RESUMEN
It is increasingly recognized that local protein synthesis (LPS) contributes to fundamental aspects of axon biology, in both developing and mature neurons. Mutations in RNA-binding proteins (RBPs), as central players in LPS, and other proteins affecting RNA localization and translation are associated with a range of neurological disorders, suggesting disruption of LPS may be of pathological significance. In this review, we substantiate this hypothesis by examining the link between LPS and key axonal processes, and the implicated pathophysiological consequences of dysregulated LPS. First, we describe how the length and autonomy of axons result in an exceptional reliance on LPS. We next discuss the roles of LPS in maintaining axonal structural and functional polarity and axonal trafficking. We then consider how LPS facilitates the establishment of neuronal connectivity through regulation of axonal branching and pruning, how it mediates axonal survival into adulthood and its involvement in neuronal stress responses.
Asunto(s)
Enfermedad de Alzheimer/genética , Esclerosis Amiotrófica Lateral/genética , Axones/metabolismo , Discapacidad Intelectual/genética , Enfermedad de Parkinson/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Axones/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Mutación , Red Nerviosa/crecimiento & desarrollo , Red Nerviosa/metabolismo , Red Nerviosa/patología , Proteínas del Tejido Nervioso/clasificación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
Primary cultures of neurons of the peripheral nervous system have been successfully used for studying many aspects of neuronal development and survival, including investigations into the mechanisms of axon degeneration. In this chapter, we describe how to prepare and microinject dissociated cultures of sympathetic neurons of the superior cervical ganglion (SCG) specifically for use in highly controlled and targeted assays of axon survival and degeneration.
Asunto(s)
Axones/efectos de los fármacos , Microinyecciones/métodos , Ganglio Cervical Superior/citología , Animales , Afidicolina/farmacología , Axotomía , Colorantes Fluorescentes/administración & dosificación , Ratones , Microinyecciones/instrumentación , Microscopía Fluorescente/métodos , Microscopía de Contraste de Fase/métodos , Factor de Crecimiento Nervioso/administración & dosificación , Cultivo Primario de Células , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Soluciones/administración & dosificaciónRESUMEN
During development, neural circuits are initially generated by exuberant innervation and are rapidly refined by selective preservation and elimination of axons. The establishment and maintenance of functional circuits therefore requires coordination of axon survival and degeneration pathways. Both developing and mature circuits rely on interdependent mitochondrial and cytoskeletal components to maintain axonal health and homeostasis; injury or diseases that impinge on these components frequently cause pathologic axon loss. Here, we review recent findings that identify mechanisms of axonal preservation in the contexts of development, injury, and disease.
Asunto(s)
Axones/fisiología , Citoesqueleto/fisiología , Mitocondrias/fisiología , Vías Nerviosas/fisiología , Transducción de Señal/fisiología , Degeneración Walleriana/metabolismo , Animales , Axones/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Mitocondrias/metabolismo , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/patologíaRESUMEN
The NAD-synthesizing enzyme NMNAT2 is critical for axon survival in primary culture and its depletion may contribute to axon degeneration in a variety of neurodegenerative disorders. Here we discuss several recent reports from our laboratory that establish a critical role for NMNAT2 in axon growth in vivo in mice and shed light on the delivery and turnover of this survival factor in axons. In the absence of NMNAT2, axons fail to extend more than a short distance beyond the cell body during embryonic development, implying a requirement for NMNAT2 in axon maintenance even during development. Furthermore, we highlight findings regarding the bidirectional trafficking of NMNAT2 in axons on a vesicle population that undergoes fast axonal transport in primary culture neurites and in mouse sciatic nerve axons in vivo. Surprisingly, loss of vesicle association boosts the axon protective capacity of NMNAT2, an effect that is at least partially mediated by a longer protein half-life of cytosolic NMNAT2 variants. Analysis of wild-type and variant NMNAT2 in mouse sciatic nerves and Drosophila olfactory receptor neuron axons supports the existence of a similar mechanism in vivo, highlighting the potential for regulation of NMNAT2 stability and turnover as a mechanism to modulate axon degeneration in vivo.