Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Vet Res ; 55(1): 97, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095890

RESUMEN

Swine enteric coronaviruses (SeCoVs) pose a significant threat to the global pig industry, but no effective drugs are available for treatment. Previous research has demonstrated that thapsigargin (TG), an ER stress inducer, has broad-spectrum antiviral effects on human coronaviruses. In this study, we investigated the impact of TG on transmissible gastroenteritis virus (TGEV) infection using cell lines, porcine intestinal organoid models, and piglets. The results showed that TG effectively inhibited TGEV replication both in vitro and ex vivo. Furthermore, animal experiments demonstrated that oral administration of TG inhibited TGEV infection in neonatal piglets and relieved TGEV-associated tissue injury. Transcriptome analyses revealed that TG improved the expression of the ER-associated protein degradation (ERAD) component and influenced the biological processes related to secretion, nutrient responses, and epithelial cell differentiation in the intestinal epithelium. Collectively, these results suggest that TG is a potential novel oral antiviral drug for the clinical treatment of TGEV infection, even for infections caused by other SeCoVs.


Asunto(s)
Antivirales , Gastroenteritis Porcina Transmisible , Tapsigargina , Virus de la Gastroenteritis Transmisible , Animales , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Virus de la Gastroenteritis Transmisible/fisiología , Porcinos , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Gastroenteritis Porcina Transmisible/virología , Antivirales/farmacología , Tapsigargina/farmacología , Línea Celular , Replicación Viral/efectos de los fármacos
2.
Front Immunol ; 15: 1329162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39185419

RESUMEN

Introduction: Most healthy individuals recover from acute SARS-CoV-2 infection, whereas a remarkable number continues to suffer from unexplained symptoms, known as Long COVID or post-acute COVID-19 syndrome (PACS). It is therefore imperative that methods for preventing and treating the onset of PASC be investigated with the utmost urgency. Methods: A mathematical model of the immune response to vaccination and viral infection with SARS-CoV-2, incorporating immune memory cells, was developed. Results and discussion: Similar to our previous model, persistent infection was observed by the residual virus in the host, implying the possibility of chronic inflammation and delayed recovery from tissue injury. Pre-infectious vaccination and antiviral medication administered during onset can reduce the acute viral load; however, they show no beneficial effects in preventing persistent infection. Therefore, the impact of these treatments on the PASC, which has been clinically observed, is mainly attributed to their role in preventing severe tissue damage caused by acute viral infections. For PASC patients with persistent infection, vaccination was observed to cause an immediate rapid increase in viral load, followed by a temporary decrease over approximately one year. The former was effectively suppressed by the coadministration of antiviral medications, indicating that this combination is a promising treatment for PASC.


Asunto(s)
Antivirales , Vacunas contra la COVID-19 , COVID-19 , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Carga Viral , Humanos , Antivirales/uso terapéutico , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/complicaciones , Vacunas contra la COVID-19/inmunología , Tratamiento Farmacológico de COVID-19 , Vacunación , Modelos Teóricos
3.
Open Forum Infect Dis ; 11(7): ofae335, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957689

RESUMEN

We evaluated use of maribavir (MBV) for treatment of 15 episodes of refractory/resistant cytomegalovirus infection in 13 solid organ transplant recipients. Treatment failure due to treatment-emergent MBV resistance or early virological recurrence after MBV discontinuation occurred in 7 (47%) episodes. Sustained viral clearance was achieved in 6 (40%) episodes.

4.
Clin Case Rep ; 12(7): e9052, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38947534

RESUMEN

Key Clinical Message: The purpose of this case report is to reveal one of the cardiovascular side effects of favipiravir, sinus bradycardia. Abstract: Favipiravir has emerged as a potential treatment for COVID-19, with its antiviral properties showing promise in inhibiting viral replication. However, concerns regarding its safety profile, particularly its cardiac adverse effects, remain a subject of debate. We present the case of a 58-year-old man with a history of diabetes mellitus and chronic obstructive pulmonary disease who developed bradycardia following treatment with favipiravir for COVID-19 pneumonia. Despite being asymptomatic, the patient exhibited sinus bradycardia, which resolved upon discontinuation of favipiravir. Favipiravir has been associated with QT prolongation and sinus bradycardia, though the exact mechanisms remain unclear. Our case adds to the growing body of evidence highlighting the potential cardiac complications of favipiravir therapy in COVID-19 patients. Further research is warranted to clarify the underlying mechanisms and optimize patient management strategies. Clinicians should be cautious for cardiac adverse events when prescribing favipiravir for COVID-19 treatment, especially in patients with preexisting cardiac conditions. Continued research is essential to ensure the safe and effective use of favipiravir in the management of COVID-19.

5.
bioRxiv ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39026851

RESUMEN

Helicases have emerged as promising targets for the development of antiviral drugs; however, the family remains largely undrugged. To support the focused development of viral helicase inhibitors we identified, collected, and integrated all chemogenomics data for all available helicases from the ChEMBL database. After thoroughly curating and enriching the data with relevant annotations we have created a derivative database of helicase inhibitors which we dubbed Heli-SMACC (Helicase-targeting SMAll Molecule Compound Collection). The current version of Heli-SMACC contains 20,432 bioactivity entries for viral, human, and bacterial helicases. We have selected 30 compounds with promising viral helicase activity and tested them in a SARS-CoV-2 NSP13 ATPase assay. Twelve compounds demonstrated ATPase inhibition and a consistent dose-response curve. The Heli-SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel helicase inhibitors. Heli-SMACC is publicly available at https://smacc.mml.unc.edu.

6.
J Virol ; 98(8): e0032724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082785

RESUMEN

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a highly infectious disease afflicting domestic pigs and wild boars. It exhibits an alarming acute infection fatality rate of up to 100%. Regrettably, no commercial vaccines or specific drugs for combating this disease are currently available. This study evaluated the anti-ASFV activities in porcine alveolar macrophages, 3D4/21 cells, and PK-15 cells of four bis-benzylisoquinoline alkaloids (BBAs): cepharanthine (CEP), tetrandrine, fangchinoline, and iso-tetrandrine. Furthermore, we demonstrated that CEP, which exhibited the highest selectivity index (SI = 81.31), alkalized late endosomes/lysosomes, hindered ASFV endosomal transport, disrupted virus uncoating signals, and thereby inhibited ASFV internalization. Additionally, CEP disrupted ASFV DNA synthesis, leading to the inhibition of viral replication. Moreover, berbamine was labeled with NBD to synthesize a fluorescent probe to study the cellular location of these BBAs. By co-staining with Lyso-Tracker and lysosome-associated membrane protein 1, we demonstrated that BBAs target the endolysosomal compartments for the first time. Our data together indicated that BBAs are a class of natural products with significant inhibitory effects against ASFV infection. These findings suggest their potential efficacy as agents for the prevention and control of ASF, offering valuable references for the identification of potential drug targets.IMPORTANCEThe urgency and severity of African swine fever (ASF) underscore the critical need for effective interventions against this highly infectious disease, which poses a grave threat to domestic pigs and wild boars. Our study reveals the potent anti-African swine fever virus (ASFV) efficacy of bis-benzylisoquinoline alkaloids (BBAs), particularly evident in the absence of progeny virus production under a 5 µM concentration treatment. The structural similarity among cepharanthine, tetrandrine, fangchinoline, and iso-tetrandrine, coupled with their analogous inhibitory stages and comparable selectivity indexes, strongly suggests a shared antiviral mechanism within this drug category. Further investigation revealed that BBAs localize to lysosomes and inhibit the internalization and replication of ASFV by disrupting the endosomal/lysosomal function. These collective results have profound implications for ASF prevention and control, suggesting the potential of the investigated agents as prophylactic and therapeutic measures. Furthermore, our study offers crucial insights into identifying drug targets and laying the groundwork for innovative interventions.


Asunto(s)
Virus de la Fiebre Porcina Africana , Antivirales , Bencilisoquinolinas , Endosomas , Lisosomas , Internalización del Virus , Replicación Viral , Animales , Virus de la Fiebre Porcina Africana/efectos de los fármacos , Virus de la Fiebre Porcina Africana/fisiología , Internalización del Virus/efectos de los fármacos , Bencilisoquinolinas/farmacología , Replicación Viral/efectos de los fármacos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/virología , Porcinos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Endosomas/virología , Antivirales/farmacología , Línea Celular , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/tratamiento farmacológico , Fiebre Porcina Africana/metabolismo , Guanina/análogos & derivados , Guanina/farmacología , Alcaloides/farmacología , Macrófagos Alveolares/virología , Macrófagos Alveolares/efectos de los fármacos , Benzodioxoles
7.
Virology ; 598: 110174, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39029332

RESUMEN

Getah virus (GETV) is a re-emerging mosquito-borne RNA virus that induces fever, hind limb edema, swollen submandibular lymph nodes, and urticaria in horses. In pigs, the virus often results in stillbirths among pregnant sows, and neurological symptoms leading to death in piglets. Currently, there are no specific treatments or drugs available for GETV infection. The use of reporter viruses to monitor viral replication and spread in real-time within infected cells and animals provides a powerful tool for targeting antiviral drugs throughout the viral life cycle. Their fluorescence-tracked characteristics greatly facilitate virus neutralization tests (VNTs). In this study, we engineered two recombinant viruses by inserting different reporter protein genes at the 3' end of the structural protein gene, an unreported location that can accommodate exogenous genes. The rGEEiLOV and rGEEGFP viruses demonstrated genetic stability for at least five passages and replicated at a rate similar to that of the parental virus in BHK-21 cells. The rGEEGFP virus facilitated viral neutralization testing. Additionally, we used the reporter virus rGEEGFP to confirm ivermectin, a broad-spectrum antiparasitic agent, as a potential inhibitor of GETV in vitro. Ivermectin appears to inhibit the early replication stages of the virus and can block cell-to-cell viral transmission. In conclusion, rGEEGFP holds significant potential for antiviral screening to identify specific inhibitors against GETV and for use in viral neutralization tests.


Asunto(s)
Antivirales , Genes Reporteros , Proteínas Fluorescentes Verdes , Pruebas de Neutralización , Animales , Antivirales/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Replicación Viral/efectos de los fármacos , Alphavirus/genética , Alphavirus/efectos de los fármacos , Porcinos , Cricetinae
8.
ACS Infect Dis ; 10(8): 2507-2524, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992989

RESUMEN

The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.


Asunto(s)
Alphavirus , Antivirales , Proteínas no Estructurales Virales , Alphavirus/efectos de los fármacos , Alphavirus/química , Antivirales/farmacología , Antivirales/química , Humanos , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/química , Infecciones por Alphavirus/tratamiento farmacológico , Infecciones por Alphavirus/virología , Animales , Proteínas Estructurales Virales/química , Proteínas Estructurales Virales/antagonistas & inhibidores
9.
Dokl Biol Sci ; 517(1): 55-58, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955885

RESUMEN

Carriers of herpes simplex virus type 1 (HSV-1) account for more than 90% of the global population. Infection manifests itself in the formation of blisters and ulcers on the face or genitals and can cause blindness, encephalitis, and generalized infection. All first- and second-line modern antiherpetic drugs selectively inhibit viral DNA polymerase. The purine-benzoxazine conjugate LAS-131 ((S)-4-[6-(purin-6-yl)aminohexanoyl]-7,8-difluoro-3,4-dihydro-3-methyl-2H-[1,4]benzoxazine), which we have described earlier, uses the large subunit of the HSV-1 terminase complex as a biotarget and selectively inhibits HSV-1 reproduction in vitro. Basically new results were for the first time obtained to characterize the combined effect on human herpesvirus infection for LAS-131 used in combination with practically significant antiviral compounds, including the nucleoside analogs acyclovir (ACV), penciclovir (PCV), ganciclovir (GCV), brivudine (BVdU), iododeoxyuridine (IdU), and adenine arabinoside (Ara-A); the nucleoside phosphonate analog cidofovir (CDV); and the pyrophosphate analog foscarnet (FOS). A cytopathic effect (CPE) inhibition assay showed that the drug concentration that inhibited the virus-induced CPE by 50% decreased by a factor of 2 (an additive effect, FOS) or more (a synergistic effect; ACV, PCV, GCV, IdU, BVdU, Ara-A, and CDV) when the drugs were used in combination with LAS-131. Nonpermissive conditions for HSV-1 reproduction were thus created at lower drug concentrations, opening up new real possibilities to control human herpesvirus infection.


Asunto(s)
Aciclovir , Antivirales , Endodesoxirribonucleasas , Herpesvirus Humano 1 , Antivirales/farmacología , Células Vero , Chlorocebus aethiops , Animales , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/fisiología , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/antagonistas & inhibidores , Aciclovir/farmacología , Ganciclovir/farmacología , Foscarnet/farmacología , Guanina/análogos & derivados , Guanina/farmacología , Cidofovir/farmacología , Humanos , Bromodesoxiuridina/análogos & derivados
10.
Antiviral Res ; 228: 105935, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880196

RESUMEN

Emergence of drug resistance is rare after use of letermovir (LMV) as prophylaxis for post-transplant cytomegalovirus (CMV) infection. In a recent study involving renal transplant recipients, no known LMV resistance mutations were detected in those receiving LMV prophylaxis. However, uncharacterized viral amino acid substitutions were detected in LMV recipients by deep sequencing in viral subpopulations of 5%-7%, at codons previously associated with drug resistance: UL56 S229Y (n = 1), UL56 M329I (n = 9) and UL89 D344Y (n = 5). Phenotypic analysis of these mutations in a cloned laboratory CMV strain showed that S229Y conferred a 2-fold increase in LMV EC50, M329I conferred no LMV resistance, and D344Y knocked out viral viability that was restored after the nonviable clone was reverted to wild type D344. As in previous CMV antiviral trials, the detection of nonviable mutations, even in multiple study subjects, raises strong suspicion of genotyping artifacts and encourages the use of replicate testing for authentication of atypical mutation readouts. The non-viability of UL89 D344Y also confirms the biologically important locus of the D344E substitution that confers resistance to benzimidazole CMV terminase complex inhibitors, but does not feature prominently in LMV resistance.


Asunto(s)
Acetatos , Antivirales , Infecciones por Citomegalovirus , Citomegalovirus , Farmacorresistencia Viral , Genotipo , Fenotipo , Quinazolinas , Humanos , Citomegalovirus/genética , Citomegalovirus/efectos de los fármacos , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/tratamiento farmacológico , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Acetatos/farmacología , Acetatos/uso terapéutico , Sustitución de Aminoácidos , Trasplante de Riñón , Mutación , Variación Genética , Técnicas de Genotipaje/métodos , Proteínas Virales/genética
11.
Heliyon ; 10(11): e31987, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38867992

RESUMEN

Background: Anti-SARS-CoV-2 and immunomodulatory drugs are important for treating clinically severe patients with respiratory distress symptoms. Alpha- and gamma-mangostins (AM and GM) were previously reported as potential 3C-like protease (3CLpro) and Angiotensin-converting enzyme receptor 2 (ACE2)-binding inhibitors in silico. Objective: We aimed to evaluate two active compounds, AM and GM, from Garcinia mangostana for their antivirals against SARS-CoV-2 in live virus culture systems and their cytotoxicities using standard methods. Also, we aimed to prove whether 3CLpro and ACE2 neutralization were major targets and explored whether any additional targets existed. Methods: We tested the translation and replication efficiencies of SARS-CoV-2 in the presence of AM and GM. Initial and subgenomic translations were evaluated by immunofluorescence of SARS-CoV-2 3CLpro and N expressions at 16 h after infection. The viral genome was quantified and compared with the untreated group. We also evaluated the efficacies and cytotoxicities of AM and GM against four strains of SARS-CoV-2 (wild-type B, B.1.167.2, B.1.36.16, and B.1.1.529) in Vero E6 cells. The potential targets were evaluated using cell-based anti-attachment, time-of-drug addition, in vitro 3CLpro activities, and ACE2-binding using a surrogated viral neutralization test (sVNT). Moreover, additional targets were explored using combinatorial network-based interactions and Chemical Similarity Ensemble Approach (SEA). Results: AM and GM reduced SARS-CoV-2 3CLpro and N expressions, suggesting that initial and subgenomic translations were globally inhibited. AM and GM inhibited all strains of SARS-CoV-2 at EC50 of 0.70-3.05 µM, in which wild-type B was the most susceptible strain (EC50 0.70-0.79 µM). AM was slightly more efficient in the variants (EC50 0.88-2.41 µM), resulting in higher selectivity indices (SI 3.65-10.05), compared to the GM (EC50 0.94-3.05 µM, SI 1.66-5.40). GM appeared to be more toxic than AM in both Vero E6 and Calu-3 cells. Cell-based anti-attachment and time-of-addition suggested that the potential molecular target could be at the post-infection. 3CLpro activity and ACE2 binding were interfered with in a dose-dependent manner but were insufficient to be a major target. Combinatorial network-based interaction and chemical similarity ensemble approach (SEA) suggested that fatty acid synthase (FASN), which was critical for SARS-CoV-2 replication, could be a target of AM and GM. Conclusion: AM and GM inhibited SARS-CoV-2 with the highest potency at the wild-type B and the lowest at the B.1.1.529. Multiple targets were expected to integratively inhibit viral replication in cell-based system.

12.
Virol Sin ; 39(3): 459-468, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782261

RESUMEN

Ebola virus (EBOV) and Marburg virus (MARV), members of the Filoviridae family, are highly pathogenic and can cause hemorrhagic fevers, significantly impacting human society. Bats are considered reservoirs of these viruses because related filoviruses have been discovered in bats. However, due to the requirement for maximum containment laboratories when studying infectious viruses, the characterization of bat filoviruses often relies on pseudoviruses and minigenome systems. In this study, we used RACE technology to sequence the 3'-leader and 5'-trailer of Menglà virus (MLAV) and constructed a minigenome. Similar to MARV, the transcription activities of the MLAV minigenome are independent of VP30. We further assessed the effects of polymorphisms at the 5' end on MLAV minigenome activity and identified certain mutations that decrease minigenome reporter efficiency, probably due to alterations in the RNA secondary structure. The reporter activity upon recombination of the 3'-leaders and 5'-trailers of MLAV, MARV, and EBOV with those of the homologous or heterologous minigenomes was compared and it was found that the polymerase complex and leader and trailer sequences exhibit intrinsic specificities. Additionally, we investigated whether the polymerase complex proteins from EBOV and MARV support MLAV minigenome RNA synthesis and found that the homologous system is more efficient than the heterologous system. Remdesivir efficiently inhibited MLAV as well as EBOV replication. In summary, this study provides new information on bat filoviruses and the minigenome will be a useful tool for high-throughput antiviral drug screening.


Asunto(s)
Ebolavirus , Genoma Viral , Marburgvirus , Animales , Genoma Viral/genética , Ebolavirus/genética , Humanos , Marburgvirus/genética , Mengovirus/genética , Replicación Viral , ARN Viral/genética , Alanina/análogos & derivados , Alanina/farmacología , Quirópteros/virología , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/metabolismo , Filoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
13.
J Virol ; 98(6): e0164123, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38690874

RESUMEN

Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galß1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Polisacáridos , Receptores Virales , Proteínas Virales de Fusión , Acoplamiento Viral , Humanos , Línea Celular , Metapneumovirus/metabolismo , Metapneumovirus/fisiología , Infecciones por Paramyxoviridae/virología , Infecciones por Paramyxoviridae/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Interacciones Microbiota-Huesped , Proteoglicanos de Heparán Sulfato/metabolismo
14.
Animals (Basel) ; 14(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731287

RESUMEN

Lumpy skin disease (LSD), caused by a virus within the Poxviridae family and Capripoxvirus genus, induces nodular skin lesions in cattle. This spreads through direct contact and insect vectors, significantly affecting global cattle farming. Despite the availability of vaccines, their efficacy is limited by poor prophylaxis and adverse effects. Our study aimed to identify the potential inhibitors targeting the LSDV-encoded DNA polymerase protein (gene LSDV039) for further investigation through comprehensive analysis and computational methods. Virtual screening revealed rhein and taxifolin as being potent binders among 380 phytocompounds, with respective affinities of -8.97 and -7.20 kcal/mol. Canagliflozin and tepotinib exhibited strong affinities (-9.86 and -8.86 kcal/mol) among 718 FDA-approved antiviral drugs. Simulating the molecular dynamics of canagliflozin, tepotinib, rhein, and taxifolin highlighted taxifolin's superior stability and binding energy. Rhein displayed compactness in RMSD and RMSF, but fluctuated in Rg and SASA, while canagliflozin demonstrated stability compared to tepotinib. This study highlights the promising potential of using repurposed drugs and phytocompounds as potential LSD therapeutics. However, extensive validation through in vitro and in vivo testing and clinical trials is crucial for their practical application.

15.
Viruses ; 16(5)2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38793600

RESUMEN

Although the coronavirus disease 2019 (COVID-19) pandemic is coming to an end, it still poses a threat to the immunocompromised and others with underlying diseases. Especially in cases of persistent COVID-19, new mutations conferring resistance to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) therapies have considerable clinical implications. We present a patient who independently acquired a T21I mutation in the 3CL protease after nirmatrelvir exposure. The T21I mutation in the 3CL protease is one of the most frequent mutations responsible for nirmatrelvir resistance. However, limited reports exist on actual cases of SARS-CoV-2 with T21I and other mutations in the 3CL protease. The patient, a 55 year-old male, had COVID-19 during chemotherapy for multiple myeloma. He was treated with nirmatrelvir early in the course of the disease but relapsed, and SARS-CoV-2 with a T21I mutation in the 3CL protease was detected in nasopharyngeal swab fluid. The patient had temporary respiratory failure but later recovered well. During treatment with remdesivir and dexamethasone, viruses with the T21I mutation in the 3CL protease showed a decreasing trend during disease progression while increasing during improvement. The impact of drug-resistant SARS-CoV-2 on the clinical course, including its severity, remains unknown. Our study is important for examining the clinical impact of nirmatrelvir resistance in COVID-19.


Asunto(s)
Antivirales , COVID-19 , Farmacorresistencia Viral , Huésped Inmunocomprometido , SARS-CoV-2 , Humanos , Persona de Mediana Edad , Masculino , SARS-CoV-2/genética , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/inmunología , Farmacorresistencia Viral/genética , Antivirales/uso terapéutico , Antivirales/farmacología , COVID-19/inmunología , COVID-19/virología , Mutación , Mieloma Múltiple/tratamiento farmacológico , Proteasas 3C de Coronavirus/genética , Tratamiento Farmacológico de COVID-19 , Alanina/análogos & derivados , Alanina/uso terapéutico
16.
Heliyon ; 10(10): e30862, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803975

RESUMEN

The SARS-CoV-2 pandemic has highlighted the need for broad-spectrum antiviral drugs to respond promptly to viral emergence. We conducted a preclinical study of molnupiravir (MOV) against SARS-CoV-2 to fully characterise its antiviral properties and mode of action. The antiviral activity of different concentrations of MOV was evaluated ex vivo on human airway epithelium (HAE) and in vivo in a hamster model at three escalating doses (150, 300 and 400 mg/kg/day) according to three different regimens (preventive, pre-emptive and curative). We assessed viral loads and infectious titres at the apical pole of HAE and in hamster lungs, and MOV trough concentration in plasma and lungs. To explore the mode of action of the MOV, the entire genomes of the collected viruses were deep-sequenced. MOV effectively reduced viral titres in HAE and in the lungs of treated animals. Early treatment after infection was a key factor in efficacy, probably associated with high lung concentrations of MOV, suggesting good accumulation in the lung. MOV induced genomic alteration in viral genomes with an increase in the number of minority variants, and predominant G to A transitions. The observed reduction in viral replication and its mechanism of action leading to lethal mutagenesis, supported by clinical trials showing antiviral action in humans, provide a convincing basis for further research as an additional means in the fight against COVID-19 and other RNA viruses.

18.
Antimicrob Agents Chemother ; 68(4): e0101523, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38470112

RESUMEN

Existing pharmacodynamic (PD) mathematical models for drug combinations discriminate antagonistic, additive, multiplicative, and synergistic effects, but fail to consider how concentration-dependent drug interaction effects may vary across an entire dose-response matrix. We developed a two-way pharmacodynamic (TWPD) model to capture the PD of two-drug combinations. TWPD captures interactions between upstream and downstream drugs that act on different stages of viral replication, by quantifying upstream drug efficacy and concentration-dependent effects on downstream drug pharmacodynamic parameters. We applied TWPD to previously published in vitro drug matrixes for repurposed potential anti-Ebola and anti-SARS-CoV-2 drug pairs. Depending on the drug pairing, the model recapitulated combined efficacies as or more accurately than existing models and can be used to infer efficacy at untested drug concentrations. TWPD fits the data slightly better in one direction for all drug pairs, meaning that we can tentatively infer the upstream drug. Based on its high accuracy, TWPD could be used in concert with PK models to estimate the therapeutic effects of drug pairs in vivo.


Asunto(s)
COVID-19 , Fiebre Hemorrágica Ebola , Humanos , Modelos Biológicos , SARS-CoV-2 , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Combinación de Medicamentos
19.
Redox Biol ; 71: 103112, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461791

RESUMEN

The Warburg effect, also referred as aerobic glycolysis, is a common metabolic program during viral infection. Through targeted metabolomics combined with biochemical experiments and various cell models, we investigated the central carbon metabolism (CCM) profiles of cells infected with porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus with zoonotic potential. We found that PDCoV infection required glycolysis but decreased glycolytic flux, exhibiting a non-Warburg effect characterized by pyruvic acid accumulation. Mechanistically, PDCoV enhanced pyruvate kinase activity to promote pyruvic acid anabolism, a process that generates pyruvic acid with concomitant ATP production. PDCoV also hijacked pyruvic acid catabolism to increase biosynthesis of non-essential amino acids (NEAAs), suggesting that pyruvic acid is an essential hub for PDCoV to scavenge host energy and metabolites. Furthermore, PDCoV facilitated glutaminolysis to promote the synthesis of NEAA and pyrimidines for optimal proliferation. Our work supports a novel CCM model after viral infection and provides potential anti-PDCoV drug targets.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Enfermedades de los Porcinos , Porcinos , Animales , Coronavirus/metabolismo , Ácido Pirúvico/metabolismo , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/patología , Infecciones por Coronavirus/patología
20.
Virology ; 594: 110037, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38498965

RESUMEN

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.


Asunto(s)
Infecciones por Coronavirus , Crataegus , Virus de la Diarrea Epidémica Porcina , Quercetina/análogos & derivados , Enfermedades de los Porcinos , Animales , Porcinos , Diarrea , Antivirales/farmacología , Antivirales/uso terapéutico , Enfermedades de los Porcinos/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...