Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Jamba ; 16(1): 1647, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229601

RESUMEN

Climate change and recurring droughts-induced effects on health are becoming an increasingly main global, cultural and public health burden. The heaviest health burden leans on the fragile socio-economic systems among the remote agro-pastoral communities, living in the arid and semi-arid lands (ASALs). Previous studies underlined the indispensability of indigenous knowledge (IK) for resilience-driven disaster risk reduction (DRR) strategies. However, more attention has been drawn towards the necessity of IK in weather forecasts, with less emphasis on its indispensability to alleviate health burden associated with climate change and droughts. We explored the contextual application of IK-based adaptation and related complementarity aspects for culturally relevant and sustainable DRR strategies for the nomadic agro-pastoral communities in Lopur, Turkana, Kenya. Relying on a descriptive qualitative study in phenomenological approach, purposive sampling and focus group discussions with key community influencers, a thematic analysis was conducted for an in-depth understanding and interpretation of data patterns. The contextualised insights revealed the growing vulnerability as a result of the disconnect between modern interventions, IK and the newly adopted environmental degrading coping tactics. Policy-wise, the findings portrayed the necessity for cultural integration and incorporation of indigenous knowledge-based strategies and systems for reinforced information dissemination, accessibility and acceptability for droughts preparedness and response. Contribution: This study underlined the existing room for scientific exploration of the already existing indigenous knowledge-based solutions for food and water insecurity, towards improved resilience for the vulnerable communities experiencing inequitable climate change calamities in the ASALs.

2.
Mycorrhiza ; 34(4): 251-270, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023766

RESUMEN

Hot deserts impose extreme conditions on plants growing in arid soils. Deserts are expanding due to climate change, thereby increasing the vulnerability of ecosystems and the need to preserve them. Arbuscular mycorrhizal fungi (AMF) improve plant fitness by enhancing plant water/nutrient uptake and stress tolerance. However, few studies have focused on AMF diversity and community composition in deserts, and the soil and land use parameters affecting them. This study aimed to comprehensively describe AMF ecological features in a 5,000 km2 arid hyperalkaline region in AlUla, Saudi Arabia. We used a multimethod approach to analyse over 1,000 soil and 300 plant root samples of various species encompassing agricultural, old agricultural, urban and natural ecosystems. Our method involved metabarcoding using 18S and ITS2 markers, histological techniques for direct AMF colonization observation and soil spore extraction and observation. Our findings revealed a predominance of AMF taxa assigned to Glomeraceae, regardless of the local conditions, and an almost complete absence of Gigasporales taxa. Land use had little effect on the AMF richness, diversity and community composition, while soil texture, pH and substantial unexplained stochastic variance drove these compositions in AlUla soils. Mycorrhization was frequently observed in the studied plant species, even in usually non-mycorrhizal plant taxa (e.g. Amaranthaceae, Urticaceae). Date palms and Citrus trees, representing two major crops in the region, however, displayed a very low mycorrhizal frequency and intensity. AlUla soils had a very low concentration of spores, which were mostly small. This study generated new insight on AMF and specific behavioral features of these fungi in arid environments.


Asunto(s)
Clima Desértico , Micorrizas , Microbiología del Suelo , Micorrizas/fisiología , Arabia Saudita , Esporas Fúngicas/fisiología , Suelo/química , Glomeromycota/fisiología , Raíces de Plantas/microbiología
3.
Biodivers Data J ; 12: e121541, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912112

RESUMEN

Background: Orenburg Region is located in the South Urals, mostly in the steppe zone and is characterised by various landscapes suitable for many Chenopodiaceae. The species of Chenopodiaceae are present in all major plant communities (saline vegetation, steppes, on limestone, chalk and sand, and as degraded or ruderal communities). In the steppe zone, many native subshrubby species (Atriplexcana, Caroxylonlaricinum, Suaedaphysophora) playing a crucial role in semi-deserts (known as southern steppes in the recent Russian literature) located southwards of Orenburg Region are locally found, and several annuals (Salicorniaperennans, Suaeda spp.) are most common dominants in plant communities. Some typical semi-desert species (Kalidiumfoliatum, Bassiahyssopifolia, Sodafoliosa, Spirobassiahirsuta) are found in the easternmost part of the region. New information: We compiled a checklist of Chenopodiaceae in Orenburg Region, with two new records (Chenopodiumvirgatum, Corispermumlaxiflorum), based on our critical revision, comprehensive inventory of herbarium specimens and documented observations and field research. In total, we report 76 species in the Region, which is the third-highest number of the Chenopodiaceae species compared with other administrative territories of European Russia, North Caucasus and West Siberia. Alien and native taxa are distinguished. Zonal patterns of species distributions are confirmed. A preliminary conservation status is proposed for each native species. Three species are recommended for exclusion from the Red Data Book of Orenburg Region: Petrosimoniatriandra (because of its extensive distribution), Kalidiumfoliatum and Anabasissalsa (because of the lack of actual threat to their populations). Arthrophytumlehmannianum and Salsolarosacea are considered threatened (Vulnerable) because of their restricted occurrence and population size and because their localities are under anthropogenic pressure. Atriplexhortensis, Atriplexrosea, Chenopodiumacuminatum, C.karoi, C.praetericola, C.vulvaria, Climacopteraaffinis, C.crassa, Halimocnemiskarelinii, Salsolapaulsenii and Xylosalsolaarbuscula are excluded from the checklist, based on various reasons as discussed in the paper. Point distribution maps are provided for each species. Agriophyllumpungens (Vahl) Link is accepted as the correct authorship instead of "M.Bieb. ex C.A.Mey."

4.
Plants (Basel) ; 13(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891271

RESUMEN

Wheat is one of the most important cereal crops in Egypt and all over the world. Its productivity is adversely affected by drought due to deficient irrigation to provide nutrients required for plant growth. In a field experiment, silicon foliar applications at concentrations of 0, 200, and 400 mg L-1 were performed at different irrigation rates ranging from 1000 to 4000 m3 ha-1 to assess water irrigation productivity and wheat crop yield in a calcareous soil under arid climate conditions. Increased irrigation rates led to a significant increase in soil nutrient dynamics, as well as in the number and weight of grains per spike, leaf area index, grain yield, straw yield, and biological yield, with the exception of the weight of 1000 grains. Spraying with sodium silicate had a significant impact on grain yield and harvest index but did not significantly impact the other traits. Furthermore, the interaction between irrigation and silicate application rates showed significance only for grain yield, the number of spikes/m2, and the harvest index. Applying three times irrigation could produce the highest nutrient retention, wheat yield, and water irrigation productivity. No significance was observed between 3000 m3 ha-1 and 4000 m3 ha-1 irrigation, indicating a saving of 25% of applied irrigation water. It can be concluded that applying irrigation at 3000 m3 ha-1 could be a supplemental irrigation strategy. High wheat grain yield can be achieved under deficit irrigation (3000 m3 ha-1) on the northwestern coast of Egypt with an arid climate by spraying crops with sodium silicate at a rate of 400 mg L-1.

5.
Glob Chang Biol ; 30(4): e17292, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634556

RESUMEN

Drylands, comprising semi-arid, arid, and hyperarid regions, cover approximately 41% of the Earth's land surface and have expanded considerably in recent decades. Even under more optimistic scenarios, such as limiting global temperature rise to 1.5°C by 2100, semi-arid lands may increase by up to 38%. This study provides an overview of the state-of-the-art regarding changing aridity in arid regions, with a specific focus on its effects on the accumulation and availability of carbon (C), nitrogen (N), and phosphorus (P) in plant-soil systems. Additionally, we summarized the impacts of rising aridity on biodiversity, service provisioning, and feedback effects on climate change across scales. The expansion of arid ecosystems is linked to a decline in C and nutrient stocks, plant community biomass and diversity, thereby diminishing the capacity for recovery and maintaining adequate water-use efficiency by plants and microbes. Prolonged drought led to a -3.3% reduction in soil organic carbon (SOC) content (based on 148 drought-manipulation studies), a -8.7% decrease in plant litter input, a -13.0% decline in absolute litter decomposition, and a -5.7% decrease in litter decomposition rate. Moreover, a substantial positive feedback loop with global warming exists, primarily due to increased albedo. The loss of critical ecosystem services, including food production capacity and water resources, poses a severe challenge to the inhabitants of these regions. Increased aridity reduces SOC, nutrient, and water content. Aridity expansion and intensification exacerbate socio-economic disparities between economically rich and least developed countries, with significant opportunities for improvement through substantial investments in infrastructure and technology. By 2100, half the world's landmass may become dryland, characterized by severe conditions marked by limited C, N, and P resources, water scarcity, and substantial loss of native species biodiversity. These conditions pose formidable challenges for maintaining essential services, impacting human well-being and raising complex global and regional socio-political challenges.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Carbono , Suelo/química , Temperatura , Plantas , Agua
7.
Ecology ; 105(3): e4194, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37882101

RESUMEN

A major restriction in predicting plant community response to future climate change is a lack of long-term data needed to properly assess species and community response to climate and identify a baseline to detect climate anomalies. Here, we use a 106-year dataset on a Sonoran Desert plant community to test the role of extreme temperature and precipitation anomalies on community dynamics at the decadal scale and over time. Additionally, we tested the climate sensitivity of 39 desert plant species and whether sensitivity was associated with growth form, longevity, geographic range, or local dominance. We found that desert plant communities had shifted directionally over the 106 years, but the climate had little influence on this directional change primarily due to nonlinear shifts in precipitation anomalies. Decadal-scale climate had the largest impact on species richness, species relative density, and total plant cover, explaining up to 26%, 45%, and 55% of the variance in each, respectively. Drought and the interaction between the frequency of freeze events and above-average summer precipitation were among the most influential climate factors. Increased drought frequency and wetter periods with frequent freeze events led to larger reductions in total plant cover, species richness, and the relative densities of dominant subshrubs Ambrosia deltoidea and Encelia farinosa. More than 80% of the tested species were sensitive to climate, but sensitivity was not associated with a species' local dominance, longevity, geographic range, or growth form. Some species appear to exhibit demographic buffering, where when they have a higher sensitivity to drought, they also tend to have a higher sensitivity to favorable (i.e., wetter and hotter) conditions. Overall, our results suggest that, while decadal-scale climate variation substantially impacts these desert plant communities, directional change in temperature over the last century has had little impact due to the relative importance of precipitation and drought. With projections of increased drought in this region, we may see reductions in total vegetation cover and species richness due to the loss of species, possibly through a breakdown in their ability to demographically buffer climatic variation, potentially changing community dynamics through a change in facilitative and competitive processes.


Asunto(s)
Clima Desértico , Plantas , Calor , Temperatura , Estaciones del Año
8.
Sci Total Environ ; 887: 163936, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37149179

RESUMEN

An 'oasis' signifies a refugium of safety, recovery, relaxation, fertility, and productivity in an inhospitable desert, a sweet spot in a barren landscape where life-giving water spills forth from the Earth. Remarkable mythological congruencies exist across dryland cultures worldwide where oases or 'arid-land springs' occur. In many places they also provide specialised habitats for an extraordinary array of endemic organisms. To inform their management, and maintain their integrity, it is essential to understand the hydrogeology of aquifers and springs. Gravity-fed vs artesian aquifers; actively recharged vs fossil aquifers, and sources of geothermal activity are important concepts presented here. There consequences for oases of sustainable and unsustainable groundwater extraction, and other examples of effective conservation management. Oases are archetypes for human consciousness, habitats that deserve protection and conservation, and a lingua franca for multicultural values and scientific exchange. We represent an international Fellowship of the Spring seeking to encompass and facilitate the stewardship of oases and aquifers through improved knowledge, outreach, and governance.


Asunto(s)
Agua Subterránea , Manantiales Naturales , Humanos , Becas , Ecosistema , Agua Dulce
9.
Ecol Evol ; 13(4): e10014, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37113520

RESUMEN

Biomonitoring is vital for establishing baseline data that is needed to identify and quantify ecological change and to inform management and conservation activities. However, biomonitoring and biodiversity assessment in arid environments, which are predicted to cover 56% of the Earth's land surface by 2100, can be prohibitively time consuming, expensive, and logistically challenging due to their often remote and inhospitable nature. Sampling of environmental DNA (eDNA) coupled with high-throughput sequencing is an emerging biodiversity assessment method. Here we explore the application of eDNA metabarcoding and various sampling approaches to estimate vertebrate richness and assemblage at human-constructed and natural water sources in a semi-arid region of Western Australia. Three sampling methods: sediment samples, filtering through a membrane with a pump, and membrane sweeping in the water body, were compared using two eDNA metabarcoding assays, 12S-V5 and 16smam, for 120 eDNA samples collected from four gnammas (gnamma: Australian Indigenous Noongar language term-granite rock pools) and four cattle troughs in the Great Western Woodlands, Western Australia. We detected higher vertebrate richness in samples from cattle troughs and found differences between assemblages detected in gnammas (more birds and amphibians) and cattle troughs (more mammals, including feral taxa). Total vertebrate richness was not different between swept and filtered samples, but all sampling methods yielded different assemblages. Our findings indicate that eDNA surveys in arid lands will benefit from collecting multiple samples at multiple water sources to avoid underestimating vertebrate richness. The high concentration of eDNA in small, isolated water bodies permits the use of sweep sampling that simplifies sample collection, processing, and storage, particularly when assessing vertebrate biodiversity across large spatial scales.

10.
Biology (Basel) ; 12(4)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37106713

RESUMEN

Mexico harbors ~45% of world's cacti species richness. Their biogeography and phylogenomics were integrated to elucidate the evolutionary history of the genera Coryphantha, Escobaria, Mammillaria, Mammilloydia, Neolloydia, Ortegocactus, and Pelecyphora (Mammilloid Clade). We analyzed 52 orthologous loci from 142 complete genomes of chloroplast (103 taxa) to generate a cladogram and a chronogram; in the latter, the ancestral distribution was reconstructed with the Dispersal-Extinction-Cladogenesis model. The ancestor of these genera arose ~7 Mya on the Mexican Plateau, from which nine evolutionary lineages evolved. This region was the site of 52% of all the biogeographical processes. The lineages 2, 3 and 6 were responsible for the colonization of the arid southern territories. In the last 4 Mya, the Baja California Peninsula has been a region of prolific evolution, particularly for lineages 8 and 9. Dispersal was the most frequent process and vicariance had relevance in the isolation of cacti distributed in the south of Mexico. The 70 taxa sampled as Mammillaria were distributed in six distinct lineages; one of these presumably corresponded to this genus, which likely had its center of origin in the southern part of the Mexican Plateau. We recommend detailed studies to further determine the taxonomic circumscription of the seven genera.

11.
Environ Res ; 229: 115966, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37100368

RESUMEN

BACKGROUND: Environmental stresses pose a significant threat to plant growth and ecosystem productivity, particularly in arid lands that are more susceptible to climate change. Strigolactones (SLs), carotenoid-derived plant hormones, have emerged as a potential tool for mitigating environmental stresses. METHODS: This review aimed to gather information on SLs' role in enhancing plant tolerance to ecological stresses and their possible use in improving the resistance mechanisms of arid land plant species to intense aridity in the face of climate change. RESULTS: Roots exude SLs under different environmental stresses, including macronutrient deficiency, especially phosphorus (P), which facilitates a symbiotic association with arbuscular mycorrhiza fungi (AMF). SLs, in association with AMF, improve root system architecture, nutrient acquisition, water uptake, stomatal conductance, antioxidant mechanisms, morphological traits, and overall stress tolerance in plants. Transcriptomic analysis revealed that SL-mediated acclimatization to abiotic stresses involves multiple hormonal pathways, including abscisic acid (ABA), cytokinins (CK), gibberellic acid (GA), and auxin. However, most of the experiments have been conducted on crops, and little attention has been paid to the dominant vegetation in arid lands that plays a crucial role in reducing soil erosion, desertification, and land degradation. All the environmental gradients (nutrient starvation, drought, salinity, and temperature) that trigger SL biosynthesis/exudation prevail in arid regions. The above-mentioned functions of SLs can potentially be used to improve vegetation restoration and sustainable agriculture. CONCLUSIONS: Present review concluded that knowledge on SL-mediated tolerance in plants is developed, but still in-depth research is needed on downstream signaling components in plants, SL molecular mechanisms and physiological interactions, efficient methods of synthetic SLs production, and their effective application in field conditions. This review also invites researchers to explore the possible application of SLs in improving the survival rate of indigenous vegetation in arid lands, which can potentially help combat land degradation problems.


Asunto(s)
Ecosistema , Reguladores del Crecimiento de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Lactonas/metabolismo , Plantas , Estrés Fisiológico
12.
Annu Rev Microbiol ; 77: 149-171, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37068777

RESUMEN

Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.


Asunto(s)
Cianobacterias , Líquenes , Suelo/química , Ecosistema , Microbiología del Suelo
13.
Sci Total Environ ; 857(Pt 3): 159695, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302433

RESUMEN

The strategic goals of the United Nations and the Aichi Targets for biodiversity conservation have not been met. Instead, biodiversity has continued to rapidly decrease, especially in developing countries. Setting a new global biodiversity framework requires clarifying future priorities and strategies to bridge challenges and provide representative solutions. Hyper-arid, arid, and semi-arid lands (herein, arid lands) form about one third of the Earth's terrestrial surface. Arid lands contain unique biological and cultural diversity, and biodiversity loss in arid lands can have a disproportionate impact on these ecosystems due to low redundancy and a high risk of trophic cascades. They contain unique biological and cultural diversity and host many endemic species, including wild relatives of key crop plants. Yet extensive agriculture, unsustainable use, and global climate change are causing an irrecoverable damage to arid lands, with far-reaching consequences to the species, ground-water resources, ecosystem productivity, and ultimately the communities' dependant on these systems. However, adequate research and effective policies to protect arid land biodiversity and sustainability are lacking because a large proportion of arid areas are in developing countries, and the unique diversity in these systems is frequently overlooked. Developing new priorities for global arid lands and mechanisms to prevent unsustainable development must become part of public discourse and form the basis for conservation efforts. The current situation demands the combined efforts of researchers, practitioners, policymakers, and local communities to adopt a socio-ecological approach for achieving sustainable development (SDGs) in arid lands. Applying these initiatives globally is imperative to conserve arid lands biodiversity and the critical ecological services they provide for future generations. This perspective provides a framework for conserving biodiversity in arid lands for all stakeholders that will have a tangible impact on sustainable development, nature, and human well-being.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Biodiversidad , Agricultura , Cambio Climático
14.
New Phytol ; 236(1): 15-20, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35706381

RESUMEN

Drylands, which cover > 40% of Earth's terrestrial surface, are dominant drivers of global biogeochemical cycling and home to more than one third of the global human population. Climate projections predict warming, drought frequency and severity, and evaporative demand will increase in drylands at faster rates than global means. As a consequence of extreme temperatures and high biological dependency on limited water availability, drylands are predicted to be exceptionally sensitive to climate change and, indeed, significant climate impacts are already being observed. However, our understanding and ability to forecast climate change effects on dryland biogeochemistry and ecosystem functions lag behind many mesic systems. To improve our capacity to forecast ecosystem change, we propose focusing on the controls and consequences of two key characteristics affecting dryland biogeochemistry: (1) high spatial and temporal heterogeneity in environmental conditions and (2) generalized resource scarcity. In addition to climate change, drylands are experiencing accelerating land-use change. Building our understanding of dryland biogeochemistry in both intact and disturbed systems will better equip us to address the interacting effects of climate change and landscape degradation. Responding to these challenges will require a diverse, globally distributed and interdisciplinary community of dryland experts united towards better understanding these vast and important ecosystems.


Asunto(s)
Cambio Climático , Ecosistema , Sequías , Humanos , Suelo , Agua
15.
Ecology ; 103(9): e3744, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35522227

RESUMEN

Future climates will alter the frequency and size of rain events in drylands, potentially affecting soil microbes that generate carbon feedbacks to climate, but field tests are rare. Topsoils in drylands are commonly colonized by biological soil crusts (biocrusts), photosynthesis-based communities that provide services ranging from soil fertilization to stabilization against erosion. We quantified responses of biocrust microbial communities to 12 years of altered rainfall regimes, with 60 mm of additional rain per year delivered either as small (5 mm) weekly rains or large (20 mm) monthly rains during the summer monsoon season. Rain addition promoted microbial diversity, suppressed the dominant cyanobacterium, Microcoleus vaginatus, and enhanced nitrogen-fixing taxa, but did not consistently increase microbial biomass. The addition of many small rain events increased microbial biomass, whereas few, large events did not. These results alter the physiological paradigm that biocrusts are most limited by the amount of rainfall and instead predict that regimes enriched in small rain events will boost cyanobacterial biocrusts and enhance their beneficial services to drylands.


Asunto(s)
Microbiota , Suelo , Biomasa , Ecosistema , Lluvia , Microbiología del Suelo
16.
Sci Total Environ ; 838(Pt 2): 156126, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35605850

RESUMEN

Sand dams are impermeable water harvesting structures built to collect and store water within the volume of sediments transported by ephemeral rivers. The artificial sandy aquifer created by the sand dam reduces evaporation losses relative to surface water storage in traditional dams. Recent years have seen a renaissance of studies on sand dams as an effective water scarcity adaptation strategy for drylands. However, many aspects of their functioning and effectiveness are still unclear. Literature reviews have pointed to a range of research gaps that need further scientific attention, such as river corridors and network dynamics, watershed-scale impacts, and interaction with social dynamics. However, the scattered and partially incomplete information across the different reviews would benefit from an integrated framework for directing future research efforts. This paper is a collaborative effort of different research groups active on sand dams and stems from the need to channel future research efforts on this topic in a thorough and coherent way. We synthesize the pivotal research gaps of a) unclear definition of "functioning" sand dams, b) lack of methodologies for watershed-scale analysis, c) neglect of social aspects in sand dam research, and d) underreported impacts of sand dams. We then propose framing future research to better target the synthesized gaps, including using the social-ecological systems framework to better capture the interconnected social and biophysical research gaps on sand dams, fully utilizing the potential of remote sensing in large-scale studies and collecting sand dam cases across the world to create an extensive database to advance evidence-based research on sand dams.


Asunto(s)
Arena , Agua , Ecosistema , Ríos , Abastecimiento de Agua
17.
Plants (Basel) ; 11(6)2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35336654

RESUMEN

Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing "camelina" from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches.

18.
J Environ Manage ; 307: 114558, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091247

RESUMEN

There is an urgent global need to expand crop cultivation into arid and semiarid lands to guarantee food security. Thus, limited irrigation strategies and soil amendments are promising strategies for conserving water in arid and semi-arid crop production. Soil amendments, such as compost and biochar can improve soil water relationships, nitrogen (N) fixation, soil fertility, and crop productivity. A study was designed to evaluate the effect of biochar and compost applications on soil water relationships, nutrient uptake, plant growth, and N-fixation. A greenhouse pot experiment was conducted in two soils using a complete factorial design. The main effect, i.e., water content of each soil, was maintained at either 40% or 60% water filled porosity. The sub-effect, organic amendment type, was applied as biochar or compost. The sub-sub effect was rate of application (0, 5, and 10 Mg ha-1). Plant height and root length were significantly affected by the rate of amendment applied, whereas shoot and root mass differences were explained by irrigation strategy. Whole plant N uptake was moderately affected by water content only (p = 0.0818). Phosphorus and Potassium uptake were highly affected by amendment type and rate. Biochar moderately improved plant available water (0.061 %Vol Mg-1 ha-1) over the range of 0-20 Mg ha-1 in the sandier soil. Compost did not improve plant available water in either soil. Nodulation was affected by soil type only. The benefits of biochar or compost for plant were inconsistent and depended upon irrigation strategies, soil type, application rate, and plant species.


Asunto(s)
Compostaje , Fabaceae , Carbón Orgánico , Suelo , Agua
19.
Molecules ; 26(21)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34770890

RESUMEN

Essential Oils (EOs) are expensive hydrocarbons produced exclusively by specific species in the plant kingdom. Their applications have deep roots in traditional herbal medicine, which lacks scientific evidence. Nowadays, more than ever, there is a growing global interest in research-based discoveries that maintain and promote health conditions. Consequently, EOs became a much attractive topic for both research and industry, with revenues reaching billions of dollars annually. In this work, we provide key guidance to all essential oil-bearing plants growing in the United Arab Emirates (UAE). The comprehensive data were collected following an extensive, up-to-date literature review. The results identified 137 plant species, including indigenous and naturalized ones, in the UAE, citing over 180 published research articles. The general overview included plant botanical names, synonyms, common names (Arabic and English), families and taxonomic authority. The study acts as a baseline and accelerator for research, industry and discoveries in multiple disciplines relying on essential oil-bearing plants.


Asunto(s)
Aceites Volátiles , Aceites de Plantas , Plantas/química , Ecosistema , Humanos , Aceites Volátiles/análisis , Aceites Volátiles/química , Aceites Volátiles/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Fitoquímicos/farmacología , Aceites de Plantas/análisis , Aceites de Plantas/química , Aceites de Plantas/farmacología , Plantas/clasificación , Suelo , Emiratos Árabes Unidos , Tiempo (Meteorología)
20.
Iran J Microbiol ; 13(3): 418-424, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34540181

RESUMEN

BACKGROUND AND OBJECTIVES: Yeasts are an important portion of microbial communities of soil due to their bioactivity for ecosystem safety. Soil yeast abundance and diversity are likely to be affected under harsh environmental and climatic conditions. In Iraq, human activity and climatic changes especially high temperature which may alter microbial communities in soil. Very little is known about yeast abundance and diversity in a hot climatic region. MATERIALS AND METHODS: By PCR technique, soil yeast abundance and diversity were investigated under extreme environmental and climatic conditions, as well as the effects of soil properties and vegetation cover in semi-arid lands. RESULTS: In all, 126 yeast strains were isolated and identified as belonging to 13 genera and 26 known species. The maximum quantity of yeast was 0.8 × 102 CFU g-1 of soil, with significantly varied in abundance and diversity depending on soil properties and presence of vegetation. CONCLUSION: The results show that soil yeast abundance in these regions was significantly decreased. However, semi-arid lands are still rich in yeast diversity, and many species have adapted to survive in such conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...