Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Am J Physiol Lung Cell Mol Physiol ; 326(4): L482-L495, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38318664

RESUMEN

Chlorine gas (Cl2) has been repeatedly used as a chemical weapon, first in World War I and most recently in Syria. Life-threatening Cl2 exposures frequently occur in domestic and occupational environments, and in transportation accidents. Modeling the human etiology of Cl2-induced acute lung injury (ALI), forensic biomarkers, and targeted countermeasures development have been hampered by inadequate large animal models. The objective of this study was to develop a translational model of Cl2-induced ALI in swine to understand toxico-pathophysiology and evaluate whether it is suitable for screening potential medical countermeasures and to identify biomarkers useful for forensic analysis. Specific pathogen-free Yorkshire swine (30-40 kg) of either sex were exposed to Cl2 (≤240 ppm for 1 h) or filtered air under anesthesia and controlled mechanical ventilation. Exposure to Cl2 resulted in severe hypoxia and hypoxemia, increased airway resistance and peak inspiratory pressure, and decreased dynamic lung compliance. Cl2 exposure resulted in increased total leucocyte and neutrophil counts in bronchoalveolar lavage fluid, vascular leakage, and pulmonary edema compared with the air-exposed group. The model recapitulated all three key histopathological features of human ALI, such as neutrophilic alveolitis, deposition of hyaline membranes, and formation of microthrombi. Free and lipid-bound 2-chlorofatty acids and chlorotyrosine-modified proteins (3-chloro-l-tyrosine and 3,5-dichloro-l-tyrosine) were detected in plasma and lung tissue after Cl2 exposure. In this study, we developed a translational swine model that recapitulates key features of human Cl2 inhalation injury and is suitable for testing medical countermeasures, and validated chlorinated fatty acids and protein adducts as biomarkers of Cl2 inhalation.NEW & NOTEWORTHY We established a swine model of chlorine gas-induced acute lung injury that exhibits several features of human acute lung injury and is suitable for screening potential medical countermeasures. We validated chlorinated fatty acids and protein adducts in plasma and lung samples as forensic biomarkers of chlorine inhalation.


Asunto(s)
Lesión Pulmonar Aguda , Cloro , Humanos , Animales , Porcinos , Cloro/toxicidad , Cloro/metabolismo , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Biomarcadores/metabolismo , Ácidos Grasos/metabolismo
2.
Antimicrob Agents Chemother ; 68(3): e0149723, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38358266

RESUMEN

Bacillus anthracis is a Gram-positive Centers for Disease Control and Prevention category "A" biothreat pathogen. Without early treatment, inhalation of anthrax spores with progression to inhalational anthrax disease is associated with high fatality rates. Gepotidacin is a novel first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action and is being evaluated for use against biothreat and conventional pathogens. Gepotidacin selectively inhibits bacterial DNA replication via a unique binding mode and has in vitro activity against a collection of B. anthracis isolates including antibacterial-resistant strains, with the MIC90 ranging from 0.5 to 1 µg/mL. In vivo activity of gepotidacin was also evaluated in the New Zealand White rabbit model of inhalational anthrax. The primary endpoint was survival, with survival duration and bacterial clearance as secondary endpoints. The trigger for treatment was the presence of anthrax protective antigen in serum. New Zealand White rabbits were dosed intravenously for 5 days with saline or gepotidacin at 114 mg/kg/d to simulate a dosing regimen of 1,000 mg intravenous (i.v.) three times a day (TID) in humans. Gepotidacin provided a survival benefit compared to saline control, with 91% survival (P-value: 0.0001). All control animals succumbed to anthrax and were found to be blood- and organ culture-positive for B. anthracis. The novel mode of action, in vitro microbiology, preclinical safety, and animal model efficacy data, which were generated in line with Food and Drug Administration Animal Rule, support gepotidacin as a potential treatment for anthrax in an emergency biothreat situation.


Asunto(s)
Acenaftenos , Vacunas contra el Carbunco , Carbunco , Bacillus anthracis , Compuestos Heterocíclicos con 3 Anillos , Infecciones del Sistema Respiratorio , Conejos , Humanos , Animales , Carbunco/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Modelos Animales de Enfermedad , Vacunas contra el Carbunco/uso terapéutico
3.
Clin Infect Dis ; 78(Suppl 1): S7-S14, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294111

RESUMEN

BACKGROUND: The incidence of pneumonic tularemia is very low; therefore, it is not feasible to conduct clinical efficacy testing of tularemia medical countermeasures (MCMs) in humans. The US Food and Drug Administration's Animal Model Qualification Program under the Drug Development Tools Program is a regulatory pathway for animal models used in MCM efficacy testing and approval under the Animal Rule. The National Institute of Allergy and Infectious Diseases and Biomedical Advanced Research and Development Authority worked together to qualify the cynomolgus macaque model of pneumonic tularemia. METHODS: Using the model parameters and end points defined in the qualified model, efficacy of the antibiotics doxycycline and ciprofloxacin was evaluated in separate studies. Antibiotic administration, aimed to model approved human dosing, was initiated at time points of 24 hours or 48 hours after onset of fever as an indicator of disease. RESULTS: Upon aerosol exposure (target dose of 1000 colony-forming units) to Francisella tularensis SchuS4, 80% of vehicle-treated macaques succumbed or were euthanized. Ciprofloxacin treatment led to 10 of 10 animals surviving irrespective of treatment time. Doxycycline administered at 48 hours post-fever led to 10 of 10 animals surviving, while 9/10 animals survived in the group treated with doxycycline 24 hours after fever. Selected surviving animals in both the placebo and doxycycline 48-hour group showed residual live bacteria in peripheral tissues, while there were no bacteria in tissues from ciprofloxacin-treated macaques. CONCLUSIONS: Both doxycycline and ciprofloxacin were efficacious in treatment of pneumonic tularemia, although clearance of bacteria may be different between the 2 drugs.


Asunto(s)
Francisella tularensis , Tularemia , Animales , Humanos , Tularemia/tratamiento farmacológico , Tularemia/microbiología , Ciprofloxacina/uso terapéutico , Doxiciclina/uso terapéutico , Modelos Animales de Enfermedad , Antibacterianos/uso terapéutico , Fiebre/tratamiento farmacológico , Macaca
4.
Viruses ; 15(12)2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38140576

RESUMEN

Marburg virus (MARV) causes severe disease and high mortality in humans. The objective of this study was to characterize disease manifestations and pathogenesis in cynomolgus macaques exposed to MARV. The results of this natural history study may be used to identify features of MARV disease useful in defining the ideal treatment initiation time for subsequent evaluations of investigational therapeutics using this model. Twelve cynomolgus macaques were exposed to a target dose of 1000 plaque-forming units MARV by the intramuscular route, and six control animals were mock-exposed. The primary endpoint of this study was survival to Day 28 post-inoculation (PI). Anesthesia events were minimized with the use of central venous catheters for periodic blood collection, and temperature and activity were continuously monitored by telemetry. All mock-exposed animals remained healthy for the duration of the study. All 12 MARV-exposed animals (100%) became infected, developed illness, and succumbed on Days 8-10 PI. On Day 4 PI, 11 of the 12 MARV-exposed animals had statistically significant temperature elevations over baseline. Clinically observable signs of MARV disease first appeared on Day 5 PI, when 6 of the 12 animals exhibited reduced responsiveness. Ultimately, systemic inflammation, coagulopathy, and direct cytopathic effects of MARV all contributed to multiorgan dysfunction, organ failure, and death or euthanasia of all MARV-exposed animals. Manifestations of MARV disease, including fever, systemic viremia, lymphocytolysis, coagulopathy, and hepatocellular damage, could be used as triggers for initiation of treatment in future therapeutic efficacy studies.


Asunto(s)
Enfermedad del Virus de Marburg , Marburgvirus , Humanos , Animales , Macaca fascicularis , Viremia , Hígado
5.
Expert Opin Drug Saf ; 22(9): 783-788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37594915

RESUMEN

INTRODUCTION: Nuclear reactor incidents and bioterrorism outbreaks are concerning public health disasters. Little is known about US Food and Drug Administration (FDA)-approved agents that can mitigate consequences of these events. We review FDA data supporting regulatory approvals of these agents. AREAS COVERED: We reviewed pharmaceutical products approved to treat Hematopoietic Acute Radiation Syndrome (H-ARS) and to treat or prevent pulmonary infections following Bacillus anthracis (anthrax) exposure. Four drugs were approved for H-ARS: granulocyte-colony stimulating factor (G-CSF), granulocyte/macrophage colony stimulating factor, pegylated G-CSF, and romiplostim. For bioterrorism-associated anthrax, the FDA approved five antibiotics (doxycycline, penicillin-G, levofloxacin, moxifloxacin, and ciprofloxacin), two monoclonal antibodies (obiltoxaximab and raxibacumab), one polyclonal antitoxin (Anthrax Immune Globulin Intravenous) and two vaccines (Anthrax Vaccine Adsorbed and Anthrax Vaccine Adsorbed with an adjuvant). A national stockpile system ensures that communities have ready access to these agents. Our literature search was based on data included in drugs@FDA (2001-2023). EXPERT OPINION: Two potential mass public health disasters are aerosolized anthrax dissemination and radiological incidents. Five agents authorized for anthrax emergencies only have FDA approval for this indication, five antibiotics have FDA approvals as antibiotics for common infections and for bacillus anthrax, and four agents have regulatory approvals for supportive care for cancer and for radiological incidents.


Asunto(s)
Síndrome de Radiación Aguda , Vacunas contra el Carbunco , Carbunco , Bacillus anthracis , Humanos , Estados Unidos , Carbunco/tratamiento farmacológico , Carbunco/prevención & control , Vacunas contra el Carbunco/uso terapéutico , Bioterrorismo/prevención & control , Explosiones , Antibacterianos , Síndrome de Radiación Aguda/tratamiento farmacológico , Reactores Nucleares , Factor Estimulante de Colonias de Granulocitos/uso terapéutico
6.
Antimicrob Agents Chemother ; 67(5): e0138122, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37097147

RESUMEN

Francisella tularensis (F. tularensis) is a Centers for Disease Control (CDC) category "A" Gram-negative biothreat pathogen. Inhalation of F. tularensis can cause pneumonia and respiratory failure and is associated with high mortality rates without early treatment. Gepotidacin is a novel, first-in-class triazaacenaphthylene antibiotic that inhibits bacterial DNA replication by a distinct mechanism of action. Gepotidacin selectively inhibits bacterial DNA replication via a unique binding mode, has activity against multidrug-resistant target pathogens, and has demonstrated in vitro activity against diverse collections of F. tularensis isolates (MIC90 of 0.5 to 1 µg/mL). Gepotidacin was evaluated in the cynomolgus macaque model of inhalational tularemia, using the SCHU S4 strain, with treatment initiated after exposure and sustained fever. Macaques were dosed via intravenous (i.v.) infusion with saline or gepotidacin at 72 mg/kg/day to support a human i.v. infusion dosing regimen of 1,000 mg three times daily. The primary study endpoint was survival, with survival duration and bacterial clearance as secondary endpoints. Gepotidacin treatment resulted in 100% survival compared to 12.5% in the saline-treated control group (P < 0.0001) at Day 43 postinhalational challenge. All gepotidacin-treated animals were blood and organ culture negative for F. tularensis at the end of the study. In contrast, none of the saline control animals were blood and organ culture negative. Gepotoidacin's novel mechanism of action and the efficacy data reported here (aligned with the Food and Drug Administration Animal Rule) support gepotidacin as a potential treatment for pneumonic tularemia in an emergency biothreat situation.


Asunto(s)
Francisella tularensis , Tularemia , Animales , Humanos , Tularemia/microbiología , Modelos Animales de Enfermedad , Macaca fascicularis , Vacunas Bacterianas
7.
Clin Infect Dis ; 75(Suppl 3): S432-S440, 2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36251559

RESUMEN

BACKGROUND: Bacillus anthracis is a high-priority threat agent because of its widespread availability, easy dissemination, and ability to cause substantial morbidity and mortality. Although timely and appropriate antimicrobial therapy can reduce morbidity and mortality, the role of adjunctive therapies continues to be explored. METHODS: We searched 11 databases for articles that report use of anthrax antitoxins in treatment or prevention of systemic anthrax disease published through July 2019. We identified other data sources through reference search and communication with experts. We included English-language studies on antitoxin products with approval by the US Food and Drug Administration (FDA) for anthrax in humans, nonhuman primates, and rabbits. Two researchers independently reviewed studies for inclusion and abstracted relevant data. RESULTS: We abstracted data from 12 publications and 2 case reports. All 3 FDA-approved anthrax antitoxins demonstrated significant improvement in survival as monotherapy over placebo in rabbits and nonhuman primates. No study found significant improvement in survival with combination antitoxin and antimicrobial therapy compared to antimicrobial monotherapy. Case reports and case series described 25 patients with systemic anthrax disease treated with antitoxins; 17 survived. Animal studies that used antitoxin monotherapy as postexposure prophylaxis (PEP) demonstrated significant improvement in survival over placebo, with greatest improvements coming with early administration. CONCLUSIONS: Limited human and animal evidence indicates that adjunctive antitoxin treatment may improve survival from systemic anthrax infection. Antitoxins may also provide an alternative therapy to antimicrobials for treatment or PEP during an intentional anthrax incident that could involve a multidrug-resistant B. anthracis strain.


Asunto(s)
Carbunco , Antiinfecciosos , Antitoxinas , Bacillus anthracis , Animales , Carbunco/tratamiento farmacológico , Carbunco/prevención & control , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Antitoxinas/uso terapéutico , Humanos , Primates , Conejos
8.
Vaccines (Basel) ; 10(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36298588

RESUMEN

The primary objective of this study was to characterize the disease course in cynomolgus macaques exposed to Sudan virus (SUDV), to determine if infection in this species is an appropriate model for the evaluation of filovirus countermeasures under the FDA Animal Rule. Sudan virus causes Sudan virus disease (SVD), with an average case fatality rate of approximately 50%, and while research is ongoing, presently there are no approved SUDV vaccines or therapies. Well characterized animal models are crucial for further developing and evaluating countermeasures for SUDV. Twenty (20) cynomolgus macaques were exposed intramuscularly to either SUDV or sterile phosphate-buffered saline; 10 SUDV-exposed animals were euthanized on schedule to characterize pathology at defined durations post-exposure and 8 SUDV-exposed animals were not part of the scheduled euthanasia cohort. Survival was assessed, along with clinical observations, body weights, body temperatures, hematology, clinical chemistry, coagulation, viral load (serum and tissues), macroscopic observations, and histopathology. There were statistically significant differences between SUDV-exposed animals and mock-exposed animals for 26 parameters, including telemetry body temperature, clinical chemistry parameters, hematology parameters, activated partial thromboplastin time, serum viremia, and biomarkers that characterize the disease course of SUDV in cynomolgus macaques.

9.
Vaccines (Basel) ; 10(9)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36146462

RESUMEN

The FDA Animal Rule was devised to facilitate approval of candidate vaccines and therapeutics using animal survival data when human efficacy studies are not practical or ethical. This regulatory pathway is critical for candidates against pathogens with high case fatality rates that prohibit human challenge trials, as well as candidates with low and sporadic incidences of outbreaks that make human field trials difficult. Important components of a vaccine development plan for Animal Rule licensure are the identification of an immune correlate of protection and immunobridging to humans. The relationship of vaccine-induced immune responses to survival after vaccination and challenge must be established in validated animal models and then used to infer predictive vaccine efficacy in humans via immunobridging. The Sabin Vaccine Institute is pursuing licensure for candidate filovirus vaccines via the Animal Rule and has convened meetings of key opinion leaders and subject matter experts to define fundamental components for vaccine licensure in the absence of human efficacy data. Here, filoviruses are used as examples to review immune correlates of protection and immunobridging. The points presented herein reflect the presentations and discussions during the second meeting held in October 2021 and are intended to address important considerations for developing immunobridging strategies.

10.
Vaccines (Basel) ; 10(8)2022 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36016089

RESUMEN

A United States Government (USG) interagency group, the Filovirus Animal Non-Clinical Group (FANG), has been established to support the development of biodefense medical countermeasures (MCMs). As both vaccines and therapeutics are licensed using "non-traditional pathways", such as the U.S. Food and Drug Administration's (FDA) Animal Rule (AR), non-human primate (NHP) models and associated assays have been developed and standardized across BSL4 testing sites to evaluate candidate products. Vaccine candidates are evaluated using these NHP models, and through this public-private partnership, a meta-analysis of NHP control data has been conducted and submitted to the FDA as a master file. This is an example of how existing NHP control data can be leveraged in lieu of conducting separate natural history studies at multiple testing facilities to demonstrate the consistency of a standardized animal model for vaccine development. As a result, animal use can be minimized and the duplication of effort avoided, thus reducing the amount of time needed to conduct additional studies, as well as the cost of vaccine candidate development. This successful strategy may be applied to other pathogens of high consequence for vaccine development, and shows how strategic preparedness for biodefense can be leveraged in response to outbreaks and public health emergencies.

11.
Vaccines (Basel) ; 10(8)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36016203

RESUMEN

Marburg virus (MARV) is a filovirus that can infect humans and nonhuman primates (NHPs), causing severe disease and death. Of the filoviruses, Ebola virus (EBOV) has been the primary target for vaccine and therapeutic development. However, MARV has an average case fatality rate of approximately 50%, the infectious dose is low, and there are currently no approved vaccines or therapies targeted at infection with MARV. The purpose of this study was to characterize disease course in cynomolgus macaques intramuscularly exposed to MARV Angola variant. There were several biomarkers that reliably correlated with MARV-induced disease, including: viral load; elevated total clinical scores; temperature changes; elevated ALT, ALP, BA, TBIL, CRP and decreased ALB values; decreased lymphocytes and platelets; and prolonged PTT. A scheduled euthanasia component also provided the opportunity to study the earliest stages of the disease. This study provides evidence for the application of this model to evaluate potential vaccines and therapies against MARV and will be valuable in improving existing models.

12.
Drugs Today (Barc) ; 58(3): 133-145, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35274632

RESUMEN

Detonation of an improvised nuclear weapon, or a radiological dispersal device by terrorists, or an unintended radiological/nuclear accident in populated areas would result in a mass casualty scenario with radiation exposures of different severities. Such incidences are perceived as national security threats of major consequences. Acute radiation syndrome (ARS) is triggered by an exposure to a high dose of penetrating ionizing radiation during a short time window. In humans, moderate exposure to 2 to 4 Gy of ionizing radiation results in clinically manageable hematopoietic ARS (H-ARS), characterized by severe depletion of vital blood cells and bone marrow progenitors. Since 2015, the United States Food and Drug Administration (U.S. FDA) has approved four radiation medical countermeasures for H-ARS following the Animal Rule; namely, Neupogen, Neulasta, Leukine and Nplate (romiplostim). Here, we briefly present the treatment modalities for H-ARS. We have discussed the latest FDA-approved agent, romiplostim, as a treatment modality for H-ARS. The nature of this agent and the preclinical and clinical work that preceded its FDA approval as a radiation medical countermeasure are discussed, as are the development and use of related thrombopoietic agents for the treatment of radiation-exposed victims.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/tratamiento farmacológico , Animales , Receptores Fc/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Trombopoyetina/efectos adversos , Estados Unidos
13.
Vaccines (Basel) ; 10(3)2022 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-35335000

RESUMEN

Clinical vaccine development and regulatory approval generally occurs in a linear, sequential manner: Phase 1: safety, immunogenicity; Phase 2: immunogenicity, safety, dose ranging, and preliminary efficacy; Phase 3: definitive efficacy, safety, lot consistency; and following regulatory approval, Phase 4: post-marketing safety and effectiveness. For candidate filovirus vaccines, where correlates of protection have not been identified, and phase 2 and 3 efficacy of disease prevention trials untenable, large and/or protracted, each trial may span decades, with full licensure expected only after several decades of development. Given the urgent unmet need for new Marburg virus and Ebola Sudan virus vaccines, the Sabin Vaccine Institute hosted a key stakeholder virtual meeting in May 2021 to explore the possibility of licensure by use of an "animal rule-like" licensure process, based on a risk/benefit assessment specific to regional needs and informed by epidemiology. This may be appropriate for diseases where there are no or limited treatment options, and those prone to sporadic outbreaks with high rates of transmission, morbidity, and mortality. The discussion focused on two contexts: licensure within the Ugandan regulatory environment, a high burden country where Ebola vaccine trials are ongoing, and licensure by the United States FDA-a well-resourced regulatory agency.

14.
Vaccines (Basel) ; 9(9)2021 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-34579282

RESUMEN

The continuing outbreaks of ebola virus disease highlight the ongoing threat posed by filoviruses. Fortunately, licensed vaccines and therapeutics are now available for Zaire ebolavirus. However, effective medical countermeasures, such as vaccines for other filoviruses such as Sudan ebolavirus and the Marburg virus, are presently in early stages of development and, in the absence of a large outbreak, would require regulatory approval via the U.S. Food and Drug Administration (FDA) Animal Rule. The selection of an appropriate animal model and virus challenge isolates for nonclinical studies are critical aspects of the development program. Here, we have focused on the recommendation of challenge isolates for Sudan ebolavirus and Marburg virus. Based on analyses led by the Filovirus Animal and Nonclinical Group (FANG) and considerations for strain selection under the FDA Guidance for the Animal Rule, we propose prototype virus isolates for use in nonclinical challenge studies.

15.
Antiviral Res ; 195: 105182, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34582915

RESUMEN

The development and approval of brincidofovir for the treatment of smallpox, a disease that was eradicated from the world over 40 years ago, has resulted in the second antiviral approved via the Medical Countermeasure Initiative (MCMi) to combat this disease. Approval of brincidofovir required a unique regulatory approach based on the FDA Animal Rule, and development was supported by many years of research and collaboration among academic investigators, the pharmaceutical industry and multiple government agencies. This article summarizes the FDA regulatory pathway and describes the challenges involved.


Asunto(s)
Antivirales/uso terapéutico , Citosina/análogos & derivados , Aprobación de Drogas , Organofosfonatos/uso terapéutico , Viruela/tratamiento farmacológico , Animales , Citosina/uso terapéutico , Erradicación de la Enfermedad , Modelos Animales de Enfermedad , Humanos , Medición de Riesgo , Resultado del Tratamiento , Estados Unidos , United States Food and Drug Administration
16.
J Radiol Prot ; 41(4)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34433144

RESUMEN

Recent advances in medical countermeasures (MCMs) has been dependent on the Food and Drug Administration (FDA) animal rule (AR) and the final guidance document provided for industry on product development. The criteria outlined therein establish the path for approval under the AR. The guidance document, along with the funding and requirements from the federal agencies provided the basic considerations for animal model development in assessing radiation effects and efficacy against the potential lethal effects of acute radiation injury and the delayed effects of acute exposure. Animal models, essential for determining MCM efficacy, were developed and validated to assess organ-specific, potentially lethal, radiation effects against the gastrointestinal (GI) and hematopoietic acute radiation syndrome (H-ARS), and radiation-induced delayed effects to lung and associated comorbidities of prolonged immune suppression, GI, kidney and heart injury. Partial-body irradiation models where marginal bone marrow was spared resulted in the ability to evaluate the concomitant evolution of multiple organ injury in the acute and delayed effects in survivors of acute radiation exposure. There are no MCMs for prophylaxis against the major sequelae of the ARS or the delayed effects of acute exposure. Also lacking are MCMs that will mitigate the GI ARS consequent to potentially lethal exposure from a terrorist event or major radiation accident. Additionally, the gap in countermeasures for prophylaxis may extend to mixed neutron/gamma radiation if current modelling predicts prompt exposure from an improvised nuclear device. However, progress in the field of MCM development has been made due to federal and corporate funding, clarification of the critical criteria for efficacy within the FDA AR and the concomitant development and validation of additional animal models. These models provided for a strategic and tactical approach to determine radiation effects and MCM efficacy.


Asunto(s)
Síndrome de Radiación Aguda , Contramedidas Médicas , Liberación de Radiactividad Peligrosa , Síndrome de Radiación Aguda/prevención & control , Animales , Modelos Animales de Enfermedad , Estados Unidos , United States Food and Drug Administration
17.
Int J Radiat Biol ; 97(11): 1526-1547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34402734

RESUMEN

PURPOSE: The intent of this article is to report the status of some of the pharmaceuticals currently in late stage development for possible use for individuals unwantedly and acutely injured as a result of radiological/nuclear exposures. The two major questions we attempt to address here are: (a) What medicinals are currently deemed by regulatory authorities (US FDA) to be safe and effective and are being stockpiled? (b) What additional agents might be needed to make the federal/state/local medicinal repositories more robust and useful in effectively managing contingencies involving radiation overexposures? CONCLUSIONS: A limited number (precisely four) of medicinals have been deemed safe and effective, and are approved by the US FDA for the 'hematopoietic acute radiation syndrome (H-ARS).' These agents are largely recombinant growth factors (e.g. rhuG-CSF/filgrastim, rhuGM-CSF/sargramostim) that target and stimulate myeloid progenitors within bone marrow. Romiplostim, a small molecular agonist that enhances platelet production via stimulation of bone marrow megakaryocytes, has been recently approved and indicated for H-ARS. It is critical that additional agents for other major sub-syndromes of ARS (gastrointestinal-ARS) be approved. Future success in developing such medicinals will undoubtedly entail some form of a polypharmaceutical strategy, or perhaps novel, bioengineered chimeric agents with multiple, radioprotective/radiomitigative functionalities.


Asunto(s)
Síndrome de Radiación Aguda , Síndrome de Radiación Aguda/tratamiento farmacológico , Citocinas , Filgrastim , Humanos , Protección Radiológica , Estados Unidos , United States Food and Drug Administration
18.
Microorganisms ; 9(3)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652589

RESUMEN

Ebola virus (EBOV) is a negative-sense RNA virus that can infect humans and nonhuman primates with severe health consequences. Development of countermeasures requires a thorough understanding of the interaction between host and pathogen, and the course of disease. The goal of this study was to further characterize EBOV disease in a uniformly lethal rhesus macaque model, in order to support development of a well-characterized model following rigorous quality standards. Rhesus macaques were intramuscularly exposed to EBOV and one group was euthanized at predetermined time points to characterize progression of disease. A second group was not scheduled for euthanasia in order to analyze survival, changes in physiology, clinical pathology, terminal pathology, and telemetry kinetics. On day 3, sporadic viremia was observed and pathological evidence was noted in lymph nodes. By day 5, viremia was detected in all EBOV exposed animals and pathological evidence was noted in the liver, spleen, and gastrointestinal tissues. These data support the notion that EBOV infection in rhesus macaques is a rapid systemic disease similar to infection in humans, under a compressed time scale. Biomarkers that correlated with disease progression at the earliest stages of infection were observed thereby identifying potential "trigger-to-treat" for use in therapeutic studies.

19.
Toxicol Mech Methods ; 31(4): 244-256, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-31532270

RESUMEN

Chlorine gas is one of the highly produced chemicals in the USA and around the world. Chlorine gas has several uses in water purification, sanitation, and industrial applications; however, it is a toxic inhalation hazard agent. Inhalation of chlorine gas, based on the concentration and duration of the exposure, causes a spectrum of symptoms, including but not limited to lacrimation, rhinorrhea, bronchospasm, cough, dyspnea, acute lung injury, death, and survivors develop signs of pulmonary fibrosis and reactive airway disease. Despite the use of chlorine gas as a chemical warfare agent since World War I and its known potential as an industrial hazard, there is no specific antidote. The resurgence of the use of chlorine gas as a chemical warfare agent in recent years has brought speculation of its use as weapons of mass destruction. Therefore, developing antidotes for chlorine gas-induced lung injuries remains the need of the hour. While some of the pre-clinical studies have made substantial progress in the understanding of chlorine gas-induced pulmonary pathophysiology and identifying potential medical countermeasure(s), yet none of the drug candidates are approved by the U.S. Food and Drug Administration (FDA). In this review, we summarized pathophysiology of chlorine gas-induced pulmonary injuries, pre-clinical animal models, development of a pipeline of potential medical countermeasures under FDA animal rule, and future directions for the development of antidotes for chlorine gas-induced lung injuries.


Asunto(s)
Cloro/toxicidad , Lesión Pulmonar Aguda , Animales , Antídotos/farmacología , Sustancias para la Guerra Química/toxicidad , Pulmón/efectos de los fármacos
20.
Expert Rev Anti Infect Ther ; 19(3): 331-344, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32882158

RESUMEN

INTRODUCTION: Tecovirimat (TPOXX®; ST-246) was approved for the treatment of symptomatic smallpox by the USFDA in July of 2018 and has been stockpiled by the US government for use in a smallpox outbreak. While there has not been a reported case of smallpox since 1978 it is still considered a serious bioterrorism threat. AREAS COVERED: A brief history of smallpox from its proposed origins as a human disease through its eradication in the late 20th century is presented. The current smallpox threat and the current public health response plans are described. The discovery, and development of tecovirimat through NDA submission and subsequent approval for treatment of smallpox are discussed. Google Scholar and PubMed were searched over all available dates for relevant publications. EXPERT OPINION: Approval of tecovirimat to treat smallpox represents an important milestone in biosecurity preparedness. Incorporating tecovirimat into the CDC smallpox response plan, development of pediatric liquid and intravenous formulations, and approval for post-exposure prophylaxis would provide additional health security benefit.Tecovirimat shows broad efficacy against orthopoxviruses in vitro and in vivo and could be developed for use against emerging orthopoxvirus diseases such as monkeypox, vaccination-associated adverse events, and side effects of vaccinia oncolytic virus therapy.


Asunto(s)
Antivirales/administración & dosificación , Benzamidas/administración & dosificación , Isoindoles/administración & dosificación , Viruela/tratamiento farmacológico , Antivirales/farmacología , Benzamidas/farmacología , Bioterrorismo/prevención & control , Humanos , Isoindoles/farmacología , Orthopoxvirus/efectos de los fármacos , Orthopoxvirus/aislamiento & purificación , Infecciones por Poxviridae/tratamiento farmacológico , Infecciones por Poxviridae/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...