Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.421
Filtrar
1.
J Plant Res ; 2024 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-39069582

RESUMEN

Zinc (Zn) is an essential element for plants. Numerous proteins in different cellular compartments require Zn for their structure and function. Zn can be toxic when it accumulates in high levels in the cytoplasm. Therefore, Zn homeostasis at tissue, cell, and organelle levels is vital for plant growth. A part of the metal tolerance protein (MTP) / Cation Diffusion Facilitator (CDF) transporters functions as Zn transporters, exporting Zn from the cytosol to various membrane compartments. In Arabidopsis thaliana, MTP1, MTP2, MTP3, MTP4, MTP5, and MTP12 are classified as Zn transporters (Zn-CDF). In this study, we systematically analyzed the localization of GFP-fused Zn-CDFs in the leaf epidermal cells of Nicotiana benthamiana. As previously reported, MTP1 and MTP3 were localized to tonoplast, MTP2 to endoplasmic reticulum, and MTP5 to Golgi. In addition, we identified the localization of MTP4 to trans-Golgi Network (TGN). Since MTP4 is specifically expressed in pollen, we analyzed the localization of MTP4-GFP in the Arabidopsis pollen tubes and confirmed that it is in the TGN. We also showed the Zn transport capability of MTP4 in yeast cells. We then analyzed the phenotype of an mtp4 T-DNA insertion mutant under both limited and excess Zn conditions. We found that their growth and fertility were not largely different from the wild-type. Our study has paved the way for investigating the possible roles of MTP4 in metallating proteins in the secretory pathway or in exporting excess Zn through exocytosis. In addition, our system of GFP-fused MTPs will help study the mechanisms for targeting transporters to specific membrane compartments.

2.
Heliyon ; 10(13): e34189, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39071576

RESUMEN

Flavonoids mostly protect plant cells from the harmful effects of UV-B radiation from the sun. In plants, the R2R3-subfamily of the MYB transcription factor, MYB12, is a key inducer of the biosynthesis of flavonoids. Our study involves the biophysical characterization of Arabidopsis thaliana MYB12 protein (AtMYB12) under UV-B exposure in vitro. Tryptophan fluorescence studies using recombinant full-length AtMYB12 (native) and the N-terminal truncated versions (first N-terminal MYB domain absent in AtMYB12Δ1, and both the first and second N-terminal MYB domains absent in AtMYB12Δ2) have revealed prominent alteration in the tryptophan microenvironment in AtMYB12Δ1 and AtMYB12Δ2 protein as a result of UV-B exposure as compared with the native AtMYB12. Bis-ANS binding assay and urea-mediated denaturation profiling showed an appreciable change in the structural conformation in AtMYB12Δ1 and AtMYB12Δ2 proteins as compared with the native AtMYB12 protein following UV-B irradiation. UV-B-treated AtMYB12Δ2 showed a higher predisposition of aggregate formation in vitro. CD spectral analyses revealed a decrease in α-helix percentage with a concomitant increase in random coiled structure formation in AtMYB12Δ1 and AtMYB12Δ2 as compared to native AtMYB12 following UV-B treatment. Overall, these findings highlight the critical function of the N-terminal MYB domains in maintaining the stability and structural conformation of the AtMYB12 protein under UV-B stress in vitro.

3.
Biomolecules ; 14(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062582

RESUMEN

An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Citocinesis , Retículo Endoplásmico , Metiltransferasas , Esteroles , Arabidopsis/genética , Arabidopsis/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Esteroles/metabolismo , Citocinesis/genética , Retículo Endoplásmico/metabolismo , División Celular/genética , Mutación , Microtúbulos/metabolismo , Pared Celular/metabolismo
4.
Plant Physiol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39067058

RESUMEN

Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that improves plant tolerance to drought stress by modulating gene expression and generating proteome diversity. The interaction between the 5' end of U1 small nuclear RNA (U1 snRNA) and the conserved 5' splice site of precursor messenger RNA (pre-mRNA) is pivotal for U1 snRNP involvement in AS. However, the roles of U1 snRNA in drought stress responses remain unclear. This study provides a comprehensive analysis of AtU1 snRNA in Arabidopsis (Arabidopsis thaliana), revealing its high conservation at the 5' end and a distinctive four-leaf clover structure. AtU1 snRNA is localized in the nucleus and expressed in various tissues, with prominent expression in young floral buds, flowers, and siliques. Overexpression of AtU1 snRNA confers enhanced abiotic stress tolerance, as evidenced in seedlings by longer seedling primary root length, increased fresh weight, and a higher greening rate compared to the wild type. Mature AtU1 snRNA overexpressor plants exhibit higher survival rates and lower water loss rates under drought stress, accompanied by a significant decrease in H2O2 and increase in proline. This study also provides evidence of altered expression levels of drought-related genes in AtU1 snRNA overexpressor or genome-edited lines, reinforcing the crucial role of AtU1 snRNA in drought stress responses. Furthermore, the overexpression of AtU1 snRNA influences the splicing of downstream target genes, with a notable impact on SPEECHLESS (SPCH), a gene associated with stomatal development, potentially explaining the observed decrease in stomatal aperture and density. These findings elucidate the critical role of U1 snRNA as an AS regulator in enhancing drought stress tolerance in plants, contributing to a deeper understanding of the AS pathway in drought tolerance and increasing awareness of the molecular network governing drought tolerance in plants.

5.
Plant Physiol ; 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39067057

RESUMEN

Tomato (Solanum lycopersicum L.) is rich in nutrients and has been an important target for enhancing the accumulation of various metabolites. Tomato also contains cholesterol-derived molecules, steroidal glycoalkaloids (SGAs), which contribute to pathogen defence but are toxic to humans and considered anti-nutritional compounds. Previous studies suggest the role of various transcription factors in SGA biosynthesis; however, the role of light and associated regulatory factors has not been studied in tomato. Here, we demonstrated that SGA biosynthesis is regulated by light through the ELONGATED HYPOCOTYL 5 homolog, SlHY5, by binding to light-responsive G-boxes present in the promoters of structural and regulatory genes. SlHY5 complemented Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) hy5 mutants at molecular, morphological, and biochemical levels. CRISPR/Cas9-based knockout tomato plants, SlHY5CR, showed down-regulation of SGA and phenylpropanoid pathway genes, leading to a significant reduction in SGA (α-tomatine and dehydrotomatine) and flavonol contents, whereas plants overexpressing SlHY5 (SlHY5OX) showed the opposite effect. Enhanced SGA and flavonol levels in SlHY5OX lines provided tolerance against Alternaria solani fungus, while SlHY5CR lines were susceptible to the pathogen. This study advances our understanding of the HY5-dependent light-regulated biosynthesis of SGAs and flavonoids and their role in biotic stress in tomatoes.

6.
J Hazard Mater ; 477: 135313, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39067296

RESUMEN

Industrial and agricultural production processes lead to the accumulation of cadmium (Cd) in soil, resulting in crops absorb Cd from contaminated soil and then transfer it to human body through the food chain, posing a serious threat to human health. Thus, it is necessary to explore novel genes and mechanisms involved in regulating Cd tolerance and detoxification in plants. Here, we found that CDR1, a DUF946 domain containing protein, localizes to the plasma membrane and positively regulates Cd stress tolerance. The cdr1 mutants exhibited Cd sensitivity, accumulated excessive Cd in the seeds and roots, but decreased in leaves. However, CDR1-OE transgenic plants not only showed Cd tolerance but also significantly reduced Cd in seeds and roots. Additionally, both in vitro and in vivo assays demonstrated an interaction between CDR1 and OPT3. Cell free protein degradation and OPT3 protein level determination assays indicated that CDR1 could maintain the stability of OPT3 protein. Moreover, genetic phenotype analysis and Cd content determination showed that CDR1 regulates Cd stress tolerance and affect the distribution of Cd in plants by maintaining the stability of OPT3 protein. Our discoveries provide a key candidate gene for directional breeding to reduce Cd accumulation in edible seeds of crops.

7.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072887

RESUMEN

Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.

8.
Int J Mol Sci ; 25(14)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39062957

RESUMEN

The AT-hook motif nuclear-localized (AHL) family is pivotal for the abiotic stress response in plants. However, the function of the cassava AHL genes has not been elucidated. Promoters, as important regulatory elements of gene expression, play a crucial role in stress resistance. In this study, the promoter of the cassava MeAHL31 gene was cloned. The MeAHL31 protein was localized to the cytoplasm and the nucleus. qRT-PCR analysis revealed that the MeAHL31 gene was expressed in almost all tissues tested, and the expression in tuber roots was 321.3 times higher than that in petioles. Promoter analysis showed that the MeAHL31 promoter contains drought, methyl jasmonate (MeJA), abscisic acid (ABA), and gibberellin (GA) cis-acting elements. Expression analysis indicated that the MeAHL31 gene is dramatically affected by treatments with salt, drought, MeJA, ABA, and GA3. Histochemical staining in the proMeAHL31-GUS transgenic Arabidopsis corroborated that the GUS staining was found in most tissues and organs, excluding seeds. Beta-glucuronidase (GUS) activity assays showed that the activities in the proMeAHL31-GUS transgenic Arabidopsis were enhanced by different concentrations of NaCl, mannitol (for simulating drought), and MeJA treatments. The integrated findings suggest that the MeAHL31 promoter responds to the abiotic stresses of salt and drought, and its activity is regulated by the MeJA hormone signal.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Manihot , Reguladores del Crecimiento de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Estrés Fisiológico , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Estrés Fisiológico/genética , Manihot/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Sequías , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Oxilipinas/farmacología , Oxilipinas/metabolismo , Acetatos/farmacología
9.
Plants (Basel) ; 13(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39065423

RESUMEN

Reversible protein phosphorylation regulates various cellular mechanisms in eukaryotes by altering the conformation, activity, localization, and stability of substrate proteins. In Arabidopsis thaliana root meristems, histone post-translational modifications are crucial for proper cell division, and they are also involved in oxidative stress signaling. To investigate the link between reactive oxygen species (ROS) and mitosis, we treated various Arabidopsis genotypes, including wild-types and mutants showing dysfunctional PP2A, with the ROS-inducing herbicide diquat (DQ). Studying the c3c4 double catalytic subunit mutant and fass regulatory subunit mutants of PP2A provided insights into phosphorylation-dependent mitotic processes. DQ treatment reduced mitotic activity in all genotypes and caused early mitotic arrest in PP2A mutants, likely due to oxidative stress-induced damage to essential mitotic processes. DQ had a minimal effect on reversible histone H3 phosphorylation in wild-type plants but significantly decreased phospho-histone H3 levels in PP2A mutants. Following drug treatment, the phosphatase activity decreased only in the stronger phenotype mutant plants (fass-5 and c3c4). Our findings demonstrate that (i) the studied PP2A loss-of-function mutants are more sensitive to increased intracellular ROS and (ii) DQ has indirect altering effects of mitotic activities and histone H3 phosphorylation. All these findings underscore the importance of PP2A in stress responses.

10.
Plants (Basel) ; 13(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39065487

RESUMEN

When faced with salinity stress, plants typically exhibit a slowdown in their growth patterns. Boron (B) is an essential micronutrient for plants that are known to play a critical role in controlling cell wall properties. In this study, we used the model plant Arabidopsis thaliana Col-0 and relevant mutants to explore how the difference in B availability may modulate plant responses to salt stress. There was a visible root growth suppression of Col-0 with the increased salt levels in the absence of B while this growth reduction was remarkably alleviated by B supply. Pharmacological experiments revealed that orthovanadate (a known blocker of H+-ATPase) inhibited root growth at no B condition, but had no effect in the presence of 30 µM B. Salinity stress resulted in a massive K+ loss from mature zones of A. thaliana roots; this efflux was attenuated in the presence of B. Supplemental B also increased the magnitude of net H+ pumping by plant roots. Boron availability was also essential for root halotropism. Interestingly, the aha2Δ57 mutant with active H+-ATPase protein exhibited the same halotropism response as Col-0 while the aha2-4 mutant had a stronger halotropism response (larger bending angle) compared with that of Col-0. Overall, the ameliorative effect of B on the A. thaliana growth under salt stress is based on the H+-ATPase stimulation and a subsequent K+ retention, involving auxin- and ROS-pathways.

11.
Planta ; 260(2): 42, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38958765

RESUMEN

MAIN CONCLUSION: Ambient concentrations of atmospheric nitrogen dioxide (NO2) inhibit the binding of PIF4 to promoter regions of auxin pathway genes to suppress hypocotyl elongation in Arabidopsis. Ambient concentrations (10-50 ppb) of atmospheric nitrogen dioxide (NO2) positively regulate plant growth to the extent that organ size and shoot biomass can nearly double in various species, including Arabidopsis thaliana (Arabidopsis). However, the precise molecular mechanism underlying NO2-mediated processes in plants, and the involvement of specific molecules in these processes, remain unknown. We measured hypocotyl elongation and the transcript levels of PIF4, encoding a bHLH transcription factor, and its target genes in wild-type (WT) and various pif mutants grown in the presence or absence of 50 ppb NO2. Chromatin immunoprecipitation assays were performed to quantify binding of PIF4 to the promoter regions of its target genes. NO2 suppressed hypocotyl elongation in WT plants, but not in the pifq or pif4 mutants. NO2 suppressed the expression of target genes of PIF4, but did not affect the transcript level of the PIF4 gene itself or the level of PIF4 protein. NO2 inhibited the binding of PIF4 to the promoter regions of two of its target genes, SAUR46 and SAUR67. In conclusion, NO2 inhibits the binding of PIF4 to the promoter regions of genes involved in the auxin pathway to suppress hypocotyl elongation in Arabidopsis. Consequently, PIF4 emerges as a pivotal participant in this regulatory process. This study has further clarified the intricate regulatory mechanisms governing plant responses to environmental pollutants, thereby advancing our understanding of how plants adapt to changing atmospheric conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Regulación de la Expresión Génica de las Plantas , Hipocótilo , Dióxido de Nitrógeno , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Hipocótilo/crecimiento & desarrollo , Hipocótilo/genética , Hipocótilo/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Dióxido de Nitrógeno/farmacología , Dióxido de Nitrógeno/metabolismo , Regiones Promotoras Genéticas/genética , Ácidos Indolacéticos/metabolismo , Mutación
12.
J Plant Res ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954119

RESUMEN

We have performed a lab-based hypergravity cultivation experiment using a centrifuge equipped with a lighting system and examined long-term effects of hypergravity on the development of the main axis of the Arabidopsis (Arabidopsis thaliana (L.) Heynh.) primary inflorescence, which comprises the rachis and peduncle, collectively referred to as the main stem for simplicity. Plants grown under 1 × g (gravitational acceleration on Earth) conditions for 20-23 days and having the first visible flower bud were exposed to hypergravity at 8 × g for 10 days. We analyzed the effect of prolonged hypergravity conditions on growth, lignin deposition, and tissue anatomy of the main stem. As a result, the length of the main stem decreased and cross-sectional area, dry mass per unit length, cell number, and lignin content of the main stem significantly increased under hypergravity. Lignin content in the rosette leaves also increased when they were exposed to hypergravity during their development. Except for interfascicular fibers, cross-sectional areas of the tissues composing the internode significantly increased under hypergravity in most types of the tissues in the basal part than the apical part of the main stem, indicating that the effect of hypergravity is more pronounced in the basal part than the apical part. The number of cells in the fascicular cambium and xylem significantly increased under hypergravity both in the apical and basal internodes of the main stem, indicating a possibility that hypergravity stimulates procambium activity to produce xylem element more than phloem element. The main stem was suggested to be strengthened through changes in its morphological characteristics as well as lignin deposition under prolonged hypergravity conditions.

13.
Plant Cell ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954500

RESUMEN

Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here we demonstrate the importance of proteins annotated as PLP HOMEOSTASIS PROTEINs (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.

14.
J Exp Bot ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954539

RESUMEN

Linear mixed models (LMMs) are a commonly used method for genome-wide association studies (GWAS) that aim to detect associations between genetic markers and phenotypic measurements in a population of individuals while accounting for population structure and cryptic relatedness. In a standard GWAS, hundreds of thousands to millions of statistical tests are performed, requiring control for multiple hypothesis testing. Typically, static corrections that penalize the number of tests performed are used to control for the family-wise error rate, which is the probability of making at least one false positive. However, it has been shown that in practice this threshold is too conservative for normally distributed phenotypes and not stringent enough for non-normally distributed phenotypes. Therefore, permutation-based LMM approaches have recently been proposed to provide a more realistic threshold that takes phenotypic distributions into account. In this work, we will discuss the advantages of permutation-based GWAS approaches, including new simulations and results from a re-analysis of all publicly available Arabidopsis thaliana phenotypes from the AraPheno database.

15.
Plant Physiol Biochem ; 214: 108888, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38954944

RESUMEN

Trichomes are specialized epidermal structures that protect plants from biotic and abiotic stresses by synthesizing, storing, and secreting defensive compounds. This study investigates the role of the Gossypium arboreum DNA topoisomerase VI subunit B gene (GaTOP6B) in trichome development and branching. Sequence alignment revealed a high similarity between GaTOP6B and AtTOP6B, suggesting a conserved function in trichome regulation. Although AtTOP6B acts as a positive regulator of trichome development, functional analyses showed contrasting effects: Virus-induced gene silencing (VIGS) of GaTOP6B in cotton increased trichome density, while its overexpression in Arabidopsis decreased trichome density but enhanced branching. This demonstrates that GaTOP6B negatively regulates trichome number, indicating species-specific roles in trichome initiation and branching between cotton and Arabidopsis. Overexpression of the GaTOP6B promotes jasmonic acid synthesis, which in turn inhibits the G1/S or G2/M transitions, stalling the cell cycle. On the other hand, it suppresses brassinolide synthesis and signaling while promoting cytokinin degradation, further inhibiting mitosis. These hormonal interactions facilitate the transition of cells from the mitotic cycle to the endoreduplication cycle. As the level of endoreduplication increases, trichomes develop an increased number of branches. These findings highlight GaTOP6B's critical role as a regulator of trichome development, providing new genetic targets for improving cotton varieties in terms of enhanced adaptability and resilience.

16.
Bio Protoc ; 14(12): e5015, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38948259

RESUMEN

All aerial organs in plants originate from the shoot apical meristem, a specialized tissue at the tip of a plant, enclosing a few stem cells. Understanding developmental dynamics within this tissue in relation to internal and external stimuli is of crucial importance. Imaging the meristem at the cellular level beyond very early stages requires the apex to be detached from the plant body, a procedure that does not allow studies in living, intact plants over longer periods. This protocol describes a new confocal microscopy method with the potential to image the shoot apical meristem of an intact, soil-grown, flowering Arabidopsis plant over several days. The setup opens new avenues to study apical stem cells, their interconnection with the whole plant, and their responses to environmental stimuli. Key features • Novel dissection and imaging method of the shoot apical meristem of Arabidopsis. • Procedure performed with intact, soil-grown, flowering plants. • Possibility of long-term live imaging of the shoot apical meristem. • Protocol can be adapted to different plant species.

17.
New Phytol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952028

RESUMEN

Plant homeodomain leucine zipper IV (HD-Zip IV) transcription factors (TFs) contain an evolutionarily conserved steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. While the START domain is required for TF activity, its presumed role as a lipid sensor is not clear. Here we used tandem affinity purification from Arabidopsis cell cultures to demonstrate that PROTODERMAL FACTOR2 (PDF2), a representative member that controls epidermal differentiation, recruits lysophosphatidylcholines (LysoPCs) in a START-dependent manner. Microscale thermophoresis assays confirmed that a missense mutation in a predicted ligand contact site reduces lysophospholipid binding. We additionally found that PDF2 acts as a transcriptional regulator of phospholipid- and phosphate (Pi) starvation-related genes and binds to a palindromic octamer with consensus to a Pi response element. Phospholipid homeostasis and elongation growth were altered in pdf2 mutants according to Pi availability. Cycloheximide chase experiments revealed a role for START in maintaining protein levels, and Pi starvation resulted in enhanced protein destabilization, suggesting a mechanism by which lipid binding controls TF activity. We propose that the START domain serves as a molecular sensor for membrane phospholipid status in the epidermis. Our data provide insights toward understanding how the lipid metabolome integrates Pi availability with gene expression.

18.
Plant Commun ; : 101013, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38961625

RESUMEN

The two principal growth regulators cytokinins and ethylene are known to interact in the regulation of plant growth. However, information about underlying molecular mechanism and positional specificity of the cytokinin/ethylene crosstalk in root growth control is scarce. We have identified spatial specificity of cytokinin-regulated root elongation and root apical meristem (RAM) size, both of which we demonstrate to be dependent on ethylene biosynthesis. Upregulation of the cytokinin biosynthetic gene ISOPENTENYLTRANSFERASE (IPT) in proximal and peripheral tissues leads to both root and RAM shortening. In contrast, IPT activation in distal and inner tissues reduces RAM size while leaving the root length comparable to mock-treated controls. We show that cytokinins regulate two steps specific to ethylene biosynthesis, the production of ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) by ACC SYNTHASEs (ACSs), and its conversion to ethylene by ACC OXIDASEs (ACOs). We describe cytokinin- and ethylene-specific regulation controlling the activity of ACSs and ACOs that are spatially discrete along both proximo/distal and radial root axes. Using direct ethylene measurements, we identify ACO2, ACO3 and ACO4 as being responsible for ethylene biosynthesis and the ethylene-regulated root and RAM shortening in cytokinin-treated Arabidopsis. Direct interaction between ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), a member of the multistep phosphorelay cascade and the C-terminal portion of ETHYLENE INSENSITIVE 2 (EIN2-C), a key regulator of canonical ethylene signaling is involved in the cytokinin-induced, ethylene-mediated control of ACO4. We propose tight cooperation between cytokinin and ethylene signaling in the spatial-specific regulation of ethylene biosynthesis as a key aspect of hormonal control over root growth.

19.
Plant Direct ; 8(7): e622, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39044900

RESUMEN

In Brassicaceae self-incompatibility (SI), self-pollen rejection is initiated by the S-haplotype specific interactions between the pollen S cysteine-rich/S-locus protein 11 (SCR/SP11) ligands and the stigma S receptor kinases (SRK). In Brassica SI, a member of the Plant U-Box (PUB) E3 ubiquitin ligases, ARM-repeat containing 1 (ARC1), is then activated by SRK in this stigma and cellular events downstream of this cause SI pollen rejection by inhibiting pollen hydration and pollen tube growth. During the transition to selfing, Arabidopsis thaliana lost the SI components, SCR, SRK, and ARC1. However, this trait can be reintroduced into A. thaliana by adding back functional copies of these genes from closely related SI species. Both SCR and SRK are required for this, though the degree of SI pollen rejection varies between A. thaliana accessions, and ARC1 is not always needed to produce a strong SI response. For the A. thaliana C24 accession, only transforming with Arabidopsis lyrata SCR and SRK confers a strong SI trait (SI-C24), and so here, we investigated if ARC1-related PUBs were involved in the SI pathway in the transgenic A. thaliana SI-C24 line. Two close ARC1 homologs, PUB17 and PUB16, were selected, and (Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was used to generate pub17 and pub16 mutations in the C24 accession. These mutants were then crossed into the transgenic A. thaliana SI-C24 line and their potential impact on SI pollen rejection was investigated. Overall, we did not observe any significant differences in SI responses to implicate PUB17 and PUB16 functioning in the transgenic A. thaliana SI-C24 stigma to reject SI pollen.

20.
Methods Mol Biol ; 2805: 213-228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39008185

RESUMEN

Imaging the spatiotemporal dynamics of host-microbiota interactions is of particular interest for augmenting our understanding of these complex systems. This is especially true of plant-microbe interactions happening around, on, and inside plant roots where relatively little is understood about the dynamics of these systems. Over the past decade, a number of microfluidic devices have been developed to grow plants hydroponically in gnotobiotic conditions and image morphogenesis of the root and/or dynamics with fluorescently labeled bacteria from the plant root microbiome. Here we describe the construction and use of our Arabidopsis Root Microbiome Microfluidic (ARMM) device for imaging fluorescent protein expressing bacteria and their colonization of Arabidopsis roots. In contrast to other plant root imaging devices, we designed this device to have a larger chamber for observing Arabidopsis root elongation and plant-microbe interactions with older seedlings (between 1.5 and 4 weeks after germination) and a 200 µm chamber depth to specifically maintain thin Arabidopsis roots within the focal distance of the confocal microscope. Our device incorporates a new approach to growing Arabidopsis seedlings in screw-top tube caps for simplified germination and transfer to the device. We present representative images from the ARMM device including high resolution cross section images of bacterial colonization at the root surface.


Asunto(s)
Arabidopsis , Microbiota , Raíces de Plantas , Arabidopsis/microbiología , Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Dispositivos Laboratorio en un Chip , Microscopía Confocal/métodos , Plantones/microbiología , Plantones/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Morfogénesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...