RESUMEN
The c-Met receptor, a pivotal player in oncogenesis and tumor progression, has become a compelling target for anticancer drug development. This review explores the intricate landscape of Structure-Activity Relationship [SAR] studies and molecular binding analyses performed on c-Met inhibitors. Through a comprehensive examination of various chemical scaffolds and modifications, SAR investigations have elucidated critical molecular features essential for the potent inhibition of c-Met activity. Additionally, molecular docking studies have provided invaluable insights into how c-Met inhibitors interact with their target receptor, facilitating the rational design of novel compounds with enhanced efficacy and selectivity. This review highlights key findings from recent SAR and docking studies, particularly focusing on the structural determinants that govern inhibition potency and selectivity. Furthermore, the integration of computational methodologies with experimental approaches has accelerated the discovery and optimization of c-Met inhibitors, fostering the advancement of promising candidates for clinical applications. Overall, this review underscores the pivotal role of SAR and molecular docking studies in advancing our understanding of c-Met inhibition and guiding the rational design of next-generation anticancer agents targeting this pathway.
RESUMEN
Annulated azecines, mostly partially saturated benzo[d]azecine and dibenzo[c,g]azecine fusion isomers, constitute a unique class of alkaloids and nature-inspired azaheterocyclic compounds with interesting reactivity, physicochemical and biological properties. Due to difficulties associated with the synthesis of the benzazecine (or bioisosteric) scaffold they are not the focus of organic and medicinal chemists' consideration, whereas it is worth noting the range of their pharmacological activities and their potential application in medicinal chemistry. Herein, we reviewed the synthetic methodologies of arene-fused azecine derivatives known up to date and reported about the progress in disclosing their potential in drug discovery. Indeed, their conformational restriction or liberation drives their selectivity towards diverse biological targets, making them versatile scaffolds for developing drugs, including antipsychotic and anticancer drugs, but also small molecules with potential for anti-neurodegenerative treatments, as the recent literature shows.
RESUMEN
The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.
RESUMEN
Platinum(IV) prodrugs are highly promising anticancer agents because they can selectively target tumors and minimize the adverse effects associated with their PtII congeners. In this study, we synthesized dual action PtIV complexes by linking oxoplatin with lithocholic acid. The synthesized compounds, designated as PL-I, PL-II, and PL-III, can spontaneously self-assemble in water, resulting in the formation of spherical shape nanoparticles. Among the developed complexes, PL-III appeared to be the most potent compound against all the tested cancer cell lines, with 10 fold higher cytotoxicity compared to cisplatin in PC3 cells. The complex arrests the cell cycle in the S and G2 phases and induces DNA damage. Additional mechanistic investigations demonstrate that PL-III predominantly localizes within the mitochondria and cytoplasm. Consequently, PL-III disrupts mitochondrial membrane potential, increases ROS production, and perturbs mitochondrial bioenergetics in PC3 cells. The complex induces apoptosis through the mitochondrial pathway by upregulating pro-apoptotic protein expression and downregulating anti-apoptotic protein expression from the BCl-2 protein family. These results demonstrate that higher cellular uptake and reduction of PL-III by biological reductants in PC3 cells resulted in a synergistic effect of lithocholic acid and cisplatin, which can be easily observed due to its unique cytotoxic mechanism. This further underscores the significance of dual-action PtIV complexes in enhancing the efficacy of cancer therapy.
RESUMEN
Camptothecin (CPT), an alkaloid isolated from the Camptotheca tree, has demonstrated significant anticancer properties in a range of malignancies. However, its therapeutic efficacy is limited by its hydrophobicity, poor bioavailability, and systemic toxicity. Derivatives, analogues, and nanoformulations of CPT have been synthesized to overcome these limitations. The aim of this review is to comprehensively analyze existing studies to evaluate the therapeutic efficacy, mechanistic aspects, and clinical potential of CPT and its modified forms, including derivatives, analogues, and nanoformulations, in cancer treatment. A comprehensive literature review was performed using PubMed/Medline, Scopus, and Web of Science databases; articles were selected based on specific inclusion criteria, and data were extracted on the pharmacological profile, clinical studies, and therapeutic efficacy of CPT and its different forms. Current evidence suggests that derivatives and analogues of CPT have improved water solubility, bioavailability, and reduced systemic toxicity compared to CPT. Nanoformulations further enhance targeted delivery and reduce off-target effects. Clinical trials indicate promising outcomes with enhanced survival rates and lower side effects. CPT and its modified forms hold significant promise as potent anticancer agents. Ongoing research and clinical trials are essential for establishing their long-term efficacy and safety; the evidence overwhelmingly supports further development and clinical testing of these compounds.
Asunto(s)
Camptotecina , Neoplasias , Humanos , Camptotecina/análogos & derivados , Camptotecina/uso terapéutico , Camptotecina/farmacología , Neoplasias/tratamiento farmacológico , Antineoplásicos Fitogénicos/uso terapéutico , Antineoplásicos Fitogénicos/farmacología , Animales , Disponibilidad BiológicaRESUMEN
Due to its intricate molecular and structural characteristics, vascular endothelial growth factor receptor 2 (VEGFR-2) is essential for the development of new blood vessels in various pathological processes and conditions, especially in cancers. VEGFR-2 inhibitors have demonstrated significant anticancer effects by blocking many signaling pathways linked to tumor growth, metastasis, and angiogenesis. Several small compounds, including the well-tolerated sunitinib and sorafenib, have been approved as VEGFR-2 inhibitors. However, the widespread side effects linked to these VEGFR-2 inhibitors-hypertension, epistaxis, proteinuria, and upper respiratory infection-motivate researchers to search for new VEGFR-2 inhibitors with better pharmacokinetic profiles. The key molecular interactions required for the interaction of the small molecules with the protein target to produce the desired pharmacological effects are identified using computer-aided drug design (CADD) methods such as pharmacophore and QSAR modeling, structure-based virtual screening, molecular docking, molecular dynamics (MD) simulation coupled with MM/PB(GB)SA, and other computational strategies. This review discusses the applications of these methods for VEGFR-2 inhibitor design. Future VEGFR-2 inhibitor designs may be influenced by this review, which focuses on the current trends of using multiple screening layers to design better inhibitors.
RESUMEN
In search of semisynthetic derivatives with increased antitumor activity, we condensed sulforaphane (SFR) with rhodol, a fluorophore platform capable of modifying the intracellular trafficking and pharmacokinetics of the linked molecules. The two tested derivatives, namely MG28 and MG46, showed a far higher, as compared to SFR, cytotoxicity toward cancer cells. Apoptotic cell death was preceded by the extensive generation of DNA lesions, which were repaired relatively slowly and caused formation of micronuclei. Unlike SFR, rhodol-SFR conjugates' DNA lesions resulted from direct interactions with nuclear DNA. Overall, MG28 and MG46 exhibit a remarkable cytotoxic effect, which is the likely consequence of their direct and intense DNA damaging activity, i.e., a novel and peculiar mechanism arising from the conjugation of the parental rhodol and SFR. Considering that a wide number of clinically used drugs kill cancer cells by inducing DNA damage, MG could represent a new and promising chance in antitumor chemotherapy.
RESUMEN
Application of the [1,2]-Wittig rearrangement and cyclisation approach to 3-arylphthalides has been evaluated for the synthesis of three bioactive natural products. While this is successful in the case of crycolide, providing the second synthesis of this compound, the more sterically demanding targets isopestacin and cryphonectric acid prove not to be amenable to this approach, with the 2,6-disubstituted aryl groups causing the failure of the rearrangement and alkylation steps, respectively. Direct oxidation of the substituted benzhydrols resulting from [1,2]-Wittig rearrangement using MnO2 provides a new route to 3-aryl-3-hydroxyisoindolinones, and this method has been used in the synthesis of two 3-aryl-3-benzyloxyisoindolinone anticancer agents.
RESUMEN
Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civilizations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer. SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients' survival and wellbeing.
RESUMEN
PURPOSE: This scoping review aims to deepen the understanding of end-of-life anticancer drug use in lung cancer patients, a disease marked by high mortality and symptom burden. Insight into unique end-of-life treatment patterns is crucial for improving the appropriateness of cancer care for these patients. METHODS: Comprehensive searches were carried out in Medline and Embase to find articles on the utilization of anticancer drugs in the end of life of lung cancer patients. RESULTS: We identified 68 publications, highlighting the methodological characteristics of studies including the timing of the research, disease condition, treatment regimen, type of treatment, and features of the treatment. We outlined the frequency of anticancer drug use throughout different end-of-life periods. CONCLUSION: This review provides a comprehensive overview of primary studies exploring end-of-life treatments in lung cancer patients. Methodological inconsistencies pose many challenges, revealing a notable proportion of patients experiencing potential overtreatment, warranting more standardized research methods for robust evaluations.
RESUMEN
The virions of plant viruses and their structurally modified particles (SP) represent valuable platforms for recombinant vaccine epitopes and antitumor agents. The possibility of modifying their surface with biological compounds makes them a tool for developing medical biotechnology applications. Here, we applied a new type of SP derived from virions and virus-like particles (VLP) of Alternanthera mosaic virus (AltMV) and well-studied SP from Tobacco mosaic virus (TMV). We have tested the ability of SP from AltMV (AltMV SPV) and TMV virions also as AltMV VLP to bind to and penetrate Ewing sarcoma cells. The adsorption properties of AltMV SPV and TMV SP are greater than those of the SP from AltMV VLP. Compared to normal cells, AltMV SPV adsorbed more effectively on patient-derived sarcoma cells, whereas TMV SP were more effective on the established sarcoma cells. The AltMV SPV and TMV SP were captured by all sarcoma cell lines. In the established Ewing sarcoma cell line, the effectiveness of AltMV SPV penetration was greater than that of TMV SP. The usage of structurally modified plant virus particles as a platform for drugs and delivery systems has significant potential in the development of anticancer agents.
Asunto(s)
Virus del Mosaico del Tabaco , Virión , Humanos , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Sarcoma/virología , Virus de Plantas/genética , Sarcoma de Ewing/virologíaRESUMEN
The older population represents â¼50%-60% of the population of newly diagnosed patients with cancer. Due to physiological and pathological aging and the increased presence of comorbidities and frailty factors, this population is at higher risk of serious toxicity from anticancer drugs and, consequently, often under-treated. Despite the complexity of these treatments, a good knowledge of the pharmacology of anticancer drugs and potentially risky situations can limit the emergence of potentially lethal toxicities in this population. This review focuses on optimizing systemic oncology treatments for older patients, emphasizing the unique characteristics of each therapeutic class and the necessity for a precautionary approach for this vulnerable population.
RESUMEN
The genus Diospyros has gained significant attention in the scientific community owing to its diverse bioactivities ascribed to specific bioactive constituents present in different species of this plant. Phytochemicals like flavonoids, terpenoids, and xanthones have been reported to be present in other Diospyros species responsible for their pharmacological properties. These compounds are well known for their diverse potent therapeutic potentials, such as antimicrobial, antioxidant, anti-inflammatory, and anticancer properties. This review enlightens the details of the Genus Diospyros, ranging from an overview of its species to an in-depth analysis of phytochemistry, ethnopharmacology, and their potential as anticancer agents. Different species, including Diospyros lotus, Diospyros kaki, Diospyros maritima, Diospyros mespiliformis, and Diospyros tricolor, presented with an enormous range of anticancer activities against human cancer cell cultures. Moreover, this review highlights the results of various in vitro (antiproliferative, cytotoxic effects against), in vivo (inhibition of tumor, apoptosis), and in silico (GLU234, GLU278, and LYS158 protein residues) studies, elucidating its preclinical anticancer potential. The anticancer potential displays inhibition of cellular proliferation, induction of apoptosis, and mitigation of angiogenesis. Furthermore, this review may elaborate the use of traditional knowledge, modern research, and potential therapeutic applications in the field of anticancer ethnopharmacology. As the modern-day research approaches novel alternatives to combat diseases like cancer, the Genus Diospyros may emerge as a promising avenue with the potential to yield innovative and effective therapeutic agents.
RESUMEN
Poly(ADP-ribose) polymerases (PARPs) are crucial nuclear proteins that play important roles in various cellular processes, including DNA repair, gene transcription, and cell death. Among the 17 identified PARP family members, PARP1 is the most abundant enzyme, with approximately 1-2 million molecules per cell, acting primarily as a DNA damage sensor. It has become a promising biological target for anticancer drug studies. Enhanced PARP expression is present in several types of tumors, such as melanomas, lung cancers, and breast tumors, correlating with low survival outcomes and resistance to treatment. PARP inhibitors, especially newly developed third-generation inhibitors currently undergoing Phase II clinical trials, have shown efficacy as anticancer agents both as single drugs and as sensitizers for chemo- and radiotherapy. This review explores the properties, characteristics, and challenges of PARP inhibitors, discussing their development from first-generation to third-generation compounds, more sustainable synthesis methods for discovery of new anti-cancer agents, their mechanisms of therapeutic action, and their potential for targeting additional biological targets beyond the catalytic active site of PARP proteins. Perspectives on green chemistry methods in the synthesis of new anticancer agents are also discussed.
Asunto(s)
Antineoplásicos , Neoplasias , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , AnimalesRESUMEN
Estrogen receptor-α (ER- α) is a principal endocrine regulatory protein in breast cancer. The progression of ER-α positive breast cancer is slowed by selective estrogen receptor modulators such as Tamoxifen. But, long term therapy with Tamoxifen leads to resistance. Therefore, it is of interest to document the Molecular docking and pharmacokinetic analysis of imeglimin derivatives with ER-alpha. Among the 166 derivatives of Imeglimin, only five derivatives were shortlisted after toxicity testing. The selected derivatives showed good binding affinity with favorable pharmacokinetic profiles. The selected compounds of Imeglimin were found to possess excellent anticancer potential and could be considered as novel, cost-effective anticancer agents effective against ER positive breast cancer for further investigation.
RESUMEN
One of the main challenges with many cancer immunotherapies is that biomarkers are needed for targeting. These biomarkers are often associated with tumors but are not specific to a particular tumor and can lead to damage in healthy tissues, resistance to treatment, or the need for customization for different types of cancer due to variations in targets. A promising alternative approach is to target the acidic microenvironment found in most solid tumor types. This can be achieved using the pH (Low) Insertion Peptide (pHLIP), which inserts selectively into cell membranes under acidic conditions, sparing healthy tissues. pHLIP has shown potential for imaging, drug delivery, and surface display. For instance, we previously used pHLIP to display epitopes on the surfaces of cancer cells, enabling antibody-mediated immune cell recruitment and selective killing of cancer cells. In this study, we further explored this concept by directly fusing an anti-CD16 nanobody, which activates natural killer (NK) cells, to pHLIP, eliminating the need for antibody recruitment. Our results demonstrated the insertion of pH-sensitive agents into cancer cells, activation of the CD16 receptor on effector cells, and successful targeting and destruction of cancer cells by high-affinity CD16+ NK cells in two cancer cell lines.
Asunto(s)
Inhibidores de Proteínas Quinasas , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Tropomiosina/antagonistas & inhibidores , Tropomiosina/metabolismo , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/metabolismoRESUMEN
Tetraphenyloporphyrin derivatives are a useful scaffold for developing new pharmaceuticals for photodynamic therapy (PDT) and the photodiagnosis (PD) of cancer. We synthesized new sulfonamide fluorinated porphyrin derivatives and investigated their potential as photosensitizers and real-time bioimaging agents for cancer. We found that 5,10,15,20-tetrakis-[2',3',5',6'-tetrafluoro-4'-methanesulfamidyl)phenyl]bacteriochlorin (F4BMet) has intense absorption and fluorescence in the near-infrared, efficiently generates singlet oxygen and hydroxyl radicals, has low toxicity in the dark, and high phototoxicity. We increased its bioavailability with encapsulation in Pluronic-based micelles, which also improved the photodynamic effect. F4BMet exhibits pH-dependent properties (lower pH promoted its aggregation), and a GlyGly buffer was used to effectively solubilize the compound. In vitro findings with 2D cell culture were complemented with human-induced pluripotent stem cell (hiPSC)-derived organoids. F4BMet in P123 micelles showed enhanced efficacy compared to F4BMet in the GlyGly formulation. F4BMet was further evaluated in real-time bioimaging and PDT of BALB/c mice bearing CT26 tumors. After i.v. injection, the photosensitizer was visible in the tumor area 3 h after injection. The most successful therapeutic approach proved to be tumor-targeted PDT using P123-encapsulated F4BMet illuminated 24 h after administration with a light dose of 42 J/cm2, which led to a 30% long-term cure rate.
Asunto(s)
Imagen Óptica , Fotoquimioterapia , Fármacos Fotosensibilizantes , Sulfonamidas , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/síntesis química , Humanos , Animales , Ratones , Sulfonamidas/química , Sulfonamidas/farmacología , Porfirinas/química , Porfirinas/farmacología , Micelas , Rayos Infrarrojos , Ratones Endogámicos BALB C , Línea Celular TumoralRESUMEN
The natural lignan diphyllin has shown promising antitumor activity, although its clinical advancement has been impeded by challenges such as low solubility, poor metabolic stability, and limited potency. In response, we developed and synthesized two sets of diphyllin 4-C derivatives, comprising six ester derivatives and eight 1, 2, 3-triazole derivatives. Notably, among these derivatives, 1, 2, 3-triazole derivatives 7c and 7e demonstrated the most potent cytotoxic effects, with IC50 values ranging from 0.003 to 0.01 µM. Treatment with 0.2 µM of 7c and 7e resulted in a reduction of V-ATPase activity in HGC-27 cells to 23% and 29%, respectively.
Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Lignanos/farmacología , Lignanos/química , Lignanos/síntesis química , Relación Estructura-Actividad , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/metabolismo , Azidas/síntesis química , Azidas/química , Azidas/farmacologíaRESUMEN
A 3D structure-based pharmacophore model built for bromodomain-containing protein 4 (BRD4) is reported here, specifically developed for investigating and identifying the key structural features of the (+)-JQ1 known inhibitor within the BRD4 binding site. Using this pharmacophore model, 273 synthesized and purchased compounds previously considered for other targets but yielding poor results were screened in a drug repositioning campaign. Subsequently, only six compounds showed potential as BRD4 binders and were subjected to further biophysical and biochemical assays. Compounds 2, 5, and 6 showed high affinity for BRD4, with IC50 values of 0.60 ± 0.25 µM, 3.46 ± 1.22 µM, and 4.66 ± 0.52 µM, respectively. Additionally, these compounds were tested against two other bromodomains, BRD3 and BRD9, and two of them showed high selectivity for BRD4. The reported 3D structure-based pharmacophore model proves to be a straightforward and useful tool for selecting novel BRD4 ligands.