore cultures) and female (unpollinated ovaries and ovules culture) gametophytes, as well as by induced parthenogenesis using γ-irradiated pollen and interspecific hybridization. The genetic, physiological, and physical factors influencing the efficiency of haploid plant production are considered. A special section focuses on the approaches used to double a haploid chromosome set and the direct and indirect methods for determining the ploidy level. The current analyzed data on the successful application of haploid sunflower plants in breeding are summarized.

14.
J Appl Genet ; 63(4): 677-690, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36018540

RESUMEN

Triticale regeneration via anther culture faces many difficulties, e.g., a low percentage of regenerated plants and the presence of albinos. Plant regeneration may be affected by abiotic stresses and by ingredients added to the induction medium. The latter influences biochemical pathways and plant regeneration efficiency. Among such ingredients, copper and silver ions acting as cofactors for enzymatic reactions are of interest. However, their role in plant tissue cultures and relationships with biochemical pathways has not been studied yet.The study evaluated relationships between DNA methylation, changes in DNA sequence variation, and green plant regeneration efficiency influenced by copper and silver ions during triticale plant regeneration. For this purpose, a biological model based on donor plants and their regenerants, a methylation-sensitive amplified fragment length polymorphism, and structural equation modeling were employed.The green plant regeneration efficiency varied from 0.71 to 6.06 green plants per 100 plated anthers. The values for the components of tissue culture-induced variation related to cytosine methylation in a CHH sequence context (where H is A, C, or T) were 8.65% for sequence variation, 0.76% for DNA demethylation, and 0.58% for de novo methylation. The proposed model states that copper ions affect the regeneration efficiency through cytosine methylation and may induce mutations through, e.g., oxidative processes, which may interfere with the green plant regeneration efficiency. The linear regression confirms that the plant regeneration efficiency rises with increasing copper ion concentration in the absence of Ag ions in the induction medium. The least absolute shrinkage and selection operator regression shows that de novo methylation, demethylation, and copper ions may be involved in the green plant regeneration efficiency. According to structural equation modeling, copper ions play a central role in the model determining the regeneration efficiency.


Asunto(s)
Triticale , Triticale/genética , Haploidia , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Análisis de Clases Latentes , Cobre , Plata , Citosina , Regeneración/genética
15.
Front Plant Sci ; 13: 926305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35982694

RESUMEN

Plant tissue culture techniques are handy tools for obtaining unique plant materials that are difficult to propagate or important for agriculture. Homozygous materials derived through in vitro cultures are invaluable and significantly accelerate the evaluation of new varieties, e.g., cereals. The induction of somatic embryogenesis/androgenesis and the regeneration and its efficiency can be influenced by the external conditions of tissue culture, such as the ingredients present in the induction or regeneration media. We have developed an approach based on biological system, molecular markers, Fourier Transform Infrared spectroscopy, and structural equation modeling technique to establish links between changes in sequence and DNA methylation at specific symmetric (CG, CHG) and asymmetric (CHH) sequences, glutathione, and green plant regeneration efficiency in the presence of variable supplementation of induction medium with copper ions. The methylation-sensitive Amplified Fragment Length Polymorphism was used to assess tissue culture-induced variation, Fourier Transform Infrared spectroscopy to describe the glutathione spectrum, and a structural equation model to develop the relationship between sequence variation, de novo DNA methylation within asymmetric sequence contexts, and copper ions in the induction medium, as well as, glutathione, and green plant efficiency. An essential aspect of the study is demonstrating the contribution of glutathione to green plant regeneration efficiency and indicating the critical role of copper ions in influencing tissue culture-induced variation, glutathione, and obtaining green regenerants. The model presented here also has practical implications, showing that manipulating the concentration of copper ions in the induction medium may influence cell function and increases green plant regeneration efficiency.

16.
Biotechnol Adv ; 60: 108007, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35732257

RESUMEN

Doubled haploid production is a valuable biotechnology that can accelerate the breeding of new wheat varieties by several years through the one-step creation of 100% homozygous plants. The technology also plays important role in studying the genetic control of traits in wheat, in marker-assisted selection, in genomics and in genetic engineering. In this paper, recent advances in androgenesis and gynogenesis techniques, emphasizing predominantly the in vitro culture phase, as well as the emerging innovative approaches in researching and producing wheat doubled haploids are reviewed. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based genome editing, that allows targeted mutagenesis and gene targeting, is being tested extensively as a powerful and precise tool to induce doubled haploids in wheat. The review provides the reader with recent examples of gene modifications in wheat to induce haploidy.


Asunto(s)
Fitomejoramiento , Triticum , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica/métodos , Haploidia , Fitomejoramiento/métodos , Triticum/genética
17.
Plants (Basel) ; 11(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35161258

RESUMEN

Species of the genus Aesculus are very attractive woody ornamentals. Their organs contain numerous health-promoting phytochemicals. The most valuable of them-aescin-is used in commercial preparations for the treatment of venous insufficiency. The industrial source of aescin is horse chestnut seeds because the zygotic embryos are the main site of its accumulation. Horse chestnut somatic and zygotic embryos contain similar amount of aescin, hence somatic embryos could be exploited as an alternative source of aescin. Somatic embryogenesis, androgenesis and de novo shoot organogenesis were successfully achieved in several Aesculus species, as well as secondary somatic embryogenesis and shoot organogenesis, which enables mass production of embryos and shoots. In addition, an efficient method for cryopreservation of embryogenic tissue was established, assuring constant availability of the plant material. The developed methods are suitable for clonal propagation of elite specimens selected as the best aescin producers, the most attractive ornamentals or plants resistant to pests and diseases. These methods are also useful for molecular breeding purposes. Thus, in this review, the medicinal uses and a comprehensive survey of in vitro propagation methods established for Aesculus species, as well as the feasibility of in vitro production of aescin, are presented and discussed.

18.
Cells ; 12(1)2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36611956

RESUMEN

Green plant regeneration efficiency (GPRE) via in vitro anther culture results from biochemical pathways and cycle dysfunctions that may affect DNA and histone methylation, with gene expression influencing whole cell functioning. The reprogramming from gametophytic to sporophytic fate is part of the phenomenon. While DNA methylation and sequence changes related to the GPRE have been described, little attention was paid to the biochemical aspects of the phenomenon. Furthermore, only a few theoretical models that describe the complex relationships between biochemical aspects of GPRE and the role of Cu(II) ions in the induction medium and as cofactors of enzymatic reactions have been developed. Still, none of these models are devoted directly to the biochemical level. Fourier transform infrared (FTIR) spectroscopy was used in the current study to analyze triticale regenerants derived under various in vitro tissue culture conditions, including different Cu(II) and Ag(I) ion concentrations in the induction medium and anther culture times. The FTIR spectra of S-adenosyl-L-methionine (SAM), glutathione, and pectins in parallel with the Cu(II) ions, as well as the evaluated GPRE values, were put into the structural equation model (SEM). The data demonstrate the relationships between SAM, glutathione, pectins, and Cu(II) in the induction medium and how they affect GPRE. The SEM reflects the cell functioning under in vitro conditions and varying Cu(II) concentrations. In the presented model, the players are the Krebs and Yang cycles, the transsulfuration pathway controlled by Cu(II) ions acting as cofactors of enzymatic reactions, and the pectins of the primary cell wall.


Asunto(s)
Triticale , Triticale/genética , Metilación de ADN , Modelos Teóricos , Glutatión , Iones
19.
Plants (Basel) ; 10(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34834777

RESUMEN

This study was designed to assess the androgenic potential of 180 pepper accessions and 11 progenies (four F1 and seven BC) possessing PMMoV resistance in order to complement an ongoing pepper breeding program. The experiment was carried out in 10 replications with 20 anthers for each accession in two different induction mediums from 2017 to 2019. The highest androgenic response was observed in culture medium 17-2 but differences between two mediums were nonsignificant. From a total of 191 genotypes, 102 genotypes expressed a potential for direct embryogenesis. Embryo induction was seen to be genotype-dependent and decreased in the following order: Pumpkin > Conical > Bell or blocky > Round > Elongate as the most responsive genotypes with over 10% reacted anthers being observed in CAPS-23, CAPS-29, CAPS-127, CAPS-157, CAPS-169, F1 and BC 887 derived from CAPS-23. The number of regenerated plants was higher in the conical group and least in the round varietal group. Regenerated plants were examined visually and by flow cytometry for identification of spontaneous doubled haploids (DH) and haploids. Those originating from F1 and BC progenies were additionally evaluated by a CAPS marker targeting L4 allele for resistance against PMMoV. Obtained results revealed two groups consisting of homozygous susceptible and resistant plants. Therefore, use of anther culture in ongoing breeding will greatly facilitate the pepper genetic improvement.

20.
Front Plant Sci ; 12: 737139, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34691114

RESUMEN

Microspore cultures generate a heterogeneous population of embryogenic structures that can be grouped into highly embryogenic structures [exine-enclosed (EE) and loose bicellular structures (LBS)] and barely embryogenic structures [compact callus (CC) and loose callus (LC) structures]. Little is known about the factors behind these different responses. In this study we performed a comparative analysis of the composition and architecture of the cell walls of each structure by confocal and quantitative electron microscopy. Each structure presented specific cell wall characteristics that defined their developmental fate. EE and LBS structures, which are responsible for most of the viable embryos, showed a specific profile with thin walls rich in arabinogalactan proteins (AGPs), highly and low methyl-esterified pectin and callose, and a callose-rich subintinal layer not necessarily thick, but with a remarkably high callose concentration. The different profiles of EE and LBS walls support the development as suspensorless and suspensor-bearing embryos, respectively. Conversely, less viable embryogenic structures (LC) presented the thickest walls and the lowest values for almost all of the studied cell wall components. These cell wall properties would be the less favorable for cell proliferation and embryo progression. High levels of highly methyl-esterified pectin are necessary for wall flexibility and growth of highly embryogenic structures. AGPs seem to play a role in cell wall stiffness, possibly due to their putative role as calcium capacitors, explaining the positive relationship between embryogenic potential and calcium levels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...