Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 20(1): 335, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842662

RESUMEN

BACKGROUND: Cytomegalovirus (CMV) pneumonia is a major cause of morbidity and mortality in immunodeficiency individuals, including transplant recipients and Acquired Immune Deficiency Syndrome patients. Antiviral drugs ganciclovir (GCV) and phosphonoformate (PFA) are first-line agents for pneumonia caused by herpesvirus infection. However, the therapy suffers from various limitations such as low efficiency, drug resistance, toxicity, and lack of specificity. METHODS: The antiviral drugs GCV and PFA were loaded into the pH-responsive nanoparticles fabricated by poly(lactic-co-glycolic acid) (PLGA) and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and further coated with cell membranes derived from bone marrow mesenchymal stem cells to form artificial stem cells, namely MPDGP. We evaluated the viral suppression effects of MPDGP in vitro and in vivo. RESULTS: MPDGP showed significant inflammation tropism and efficient suppression of viral replication and virus infection-associated inflammation in the CMV-induced pneumonia model. The synergistic effects of the combination of viral DNA elongation inhibitor GCV and viral DNA polymerase inhibitor PFA on suppressing the inflammation efficiently. CONCLUSION: The present study develops a novel therapeutic intervention using artificial stem cells to deliver antiviral drugs at inflammatory sites, which shows great potential for the targeted treatment of pneumonia. To our best knowledge, we are the first to fabricate this kind of artificial stem cell to deliver antiviral drugs for pneumonia treatment.


Asunto(s)
Antivirales , Sistema de Administración de Fármacos con Nanopartículas , Neumonía/tratamiento farmacológico , Antivirales/farmacología , Antivirales/uso terapéutico , Citomegalovirus , Infecciones por Citomegalovirus/tratamiento farmacológico , Ácidos Grasos Monoinsaturados/química , Foscarnet/farmacología , Foscarnet/uso terapéutico , Ganciclovir/farmacología , Ganciclovir/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Compuestos de Amonio Cuaternario/química , Células Madre
2.
Bioact Mater ; 14: 416-429, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35386821

RESUMEN

Currently, stem cell transplantations in cardiac repair are limited owing to disadvantages, such as immunological rejection and poor cell viability. Although direct injection of exosomes can have a curative effect similar to that of stem cell transplantation, high clearance hinders its application in clinical practice. Previous reports suggested that induction of coronary collateralization can be a desired method of adjunctive therapy for someone who had missed the optimal operation time to attenuate myocardial ischemia. In this study, to mimic the paracrine and biological activity of stem cells, we developed artificial stem cells that can continuously release Tß4-exosomes (Tß4-ASCs) by encapsulating specific exosomes within microspheres using microfluidics technology. The results show that Tß4-ASCs can greatly promote coronary collateralization in the periphery of the myocardial infarcted area, and its therapeutic effect is superior to that of directly injecting the exosomes. In addition, to better understand how it works, we demonstrated that the Tß4-ASC-derived exosomes can enhance the angiogenic capacity of coronary endothelial cells (CAECs) via the miR-17-5p/PHD3/Hif-1α pathway. In brief, as artificial stem cells, Tß4-ASCs can constantly release functional exosomes and stimulate the formation of collateral circulation after myocardial infarction, providing a feasible and alternative method for clinical revascularization.

3.
World J Stem Cells ; 13(5): 439-451, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34136074

RESUMEN

On February 11, 2020, the World Health Organization officially announced the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as an emerging recent pandemic illness, which currently has approximately taken the life of two million persons in more than 200 countries. Medical, clinical, and scientific efforts have focused on searching for new prevention and treatment strategies. Regenerative medicine and tissue engineering focused on using stem cells (SCs) have become a promising tool, and the regenerative and immunoregulatory capabilities of mesenchymal SCs (MSCs) and their exosomes have been demonstrated. Moreover, it has been essential to establishing models to reproduce the viral life cycle and mimic the pathology of COVID-19 to understand the virus's behavior. The fields of pluripotent SCs (PSCs), induced PSCs (iPSCs), and artificial iPSCs have been used for this purpose in the development of infection models or organoids. Nevertheless, some inconveniences have been declared in SC use; for example, it has been reported that SARS-CoV-2 enters human cells through the angiotensin-converting enzyme 2 receptor, which is highly expressed in MSCs, so it is important to continue investigating the employment of SCs in COVID-19, taking into consideration their advantages and disadvantages. In this review, we expose the use of different kinds of SCs and their derivatives for studying the SARS-CoV-2 behavior and develop treatments to counter COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...