Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(12): e22794, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38058441

RESUMEN

Fluorescent lighting and optical techniques have been widely utilized to enhance the detection of latent fingerprints. However, the development of new techniques is imperative to expand the range of surfaces from which latent fingerprints can be detected. When relying on traditional methods, fingerprint evidence can remain undetected or even disregarded due to insufficient detection and limited detail, especially when dealing with a luminescent background. In this study, we propose the utilization of optically stimulated luminescence (OSL) applied to a Ba2SiO4 matrix, co-doped with Eu2+ and Dy3+, as a powerful method for visualizing latent fingerprints on various surfaces, including thin plastic bags, rigid duct tape, thin aluminum foil, and glass slices. This technique effectively eliminates any luminescent background and significantly enhances optical imaging. This represents the first successful application of OSL in the development of latent fingerprints, thus paving the way for more efficient and effective forensic techniques in the future.

2.
Sensors (Basel) ; 23(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37420767

RESUMEN

In this research, we present a prototype optical system that offers significant advances in detecting hydrochloric acid (HCl) and ammonia (NH3) vapors. The system utilizes a natural pigment sensor based on Curcuma longa that is securely attached to a glass surface support. Through extensive development and testing with HCl (37% aqueous solution) and NH3 (29% aqueous solution) solutions, we have successfully demonstrated the effectiveness of our sensor. To facilitate the detection process, we have developed an injection system that exposes C. longa pigment films to the targeted vapors. The interaction between the vapors and the pigment films triggers a distinct color change, which is then analyzed by the detection system. By capturing the transmission spectra of the pigment film, our system allows a precise comparison of these spectra at different concentrations of the vapors. Our proposed sensor exhibits remarkable sensitivity, allowing the detection of HCl at a concentration of 0.009 ppm using only 100 µL (2.3 mg) of pigment film. In addition, it can detect NH3 at a concentration of 0.03 ppm with a 400 µL (9.2 mg) pigment film. Integrating C. longa as a natural pigment sensor in an optical system opens up new possibilities for detecting hazardous gases. The simplicity and efficiency of our system, combined with its sensitivity, make it an attractive tool in environmental monitoring and industrial safety applications.


Asunto(s)
Amoníaco , Ácido Clorhídrico , Curcuma , Gases , Agua
3.
J Cell Sci ; 136(13)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37313743

RESUMEN

The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.


Asunto(s)
Neoplasias de la Mama , Células Neoplásicas Circulantes , Animales , Ratones , Humanos , Femenino , Neoplasias de la Mama/patología , Línea Celular Tumoral , Células Neoplásicas Circulantes/patología , Movimiento Celular/genética , Cadherinas , Metástasis de la Neoplasia
4.
Npj Flex Electron ; 7(1): 15, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36945320

RESUMEN

Increasing demand for real-time healthcare monitoring is leading to advances in thin and flexible optoelectronic device-based wearable pulse oximetry. Most previous studies have used OLEDs for this purpose, but did not consider the side effects of broad full-width half-maximum (FWHM) characteristics and single substrates. In this study, we performed SpO2 measurement using a fiber-based quantum-dot pulse oximetry (FQPO) system capable of mass production with a transferable encapsulation technique, and a narrow FWHM of about 30 nm. Based on analyses we determined that uniform angular narrow FWHM-based light sources are important for accurate SpO2 measurements through multi-layer structures and human skin tissues. The FQPO was shown to have improved photoplethysmogram (PPG) signal sensitivity with no waveguide-mode noise signal, as is typically generated when using a single substrate (30-50%). We successfully demonstrate improved SpO2 measurement accuracy as well as all-in-one clothing-type pulse oximetry with FQPO.

5.
Npj Imaging ; 1(1): 3, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665236

RESUMEN

Conventional histology, as well as immunohistochemistry or immunofluorescence, enables the study of morphological and phenotypical changes during tissue inflammation with single-cell accuracy. However, although highly specific, such techniques require multiple time-consuming steps to apply exogenous labels, which might result in morphological deviations from native tissue structures. Unlike these techniques, mid-infrared (mid-IR) microspectroscopy is a label-free optical imaging method that retrieves endogenous biomolecular contrast without altering the native composition of the samples. Nevertheless, due to the strong optical absorption of water in biological tissues, conventional mid-IR microspectroscopy has been limited to dried thin (5-10 µm) tissue preparations and, thus, it also requires time-consuming steps-comparable to conventional imaging techniques. Here, as a step towards label-free analytical histology of unprocessed tissues, we applied mid-IR optoacoustic microscopy (MiROM) to retrieve intrinsic molecular contrast by vibrational excitation and, simultaneously, to overcome water-tissue opacity of conventional mid-IR imaging in thick (mm range) tissues. In this proof-of-concept study, we demonstrated application of MiROM for the fast, label-free, non-destructive assessment of the hallmarks of inflammation in excised white adipose tissue; i.e., formation of crown-like structures and changes in adipocyte morphology.

6.
npj Quantum Inf ; 9(1): 123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665254

RESUMEN

One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication.

7.
Microsyst Nanoeng ; 8: 129, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36533261

RESUMEN

Atomic devices such as atomic clocks and optically-pumped magnetometers rely on the interrogation of atoms contained in a cell whose inner content has to meet high standards of purity and accuracy. Glass-blowing techniques and craftsmanship have evolved over many decades to achieve such standards in macroscopic vapor cells. With the emergence of chip-scale atomic devices, the need for miniaturization and mass fabrication has led to the adoption of microfabrication techniques to make millimeter-scale vapor cells. However, many shortcomings remain and no process has been able to match the quality and versatility of glass-blown cells. Here, we introduce a novel approach to structure, fill and seal microfabricated vapor cells inspired from the century-old approach of glass-blowing, through opening and closing single-use zero-leak microfabricated valves. These valves are actuated exclusively by laser, and operate in the same way as the "make-seals" and "break-seals" found in the filling apparatus of traditional cells. Such structures are employed to fill cesium vapor cells at the wafer-level. The make-seal structure consists of a glass membrane that can be locally heated and deflected to seal a microchannel. The break-seal is obtained by breaching a silicon wall between cavities. This new approach allows adapting processes previously restricted to glass-blown cells. It can also be extended to vacuum microelectronics and vacuum-packaging of micro-electro-mechanical systems (MEMS) devices.

8.
Microsyst Nanoeng ; 8: 72, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782292

RESUMEN

Advances in microfluidic technologies rely on engineered 3D flow patterns to manipulate samples at the microscale. However, current methods for mapping flows only provide limited 3D and temporal resolutions or require highly specialized optical set-ups. Here, we present a simple defocusing approach based on brightfield microscopy and open-source software to map micro-flows in 3D at high spatial and temporal resolution. Our workflow is both integrated in ImageJ and modular. We track seed particles in 2D before classifying their Z-position using a reference library. We compare the performance of a traditional cross-correlation method and a deep learning model in performing the classification step. We validate our method on three highly relevant microfluidic examples: a channel step expansion and displacement structures as single-phase flow examples, and droplet microfluidics as a two-phase flow example. First, we elucidate how displacement structures efficiently shift large particles across streamlines. Second, we reveal novel recirculation structures and folding patterns in the internal flow of microfluidic droplets. Our simple and widely accessible brightfield technique generates high-resolution flow maps and it will address the increasing demand for controlling fluids at the microscale by supporting the efficient design of novel microfluidic structures.

9.
Microsyst Nanoeng ; 8: 69, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35769230

RESUMEN

Immersion optics enable creation of systems with improved optical concentration and coupling by taking advantage of the fact that the luminance of light is proportional to the square of the refractive index in a lossless optical system. Immersion graded index optical concentrators, that do not need to track the source, are described in terms of theory, simulations, and experiments. We introduce a generalized design guide equation which follows the Pareto function and can be used to create various immersion graded index optics depending on the application requirements of concentration, refractive index, height, and efficiency. We present glass and polymer fabrication techniques for creating broadband transparent graded index materials with large refractive index ranges, (refractive index ratio)2 of ~2, going many fold beyond what is seen in nature or the optics industry. The prototypes demonstrate 3x optical concentration with over 90% efficiency. We report via functional prototypes that graded-index-lens concentrators perform close to the theoretical maximum limit and we introduce simple, inexpensive, design-flexible, and scalable fabrication techniques for their implementation.

10.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458924

RESUMEN

Chlorophyll-a measurement is important in algal growth and water quality monitoring in natural waters. A portable pulsed LED fluorescence lidar system based on the preliminary algal organic matter and pigments excitation-emission matrix (EEM) of commercialized AZTEC Spirulina powder at varying concentrations was developed. Fluorescence peaks from EEMs showed increasing intensity as the Spirulina concentration increases. Using this information, an LED fluorescence lidar with a wavelength of 385 nm, pulse width of 10 ns, and repetition frequency of 500 kHz was constructed for chlorophyll detection at 680 nm. Turbidity measurements were also conducted at 700 nm emission wavelength at the same excitation wavelength. Range-resolved fluorescence lidar signals from the portable pulsed LED fluorescence lidar system are highly correlated with the standard methods such as optical density at 680 nm (R2 = 0.87), EEM fluorescence chlorophyll-a pigment at 680 nm (R2 = 0.89), and corrected chlorophyll-a concentration (R2 =0.92). The F680/F700 lidar ratio was measured to provide a linear relationship of chlorophyll-a and turbidity in waters. The F680/F700 measurement showed strong correlations with Spirulina concentration (R2 = 0.94), absorbance at 680 nm (R2 = 0.84), EEM chlorophyll-a pigment at 680 nm (R2 = 0.83), and corrected chlorophyll-a concentration (R2 = 0.86). Results revealed that this new technique of chlorophyll-a measurement can be used as an alternative to other standard methods in algal growth monitoring.


Asunto(s)
Spirulina , Clorofila , Clorofila A , Fluorescencia , Pigmentación , Espectrometría de Fluorescencia/métodos
11.
Microsyst Nanoeng ; 7: 86, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745645

RESUMEN

Phenotypic diversity in bacterial flagella-induced motility leads to complex collective swimming patterns, appearing as traveling bands with transient locally enhanced cell densities. Traveling bands are known to be a bacterial chemotactic response to self-generated nutrient gradients during growth in resource-limited microenvironments. In this work, we studied different parameters of Escherichia coli (E. coli) collective migration, in particular the quantity of bacteria introduced initially in a microfluidic chip (inoculum size) and their exposure to antibiotics (ampicillin, ciprofloxacin, and gentamicin). We developed a hybrid polymer-glass chip with an intermediate optical adhesive layer featuring the microfluidic channel, enabling high-content imaging of the migration dynamics in a single bacterial layer, i.e., bacteria are confined in a quasi-2D space that is fully observable with a high-magnification microscope objective. On-chip bacterial motility and traveling band analysis was performed based on individual bacterial trajectories by means of custom-developed algorithms. Quantifications of swimming speed, tumble bias and effective diffusion properties allowed the assessment of phenotypic heterogeneity, resulting in variations in transient cell density distributions and swimming performance. We found that incubation of isogeneic E. coli with different inoculum sizes eventually generated different swimming phenotype distributions. Interestingly, incubation with antimicrobials promoted bacterial chemotaxis in specific cases, despite growth inhibition. Moreover, E. coli filamentation in the presence of antibiotics was assessed, and the impact on motility was evaluated. We propose that the observation of traveling bands can be explored as an alternative for fast antimicrobial susceptibility testing.

12.
Microsyst Nanoeng ; 7: 39, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567753

RESUMEN

As demand accelerates for multifunctional devices with a small footprint and minimal power consumption, 2.5D and 3D advanced packaging architectures have emerged as an essential solution that use through-substrate vias (TSVs) as vertical interconnects. Vertical stacking enables chip packages with increased functionality, enhanced design versatility, minimal power loss, reduced footprint and high bandwidth. Unlocking the potential of photolithography for vertical interconnect access (VIA) fabrication requires fast and accurate predictive modeling of diffraction effects and resist film photochemistry. This procedure is especially challenging for broad-spectrum exposure systems that use, for example, Hg bulbs with g-, h-, and i-line UV radiation. In this paper, we present new methods and equations for VIA latent image determination in photolithography that are suitable for broad-spectrum exposure and negate the need for complex and time-consuming in situ metrology. Our technique is accurate, converges quickly on the average modern PC and could be readily integrated into photolithography simulation software. We derive a polychromatic light attenuation equation from the Beer-Lambert law, which can be used in a critical exposure dose model to determine the photochemical reaction state. We integrate this equation with an exact scalar diffraction formula to produce a succinct equation comprising a complete coupling between light propagation phenomena and photochemical behavior. We then perform a comparative study between 2D/3D photoresist latent image simulation geometries and directly corresponding experimental data, which demonstrates a highly positive correlation. We anticipate that this technique will be a valuable asset to photolithography, micro- and nano-optical systems and advanced packaging/system integration with applications in technology domains ranging from space to automotive to the Internet of Things (IoT).

13.
Light Sci Appl ; 9: 141, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32864116

RESUMEN

Inspired by the "run-and-tumble" behaviours of Escherichia coli (E. coli) cells, we develop opto-thermoelectric microswimmers. The microswimmers are based on dielectric-Au Janus particles driven by a self-sustained electrical field that arises from the asymmetric optothermal response of the particles. Upon illumination by a defocused laser beam, the Janus particles exhibit an optically generated temperature gradient along the particle surfaces, leading to an opto-thermoelectrical field that propels the particles. We further discover that the swimming direction is determined by the particle orientation. To enable navigation of the swimmers, we propose a new optomechanical approach to drive the in-plane rotation of Janus particles under a temperature-gradient-induced electrical field using a focused laser beam. Timing the rotation laser beam allows us to position the particles at any desired orientation and thus to actively control the swimming direction with high efficiency. By incorporating dark-field optical imaging and a feedback control algorithm, we achieve automated propelling and navigation of the microswimmers. Our opto-thermoelectric microswimmers could find applications in the study of opto-thermoelectrical coupling in dynamic colloidal systems, active matter, biomedical sensing, and targeted drug delivery.

14.
Light Sci Appl ; 9: 122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32699610

RESUMEN

Based on a developed theory, we show that introducing a meta-grid of sub-wavelength-sized plasmonic nanoparticles (NPs) into existing semiconductor light-emitting-devices (LEDs) can lead to enhanced transmission of light across the LED-chip/encapsulant interface. This results from destructive interference between light reflected from the chip/encapsulant interface and light reflected by the NP meta-grid, which conspicuously increase the efficiency of light extraction from LEDs. The "meta-grid", should be inserted on top of a conventional LED chip within its usual encapsulating packaging. As described by the theory, the nanoparticle composition, size, interparticle spacing, and distance from the LED-chip surface can be tailored to facilitate maximal transmission of light emitted from the chip into its encapsulating layer by reducing the Fresnel loss. The analysis shows that transmission across a typical LED-chip/encapsulant interface at the peak emission wavelength can be boosted up to ~99%, which is otherwise mere ~84% at normal incidence. The scheme could provide improved transmission within the photon escape cone over the entire emission spectrum of an LED. This would benefit energy saving, in addition to increasing the lifetime of LEDs by reducing heating. Potentially, the scheme will be easy to implement and adopt into existing semiconductor-device technologies, and it can be used separately or in conjunction with other methods for mitigating the critical angle loss in LEDs.

15.
Light Sci Appl ; 9: 119, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695316

RESUMEN

Efficient calculation of the light diffraction in free space is of great significance for tracing electromagnetic field propagation and predicting the performance of optical systems such as microscopy, photolithography, and manipulation. However, existing calculation methods suffer from low computational efficiency and poor flexibility. Here, we present a fast and flexible calculation method for computing scalar and vector diffraction in the corresponding optical regimes using the Bluestein method. The computation time can be substantially reduced to the sub-second level, which is 105 faster than that achieved by the direct integration approach (~hours level) and 102 faster than that achieved by the fast Fourier transform method (~minutes level). The high efficiency facilitates the ultrafast evaluation of light propagation in diverse optical systems. Furthermore, the region of interest and the sampling numbers can be arbitrarily chosen, endowing the proposed method with superior flexibility. Based on these results, full-path calculation of a complex optical system is readily demonstrated and verified by experimental results, laying a foundation for real-time light field analysis for realistic optical implementation such as imaging, laser processing, and optical manipulation.

16.
Light Sci Appl ; 9: 48, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32257179

RESUMEN

In light science and applications, equally important roles are played by efficient light emitters/detectors and by the optical elements responsible for light extraction and delivery. The latter should be simple, cost effective, broadband, versatile and compatible with other components of widely desired micro-optical systems. Ideally, they should also operate without high-numerical-aperture optics. Here, we demonstrate that all these requirements can be met with elliptical microlenses 3D printed on top of light emitters. Importantly, the microlenses we propose readily form the collected light into an ultra-low divergence beam (half-angle divergence below 1°) perfectly suited for ultra-long-working-distance optical measurements (600 mm with a 1-inch collection lens), which are not accessible to date with other spectroscopic techniques. Our microlenses can be fabricated on a wide variety of samples, including semiconductor quantum dots and fragile van der Waals heterostructures made of novel two-dimensional materials, such as monolayer and few-layer transition metal dichalcogenides.

17.
Light Sci Appl ; 9: 62, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32337026

RESUMEN

Lateral optical forces induced by linearly polarized laser beams have been predicted to deflect dipolar particles with opposite chiralities toward opposite transversal directions. These "chirality-dependent" forces can offer new possibilities for passive all-optical enantioselective sorting of chiral particles, which is essential to the nanoscience and drug industries. However, previous chiral sorting experiments focused on large particles with diameters in the geometrical-optics regime. Here, we demonstrate, for the first time, the robust sorting of Mie (size ~ wavelength) chiral particles with different handedness at an air-water interface using optical lateral forces induced by a single linearly polarized laser beam. The nontrivial physical interactions underlying these chirality-dependent forces distinctly differ from those predicted for dipolar or geometrical-optics particles. The lateral forces emerge from a complex interplay between the light polarization, lateral momentum enhancement, and out-of-plane light refraction at the particle-water interface. The sign of the lateral force could be reversed by changing the particle size, incident angle, and polarization of the obliquely incident light.

18.
Light Sci Appl ; 9: 36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194950

RESUMEN

The quality of inverse problem solutions obtained through deep learning is limited by the nature of the priors learned from examples presented during the training phase. Particularly in the case of quantitative phase retrieval, spatial frequencies that are underrepresented in the training database, most often at the high band, tend to be suppressed in the reconstruction. Ad hoc solutions have been proposed, such as pre-amplifying the high spatial frequencies in the examples; however, while that strategy improves the resolution, it also leads to high-frequency artefacts, as well as low-frequency distortions in the reconstructions. Here, we present a new approach that learns separately how to handle the two frequency bands, low and high, and learns how to synthesize these two bands into full-band reconstructions. We show that this "learning to synthesize" (LS) method yields phase reconstructions of high spatial resolution and without artefacts and that it is resilient to high-noise conditions, e.g., in the case of very low photon flux. In addition to the problem of quantitative phase retrieval, the LS method is applicable, in principle, to any inverse problem where the forward operator treats different frequency bands unevenly, i.e., is ill-posed.

19.
Light Sci Appl ; 9: 45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194959

RESUMEN

Nonlinear frequency conversion is a ubiquitous technique that is used to obtain broad-range lasers and supercontinuum coherent sources. The phase-matching condition (momentum conservation relation) is the key criterion but a challenging bottleneck in highly efficient conversion. Birefringent phase matching (BPM) and quasi-phase matching (QPM) are two feasible routes but are strongly limited in natural anisotropic crystals or ferroelectric crystals. Therefore, it is in urgent demand for a general technique that can compensate for the phase mismatching in universal nonlinear materials and in broad wavelength ranges. Here, an additional periodic phase (APP) from order/disorder alignment is proposed to meet the phase-matching condition in arbitrary nonlinear crystals and demonstrated from the visible region to the deep-ultraviolet region (e.g., LiNbO3 and quartz). Remarkably, pioneering 177.3-nm coherent output is first obtained in commercial quartz crystal with an unprecedented conversion efficiency above 1‰. This study not only opens a new roadmap to resuscitate those long-neglected nonlinear optical crystals for wavelength extension, but also may revolutionize next-generation nonlinear photonics and their further applications.

20.
Light Sci Appl ; 9: 10, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32025293

RESUMEN

The orbital angular momentum (OAM) of light has been shown to be useful in diverse fields ranging from astronomy and optical trapping to optical communications and data storage. However, one of the primary impediments preventing such applications from widespread adoption is the lack of a straightforward and dynamic method to sort incident OAM states without altering the states. Here, we report a technique that can dynamically filter individual OAM states and preserve the incident OAM states for subsequent processing. Although the working principle of this technique is based on resonance, the device operation is not limited to a particular wavelength. OAM states with different wavelengths can resonate in the resonator without any additional modulation other than changing the length of the cavity. Consequently, we are able to demonstrate a reconfigurable OAM sorter that is constructed by cascading such optical resonators. This approach does not require specially designed components and is readily amenable to integration into potential applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...