Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Nutrients ; 16(14)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39064738

RESUMEN

Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials.


Asunto(s)
Tejido Adiposo , Andrographis , Antioxidantes , Músculo Esquelético , Extractos Vegetales , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Extractos Vegetales/farmacología , Antioxidantes/farmacología , Andrographis/química , Masculino , Adulto , Femenino , Antiinflamatorios/farmacología , Inflamación/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Adulto Joven , Suplementos Dietéticos
2.
Biomed Chromatogr ; : e5968, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039695

RESUMEN

Withania somnifera belongs to the family Solanaceae, commonly called ashwagandha, and is traditionally used as an astringent, hepatoprotective and antioxidant, and as a treatment for rheumatism. Therefore the current study aimed to explore the dichloromethane fraction of W. somnifera whole plant (DCFWS) and ethyl acetate fraction of W. somnifera (EAFWS) using gas chromatoghraphy-mass spectrometry (GC-MS) analysis and to find the acetylcholinesterase inhibition potential along with spasmolytic activity. The GC-MS-detected phytochemicals were 2,4-bis(1,1-dimethylethyl), hexadecanoic acid, 1-nonadecene and 11-octadecenoic acid. The DCFWS and EAFWS exhibited acetylcholinesterase inhibitory potential with significant inhibitory concentration values. The acute toxicity results of both fractions showed high toxicity, causing emesis at 0.5 g and both emesis and diarrhea at 1 g/kg. Both fractions exhibited significant (p ≤ 0.01) laxative activity against metronidazole (7 mg/kg) and loperamide hydrochloride (4 mg/kg) induced constipation. Both DCFWS (66.8 ± 3.85%) and EAFWS (58.58 ± 3.28%) significantly (p ≤ 0.05) increased charcoal movement compared with distal water (43.93 ± 4.34%). Similarly the effect of DCFWS on KCl-induced (80 mm) contraction was more significant as compared with EAFWS. It was concluded that the plant can be used in the treatment of gastrointestinal tract diseases such as constipation. Furthermore, additional work is required in the future to determine the bioactive compounds that act as therapeutic agents in W. somnifera.

3.
Front Nutr ; 11: 1403108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887495

RESUMEN

Background: Back pain is a common health problem that affects both workers and older people, reducing their quality of life. The primary objective was to assess the effect of dietary supplementation with plant extracts of rosemary, ashwagandha, and sesame consumed for 12 weeks on the intensity of back pain. Methods: A single-center randomized double-blind study with three parallel arms depending on the product consumed. The duration of treatment was 12 weeks. The investigational product, Berelief®, contained a blend of three polyphenolic standardized extracts: rosemary (Rosmarinus officinalis L.), ashwagandha (Withania somnifera L.), and sesame (Sesamum indicum L.) seed. Two doses were tested: low dose (400 mg) and high dose (800 mg). There were 42 subjects in the placebo group, 39 in the low dose and 42 in the high dose groups. Study variables included back pain intensity [VAS score, Patient-Reported Outcomes Measurement Information System (PROMIS-29), and Cornell Musculoskeletal Discomfort Questionnaire; functionality Roland-Morris Disability (RMD) questionnaire]; quality of life (QoL) [36-item Short Form Survey (SF-36), the Beck Depression Inventory-II (BDI-II), the State-Trait Anxiety Inventory (STAI), and the Perceived Stress Scale (PSS)]; sleep quality [accelerometer and Pittsburgh Sleep Quality Index (PSQI)]. Results: The improvement in back pain recorded by the visual analogue scale (VAS) at the study visits after the beginning of treatment, as well as on a weekly basis recorded in the diary card was significantly higher in the intervention group than in the placebo group (p < 0.044 dose-low; p < 0.005 dose-high). Significant differences in pain intensity of the PROMIS-29 (p = 0.002) and upper back pain in the Cornell questionnaire (p = 0.011) in favour of the investigational product were found. Furthermore, benefits in improving health-related quality of life, mood and sleep quality were also detected. Conclusion: Dietary supplementation for 12 weeks of a blend of polyphenolic standardized extracts of rosemary, ashwagandha, and sesame was effective in reducing the intensity of pain in subjects with chronic myofascial cervical and back pain.

4.
Clin Exp Reprod Med ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38853132

RESUMEN

Objective: Cyclophosphamide (CP) is an alkylating agent commonly used in cancer treatment. It is known to have detrimental effects on the reproductive system, including the potential to cause infertility. Recently, herbal remedies have gained traction as a complementary approach to addressing these side effects. In this study, our goal was to investigate whether the aqueous-alcoholic extract of Withania somnifera (WS) could mitigate the adverse impacts of CP on testicular tissue. Methods: Animals were randomly assigned to one of the following groups: control, WS (500 mg/kg), CP (100 mg/kg), CP+WS pre-treatment, and CP+WS post-treatment. WS was administered orally through gavage for 1 month. We assessed sperm parameters, testicular histopathology, and the expression of the Bax and Bcl2 genes in the experimental groups. Results: Sperm parameters (including count, viability, and motility), the number of spermatogonia, the seminiferous tubule diameter, and Bcl2 gene expression, significantly decreased after CP injection (p<0.05). Conversely, the number of immotile sperm and Bax gene expression significantly increased (p<0.05). Treatment with WS, especially when administered as a pre-treatment, ameliorated the sperm parameters, histological alterations, and the expression of apoptosis-related genes (p<0.05). Conclusion: The data suggest that WS may mitigate the detrimental effects of CP on testicular tissue by reducing apoptosis. Consequently, WS has the potential to be used as an adjunctive therapy to reduce the complications associated with CP treatment.

5.
Br J Hosp Med (Lond) ; 85(6): 1-4, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38941978

RESUMEN

A 37-year-old woman presented with nausea, vomiting and headache. She was found to be profoundly hyponatraemic with a sodium of 121 mmol/L, which deteriorated following a fluid challenge. An initial hyponatraemia screen identified adrenal insufficiency, with cortisol of 48 nmol/L. History confirmed she had been taking the herbal plant, ashwagandha. After 3 days of fluid restriction and steroid replacement, her sodium returned to normal (139 mmol/L). This article reviews the possible harmful effects of over-the-counter herbal remedies and highlights the importance of considering a wide differential diagnosis in patients presenting with non-specific symptoms.


Asunto(s)
Insuficiencia Suprarrenal , Hiponatremia , Humanos , Femenino , Adulto , Insuficiencia Suprarrenal/inducido químicamente , Insuficiencia Suprarrenal/diagnóstico , Insuficiencia Suprarrenal/tratamiento farmacológico , Fitoterapia/efectos adversos , Preparaciones de Plantas/efectos adversos , Diagnóstico Diferencial
6.
Front Nutr ; 11: 1370951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765810

RESUMEN

The health-beneficial effects of nutraceuticals in various diseases have received enhanced attention in recent years. Aging is a continuous process wherein physiological activity of an individual declines over time and is characterized by various indefinite hallmarks which contribute toward aging-related comorbidities in an individual which include many neurodegenerative diseases, cardiac problems, diabetes, bone-degeneration, and cancer. Cellular senescence is a homeostatic biological process that has an important function in driving aging. Currently, a growing body of evidence substantiates the connection between epigenetic modifications and the aging process, along with aging-related diseases. These modifications are now being recognized as promising targets for emerging therapeutic interventions. Considering that almost all the biological processes are modulated by RNAs, numerous RNA-binding proteins have been found to be linked to aging and age-related complexities. Currently, studies have shed light on the ability of the nutraceutical Withania somnifera (Ashwagandha) to influence RNA expression, stability, and processing, offering insights into its mechanisms of action. By targeting RNA-related pathways, Withania somnifera may exhibit promising effects in ameliorating age-associated molecular changes, which include modifications in gene expression and signaling networks. This review summarizes the potential role of Withania somnifera as a nutraceutical in modulating RNA-level changes associated with aging, encompassing both in vitro and in vivo studies. Taken together, the putative role(s) of Withania in modulation of key RNAs will provide insights into understanding the aging process and facilitate the development of various preventive and therapeutic strategies employing nutraceuticals for healthy aging.

7.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732539

RESUMEN

BACKGROUND: Stress is a known causative factor in modulating cognitive health, which overall well-being and quality of life are dependent on. Long-term stress has been shown to disrupt the balance of the hypothalamic-pituitary-adrenal (HPA) axis. Adaptogens, such as Withania somnifera (ashwagandha), are commonly used in Ayurvedic medicine for stress relief and ameliorating HPA-axis dysfunction. The aim of this study was to support the role of a root and leaf water-extracted ashwagandha extract (WS) in stress reduction by confirming the lowest clinically validated dose for stress management (125 mg/day) in a dose-dependent clinical study in adults with self-reported high stress. METHODS: An 8-week, randomized, double-blinded, placebo-controlled study to compare the effects of three different WS extract doses (125, 250 and 500 mg) was performed. A total of 131 adults were enrolled, and 98 were included in the final analysis. Attenuation of chronic stress was measured using the 14-item Perceived Stress Scale (PSS) and biochemical-related stress parameters. RESULTS: We have shown that aqueous WS extract (roots and leaves) safely reduces mild to moderate chronic stress at doses of 125 mg, 250 mg, and 500 mg/day for 8 weeks. CONCLUSIONS: Our findings demonstrate the stress-reduction capabilities of this well-characterized aqueous extract of WS (root and leaf) at the low dose of 125 mg/day, in a dose-dependent manner, via the modulation of the HPA axis. TRIAL REGISTRATION: This study was registered with the Clinical Trials Registry-India (CTRI) with the registration number: CTRI/2019/11/022100.


Asunto(s)
Extractos Vegetales , Hojas de la Planta , Raíces de Plantas , Estrés Psicológico , Withania , Humanos , Withania/química , Extractos Vegetales/farmacología , Masculino , Femenino , Adulto , Método Doble Ciego , Estrés Psicológico/tratamiento farmacológico , Hojas de la Planta/química , Persona de Mediana Edad , Raíces de Plantas/química , Sistema Hipotálamo-Hipofisario/efectos de los fármacos , Enfermedad Crónica , Medicina Ayurvédica , Sistema Hipófiso-Suprarrenal/efectos de los fármacos , Adulto Joven , Fitoterapia
8.
Cureus ; 16(3): e55352, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38559552

RESUMEN

The Withania somnifera, also called Ashwagandha, is available everywhere in the world. We present a rare case of thyrotoxicosis following Ashwagandha administration, specifically painless thyroiditis (PT) in this report. The patient was a 47-year-old previously healthy Japanese man, who started taking Ashwagandha two months before his first visit to our hospital. He visited our hospital for typical thyrotoxicosis symptoms like a sense of fatigue, fever at night, and weight loss followed by diarrhea and headache. Blood tests disclosed thyrotoxicosis. Thyroid ultrasonography showed internal echo heterogeneity and no increase in blood flow. Thyroid scintigraphy revealed a deficiency in thyroid uptake. Based on these findings, he was diagnosed as PT. After stopping the administration of Ashwagandha, both his symptoms and serum thyroid markers were improved. This report may spark important debate about whether ashwagandha is safe among healthy people, especially in thyroid toxicity.

9.
Neurochem Res ; 49(7): 1687-1702, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38506951

RESUMEN

Microwave radiation (MWR) has been linked to neurodegeneration by inducing oxidative stress in the hippocampus of brain responsible for learning and memory. Ashwagandha (ASW), a medicinal plant is known to prevent neurodegeneration and promote neuronal health. This study investigated the effects of MWR and ASW on oxidative stress and cholinergic imbalance in the hippocampus of adult male Japanese quail. One control group received no treatment, the second group quails were exposed to MWR at 2 h/day for 30 days, third was administered with ASW root extract orally 100 mg/day/kg body weight and the fourth was exposed to MWR and also treated with ASW. The results showed that MWR increased serum corticosterone levels, disrupted cholinergic balance and induced neuro-inflammation. This neuro-inflammation further led to oxidative stress, as evidenced by decreased activity of antioxidant enzymes SOD, CAT and GSH. MWR also caused a significant decline in the nissil substances in the hippocampus region of brain indicating neurodegeneration through oxidative stress mediated hippocampal apoptosis. ASW, on the other hand, was able to effectively enhance the cholinergic balance and subsequently lower inflammation in hippocampus neurons. This suggests that ASW can protect against the neurodegenerative effects of MWR. ASW also reduced excessive ROS production by increasing the activity of ROS-scavenging enzymes. Additionally, ASW prevented neurodegeneration through decreased expression of caspase-3 and caspase-7 in hippocampus, thus promoting neuronal health. In conclusion, this study showed that MWR induces apoptosis and oxidative stress in the brain, while ASW reduces excessive ROS production, prevents neurodegeneration and promotes neuronal health.


Asunto(s)
Acetilcolinesterasa , Apoptosis , Coturnix , Hipocampo , Microondas , Estrés Oxidativo , Extractos Vegetales , Animales , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Acetilcolinesterasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
10.
Plant Physiol Biochem ; 208: 108419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377888

RESUMEN

Withania somnifera (Ashwagandha), is one of the most reputed Indian medicinal plants, having immense pharmacological activities due to the occurrence of withanolides. The withanolides are biosynthesized through triterpenoid biosynthetic pathway with the involvement of WsCAS leading to cyclization of 2, 3 oxidosqualene, which is a key metabolite to further diversify to a myriad of phytochemicals. In contrast to the available reports on the studies of WsCAS in withanolide biosynthesis, its involvement in phytosterol biosynthesis needs investigation. Present work deals with the understanding of role of WsCAS triterpenoid synthase gene in the regulation of biosynthesis of phytosterols & withanolides. Docking studies of WsCAS protein revealed Conserved amino acids, DCATE motif, and QW motif which are involved in efficient substrate binding, structure stabilization, and catalytic activity. Overexpression/silencing of WsCAS leading to increment/decline of phytosterols confers its stringent regulation in phytosterols biosynthesis. Differential regulation of WsCAS on the metabolic flux towards phytosterols and withanolide biosynthesis was observed under abiotic stress conditions. The preferential channelization of 2, 3 oxidosqualene towards withanolides and/or phytosterols occurred under heat/salt stress and cold/water stress, respectively. Stigmasterol and ß-sitosterol showed major contribution in high/low temperature and salt stress, and campesterol in water stress management. Overexpression of WsCAS in Arabidopsis thaliana led to the increment in phytosterols in general. Thus, the WsCAS plays important regulatory role in the biosynthetic pathway of phytosterols and withanolides under abiotic stress conditions.


Asunto(s)
Fitosteroles , Escualeno/análogos & derivados , Triterpenos , Withania , Witanólidos , Witanólidos/metabolismo , Esteroles , Withania/genética , Withania/metabolismo , Triterpenos/metabolismo , Deshidratación , Fitosteroles/metabolismo , Estrés Fisiológico/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-38318860

RESUMEN

ALSUntangled reviews alternative and off-label treatments on behalf of people with ALS (PALS) who ask about them. Here, we review withania somnifera (WS) commonly known as ashwagandha or winter cherry. WS has plausible mechanisms for slowing ALS progression because of its effects on inflammation, oxidative stress, autophagy, mitochondrial function, and apoptosis. Preclinical trials demonstrate that WS slows disease progression in multiple different animal models of ALS. Of the five individuals we found who described using WS for their ALS, two individuals reported moderate benefit while none reported experiencing any significant side effects. There is currently one clinical trial using WS to treat PALS; the results are not yet published. There are no serious side effects associated with WS and the associated cost of this treatment is low. Based on the above information, WS appears to us to be a good candidate for future ALS trials.

12.
J Asian Nat Prod Res ; : 1-15, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311941

RESUMEN

Based on the major components in the leaves, the ashwagandha has been found to exist in several chemotypic forms in India. From the leaves of various accessions of Withania somnifera, which were maintained in our institute, three new steroids namely, 4-acetoxy-20ß-hydroxy-1-oxo-witha-2,5,24-trienolide (7), 24,25-dihydro-14α-hydroxy withanolide D (9), 5α,6ß,17α,27-tetrahydroxy-1-oxo-witha-2,24-dienolide (12) together with thirteen known withanolides were identified by spectroscopic methods. From the roots and stem of one accession and leaves of another, a new alkyl ester glucoside (4) has also been isolated. The new withanolides 7, 9 and 12 have been tentatively named as withanolide 135 A, withanolide 135B and withanolide 108, respectively.

13.
Toxicol Rep ; 12: 41-47, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38222494

RESUMEN

Withania somnifera (Ashwagandha) also called as Indian ginseng, a revered herb from Indian traditional system of medicine is a rejuvenator and tonic (Rasayana) used for its varied benefits. The roots of ashwagandha exhibit properties like anti-inflammatory, aphrodisiac, anthelmintic, astringent, diuretic, stimulant and thermogenic. However, data of ashwagandha on its mutagenic effects are lacking. In the present study, in-vitro genotoxicity tests were used to evaluate the mutagenic potential of Ashwagandha Root Extract (ARE). Concentrations of 0.156 to 5.00 mg/plate ARE were used for conducting Bacterial reverse mutation test (BRMT). For chromosome aberration (CA) test ARE was used in concentrations of 0.25 to 2.00 mg/ml, and for micronucleus (MN) tests ARE concentrations of 500/1000/2000 mg/kg were used. Acute oral toxicity was conducted in Wistar rats (n = 25) as per the OECD guideline (#423) with doses of 500/1000/2000 mg/kg body weight in male Swiss albino mice for morbidity and mortality for 3 days. The BRMT and CA tests were conducted with and without metabolic activation (S9). The study was approved by the institutional ethics committee (IEC) and institutional animal ethics committee (IAEC). ARE failed to show any mutagenic effects up to a dose of 5 mg/plate in BRMT. Also, ARE did not show any clastogenic activity in doses up to 2 mg/ml in CA test and in micronucleus test up to 2000 mg/kg body weight. These results were observed with and without metabolic activation (S9) under the stated experimental conditions. No mortality, morbidity, or any clinical signs were observed up to 3 days following ARE administration. Ashwagandha root extract failed to show any mortality in doses up to 2000 mg/kg oral dosage and did not show any mutagenic (genotoxic) effects in high concentrations.

14.
Integr Cancer Ther ; 23: 15347354231223499, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38281118

RESUMEN

Ashwagandha (Withania somnifera) has gained worldwide popularity for a multitude of health benefits inclusive of cancer-preventive and curative effects. Despite numerous research data supporting the benefits of this wonder herb, the actual use of ashwagandha for cancer treatment in clinics is limited. The primary reason for this is the inconsistent therapeutic outcome due to highly variable composition and constitution of active ingredients in the plant extract impacting ashwagandha's pharmacology. We investigate here an engineered yield: an ashwagandha extract (Oncowithanib) that has a unique and fixed portion of active ingredients to achieve consistent and effective therapeutic activity. Using the MCF7 cell line, Oncowithanib was studied for its anti-neoplastic efficacy and drug targets associated with cell cycle regulation, translation machinery, and cell survival and apoptosis. Results demonstrate a dose-dependent decline in Oncowithanib-treated MCF7 cell viability and reduced colony-forming ability. Treated cells showed increased cell death as evidenced by enhancement of Caspase 3 enzyme activity and decreased expressions of cell proliferation markers such as Ki67 and Aurora Kinase A. Oncowithanib treatment was also found to be associated with expressional suppression of key cellular kinases such as RSK1, Akt1, and mTOR in MCF7 cells. Our findings indicate that Oncowithanib decreases MCF7 cell survival and propagation, and sheds light on common drug targets that might be good candidates for the development of cancer therapeutics. Further in-depth investigations are required to fully explore the potency and pharmacology of this novel extract. This study also highlights the importance of the standardization of herbal extracts to get consistent therapeutic activity for the disease indication.


Asunto(s)
Neoplasias , Withania , Witanólidos , Humanos , Witanólidos/farmacología , Witanólidos/metabolismo , Supervivencia Celular , Withania/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Neoplasias/tratamiento farmacológico , Carcinogénesis , Transformación Celular Neoplásica
15.
J Ayurveda Integr Med ; 15(1): 100859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38154316

RESUMEN

BACKGROUND: Withania somnifera (L.) Dunal, known as Ashwagandha, is an adaptogen with significant importance in Ayurveda for its potential health benefits in strength ('balavardhan') and muscle growth ('mamsavardhan'). Despite numerous studies on its efficacy, limited research is reported on its clinical safety and tolerability in healthy individuals. OBJECTIVE: This research evaluated the tolerability and safety of standardized Withania somnifera root extract (WSE) capsules (AgeVel®/Witholytin®) at 1000 mg/day dose upon oral administration in healthy male participants. METHOD: A non-randomized, open-label, single-treatment clinical study included eighteen healthy male participants aged 18 to 60. The participants were administered a dose of 500 mg of the WSE capsules twice daily for four weeks. Each capsule contained not less than 7.50 mg of total withanolides. The study evaluated various indicators in a cohort of healthy participants throughout the trial, including vital signs, organ function tests, urine analysis, X-ray and ECG, cardiorespiratory endurance, body fat percentage, lean body weight, adverse events profile, and tolerability of the WSE capsules. RESULTS: The participant's physical, hematological, and biochemical characteristics were normal, and no significant alterations or irregularities were observed in safety metrics like liver, kidney, and thyroid functions after administering AgeVel®/Witholytin®. CONCLUSION: This study found that healthy male participants could consume a standardized WSE at a daily dosage of 1000 mg for four weeks without any adverse effects. Future research should focus on long-term safety assessments in male and female participants.

16.
J Ethnopharmacol ; 322: 117603, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38122911

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Withania somnifera (L.) Dunal; (Solanaceae), commonly known as Ashwagandha, is one of the most significant medicinal herbs in 'Ayurveda', a traditional Indian medicine used for centuries with evidence in scriptures. Ashwagandha was mentioned in old Ayurvedic medical literature such as Charaka Samhita and Sushruta Samhita for improving weight and strength, with multiple citations for internal and exterior usage in emaciation and nourishing the body. Ethnopharmacological evidence revealed that it was used to relieve inflammation, reduce abdominal swelling, as a mild purgative, and treat swollen glands. The root was regarded as a tonic, aphrodisiac, and emmenagogue in the Unani tradition of the Indian medicinal system. Further, Ashwagandha has been also described as an Ayurvedic medicinal plant in the Ayurvedic Pharmacopoeia of India extending informed therapeutic usage and formulations. Despite the widespread ethnopharmacological usage of Ashwagandha, clinical pharmacokinetic parameters are lacking in the literature; hence, the findings of this study will be relevant for calculating doses for future clinical evaluations of Ashwagandha root extract. AIM: This study aimed to develop a validated and highly sensitive bioanalytical method for quantifying withanosides and withanolides of the Ashwagandha root extract in human plasma to explore its bioaccessibility. Further to apply a developed method to perform pharmacokinetics of standardized Withania somnifera (L.) Dunal root extract (WSE; AgeVel®/Witholytin®) capsules in healthy human volunteers. METHODS: A sensitive, reliable, and specific ultra-high pressure liquid chromatography-mass spectrometry (UHPLC-MS/MS) method was developed and validated for the simultaneous quantification of five major withanosides and withanolides (withanoside IV, withanoside V, withanolide A, withaferin A, and 12-deoxy-withastramonolide) in human plasma. Further for the study, eighteen healthy male volunteers (18-45 years) were enrolled in a non-randomized, open-label, single period, single treatment, clinical pharmacokinetic study and given a single dose (500 mg) of WSE (AgeVel®/Witholytin®) capsules containing not less than 7.5 mg of total withanolides under fasting condition. Later, pharmacokinetic profiles were assessed using the plasma concentration of each bioactive constituent Vs. time data. RESULTS: For all five constituents, the bioanalytical method demonstrated high selectivity, specificity, and linearity. There was no carryover, and no matrix effect was observed. Furthermore, the inter-day and intra-day precision and accuracy results fulfilled the acceptance criteria. Upon oral administration of WSE capsules, Cmax was found to be 0.639 ± 0.211, 2.926 ± 1.317, 2.833 ± 0.981, and 5.498 ± 1.986 ng/mL for withanoside IV, withanolide A, withaferin A, and 12-deoxy-withastramonolide with Tmax of 1.639 ± 0.993, 1.361 ± 0.850, 0.903 ± 0.273, and 1.375 ± 0.510 h respectively. Further, withanoside V was also detected in plasma; but its concentration was found below LLOQ. CONCLUSION: The novel and first-time developed bioanalytical method was successfully applied for the quantification of five bio-active constituents in human volunteers following administration of WSE capsules, indicating that withanosides and withanolides were rapidly absorbed from the stomach, have high oral bioavailability, and an optimum half-life to produce significant pharmacological activity. Further, AgeVel®/Witholytin® was found safe and well tolerated after oral administration, with no adverse reaction observed at a 500 mg dose.


Asunto(s)
Plantas Medicinales , Withania , Witanólidos , Humanos , Witanólidos/farmacología , Withania/química , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Extractos Vegetales/farmacología
17.
Nutrients ; 15(24)2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38140274

RESUMEN

BACKGROUND: Withania somnifera (WS), a popular medicinal plant of the Solanaceae family, contains active ingredients with antioxidant, anti-inflammatory, immunomodulatory, and anti-stress activities. However, its precise mechanisms of action and optimal use as a supplement are not yet fully understood. The objective of this systematic review is to assess the impact of WS supplementation on cortisol levels in stressed humans by analyzing clinical trials conducted prior to May 2023. METHODS: The assessment was carried out following the guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) by exploring the databases of EMBASE, PubMed, Google Scholar, CENTRAL, and Scopus. RESULTS: Of the 4788 articles identified, only 9 studies met the selection criteria. The selected studies varied in terms of design, results, formulations, dosages, and treatment duration (30-112 days), and involved subjects with varying degrees of stress. WS supplementation decreases cortisol secretion with no significant adverse effects. Nonetheless, none of the studies evaluated the potential impact of cortisol reduction on adrenal function and long-term effects. CONCLUSIONS: Brief-term supplementation with WS appears to have a stress-reducing effect in stressed individuals. However, since the long-term effects of WS supplementation are not yet fully understood, WS supplements should be used under medical supervision.


Asunto(s)
Plantas Medicinales , Withania , Humanos , Extractos Vegetales/uso terapéutico , Hidrocortisona , Antioxidantes/farmacología
18.
Heliyon ; 9(12): e22843, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144272

RESUMEN

Introduction: Withania somnifera (WS) or ashwagandha is an adaptogenic plant used extensively in traditional medicines and as a food supplement. Despite a long history of use and numerous clinical trials, the human pharmacokinetics of withanolides, the active phytochemicals in WS extracts, have not been fully evaluated. This study evaluated the oral pharmacokinetics and bioequivalence of active withanolides in human plasma after administration of a single dose of two commercial ashwagandha extracts containing equal amounts of total withanolides. Methods: This randomized, double-blind, single-dose crossover study of 16 healthy human volunteers evaluated the acute oral bioavailability of withanolides and the bioequivalence of two WS extracts, WS-35 and WS-2.5. WS-35 was standardized to total withanolides not less than 40% comprising not less than 35% withanolide glycosides and WS-2.5 was standardized to 2.5% withanolides. The clinical dosages were normalized to 185 mg of total withanolide in each extract at the bioequivalent dosages. The pharmacokinetic parameters of withanolide A, withanoside IV, withaferin A, and total withanolides were quantified in the blood plasma using a validated LC-MS/MS method. Results: The half-life, C-max, and mean residence time of the total withanolides were 5.18, 5.62 and 4.13 times significantly higher and had lower systemic clearance with WS-35 than with WS-2.5 extract. Considering the plasma AUC 0-inf of total withanolides per mg of each WS extract administered orally, WS-35 was 280.74 times more bioavailable than WS-2.5. Conclusion: The results of this study highlight the importance of withanolide glycosides in improving the pharmacokinetics of WS extracts. Owing to its superior pharmacokinetic profile, WS-35, with 35% withanolide glycosides, is a promising candidate for further studies on Withania somnifera. Clinical trial registration: CTRI/2020/10/028397 [registered on:13/10/2020] (Trial prospectively registered) http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=42149&EncHid=&userName=CTRI/2020/10/028397.

19.
Int J Mol Sci ; 24(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38003702

RESUMEN

Withania somnifera, also known as Ashwagandha, has been used in traditional medicine for thousands of years. Due to the wide range of its activities, there has been interest in its possible beneficial effects on the human body. It is proved that, among others, Ashwagandha has anti-stress, anti-inflammatory, antimicrobial, anti-cancer, anti-diabetic, anti-obesity, cardioprotective, and hypolipidemic properties. Particularly interesting are its properties reported in the field of psychiatry and neurology: in Alzheimer's disease, Parkinson's disease, multiple sclerosis, depression, bipolar disorder, insomnia, anxiety disorders and many others. The aim of this review is to find and summarize the effect that Ashwagandha root extract has on the endocrine system and hormones. The multitude of active substances and the wide hormonal problems faced by modern society sparked our interest in the topic of Ashwagandha's impact on this system. In this work, we also attempted to draw conclusions as to whether W. somnifera can help normalize the functions of the human endocrine system in the future. The search mainly included research published in the years 2010-2023. The results of the research show that Ashwagandha can have a positive effect on the functioning of the endocrine system, including improving the secretory function of the thyroid gland, normalizing adrenal activity, and multidirectional improvement on functioning of the reproductive system. The main mechanism of action in the latter appears to be based on the hypothalamus-pituitary-adrenal (HPA) axis, as a decrease in cortisol levels and an increase in hormones such as luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in men were found, which results in stress level reduction and improvement in fertility. In turn, other studies prove that active substances from W. somnifera, acting on the body, cause an increase in the secretion of triiodothyronine (T3) and thyroxine (T4) by the thyroid gland and a subsequent decrease in the level of thyroid-stimulating hormone (TSH) in accordance with the hypothalamus-pituitary-thyroid (HPT) axis. In light of these findings, it is clear that Ashwagandha holds significant promise as a natural remedy for various health concerns, especially those related to the endocrine system. Future research may provide new insights into its mechanisms of action and expand its applications in both traditional and modern medicine. The safety and toxicity of Ashwagandha also remain important issues, which may affect its potential use in specific patient groups.


Asunto(s)
Withania , Masculino , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Glándula Tiroides , Hormona Luteinizante
20.
J Ayurveda Integr Med ; 14(6): 100817, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38006746

RESUMEN

BACKGROUND: Alopecia is a dermatological condition affecting genders, negatively impacting their personality and quality of life (QoL). The current approved entities are limited, inconsistently effective, and associated with negative side effects. To alleviate this issue, ayurvedic herbs such as Ashwagandha have being explored. As a result, this study was designed to evaluate the efficacy and safety of Ashwagandha (root extract) topical formulation (serum) on hair health in healthy adults. METHODS: In this prospective, double-blind, randomized, placebo controlled, two arm, parallel, comparative study, the effects of topical Ashwagandha on the hair health was evaluated. Healthy adults between 18 and 45 years with mild to moderate hair loss were randomized to either Ashwagandha (topical) or Placebo (topical) treatment. The participants were assessed at Day-1 and Day-75 for change in efficacy parameters, which included 60 Seconds Hair Comb, Trichoscan analysis, Hair Pull test, Investigator's Global Assessment (IGA) and QoL using Hair-specific Skindex-29. RESULTS: In the per protocol analysis of 61 participants, Ashwagandha group demonstrated significant reduction in hair shedding in the 60 Seconds Hair Comb test compared to Placebo at day 75. Similarly, Ashwagandha substantially enhanced hair density, growth, and thickness compared to the Placebo group (density = 7.3 vs. 2.8, P < 0.001; growth = 21.7 vs. 4.2, P < 0.001; thickness = 1.8 vs. 0.9, P < 0.001). In addition, Ashwagandha significantly improved QOL compared to placebo (Score = -17.3 vs. -6.1, P = 0.011). CONCLUSION: The study found that topical Ashwagandha (serum) improved hair growth and hair health indicators. Thus, it can be an effective and safer alternative for alopecia. STUDY REGISTRATION: CTRI, Number CTRI/2022/11/047539, Registered on: 23/11/2022.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...