Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Sci Total Environ ; 950: 175131, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127212

RESUMEN

TPhP and IPPP, alternatives to PBDEs as flame retardants, have been studied for their developmental toxicity, but their visual toxicities are less understood. In this study, zebrafish larvae were exploited to evaluate the potential ocular impairments following exposure to BDE-47, TPhP, and IPPP. The results revealed a range of ocular abnormalities, including malformation, vascular issues within the eyes, and histopathological changes in the retina. Notably, the visually mediated behavioral changes were primarily observed in IPPP and TPhP, indicating that they caused more severe eye malformations and vision impairment than BDE-47. Molecular docking and MD simulations showed stronger binding affinity of TPhP and IPPP to RAR and RBP receptors. Elevated ROS and T3 levels induced by these compounds led to apoptosis in larvae eyes, and increased GABA levels induced by TPhP and IPPP hindered retinal repair. In summary, our results indicate TPhP and IPPP exhibit severer visual toxicity than BDE-47, affecting eye development and visually guided behaviors. The underlying mechanism involves disruptions in RA signaling, retinal neurotransmitters imbalance, thyroid hormones up-regulation, and apoptosis in larvae eyes. This work highlights novel insights into the need for cautious use of these flame retardants due to their potential biological hazards, thereby offering valuable guidance for their safer applications.


Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Larva , Organofosfatos , Pez Cebra , Animales , Éteres Difenilos Halogenados/toxicidad , Larva/efectos de los fármacos , Retardadores de Llama/toxicidad , Organofosfatos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Simulación del Acoplamiento Molecular
2.
Int J Mol Sci ; 25(16)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39201308

RESUMEN

Polybrominated diphenyl ethers (PBDEs), commonly used as synthetic flame retardants, are present in a variety of consumer products, including electronics, polyurethane foams, textiles, and building materials. Initial evidence from epidemiological and experimental studies suggests that maternal PBDE exposure may be associated with a higher BMI in children, with disturbance of energy metabolism and an increased risk of Type 2 diabetes. However, the causality between early exposure to real-life PBDE concentrations and increased weight as well as mechanisms underlying impaired metabolic pathways in the offspring remain elusive. Here, using a mouse model we examined the effect of maternal exposure to 2,2',4,4'-tetrabrominated diphenyl ether (BDE-47), the most abundant congener in human samples, on offspring weight gain and energy homeostasis using a mouse model. Maternal exposure to BDE-47 at low dose resulted in weight gain in female offspring together with an impaired glucose and insulin tolerance in both female and male mice. In vitro and in vivo data suggest increased adipogenesis induced by BDE-47, possibly mediated by DNA hypermethylation. Furthermore, mRNA data suggest that neuronal dysregulation of energy homeostasis, driven via a disturbed leptin signaling may contribute to the observed weight gain as well as impaired insulin and glucose tolerance.


Asunto(s)
Éteres Difenilos Halogenados , Resistencia a la Insulina , Exposición Materna , Efectos Tardíos de la Exposición Prenatal , Aumento de Peso , Animales , Éteres Difenilos Halogenados/toxicidad , Femenino , Ratones , Exposición Materna/efectos adversos , Aumento de Peso/efectos de los fármacos , Embarazo , Masculino , Efectos Tardíos de la Exposición Prenatal/metabolismo , Metilación de ADN/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Leptina/metabolismo , Retardadores de Llama/toxicidad , Retardadores de Llama/efectos adversos , Metabolismo Energético/efectos de los fármacos
3.
Toxics ; 12(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39058108

RESUMEN

2,2',4,4'-tetra-bromodiphenytol ether (BDE-47) is one of the ubiquitous organic pollutants in mangrove sediments. To reveal the toxic effects of BDE-47 on mangrove plants, the mangrove species Kandelia obovate was used to investigate the photosynthetic capacity effects and the molecular mechanisms involved after BDE-47 exposure at environment-related levels (50, 500, and 5000 ng g-1 dw). After a 60-day exposure, the photosynthetic capacity was inhibited in K. obovata seedlings, and a decrease in the stomatal density and damage in the chloroplast ultrastructure in the leaves were found. Transcriptome sequencing showed that, following exposure to BDE-47, gene expression in photosynthesis-related pathways was predominantly suppressed in the leaves. The bioinformatics analysis indicated that BDE-47 exerts toxicity by inhibiting photosystem I activity and chlorophyll a/b-binding protein-related genes in the leaves of K. obovata. Thus, this study provides preliminary theoretical evidence for the toxic mechanism effect of BDE-47 on photosynthesis in mangrove species.

4.
Aquat Toxicol ; 271: 106933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705000

RESUMEN

The occurrence of microplastics (MPs) in aquatic ecosystems and their ability to absorb hydrophobic pollutants, such as persistent organic pollutants (POPs), is currently a significant concern. MPs, which are the main breakdown product of plastics, have been frequently detected in the environment, posing serious threats to organisms' health. One particular pollutant, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), is a dominant congener of PBDEs and is highly toxic to organisms. However, there is limited knowledge regarding the exposure of marine fishes to PBDEs through MPs and their combined toxic effects. In this study, the embryo toxicity of Hexagrammos otakii was conducted to investigate the combined effects of MPs and BDE-47. The results showed that MPs and BDE-47 co-exposure had detrimental effects on embryonic development, such as reduced hatchability, increased mortality, decreased heart rate, and body malformation. Moreover, the combined toxicity of these substances appeared more pronounced harmful effects compared to exposure to BDE-47 alone. Histopathological examination revealed that co-exposure can cause greater damage to hatching glands and yolk. The enrichment of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included phagosome, metabolism of xenobiotics by cytochrome P450, TCA cycle, and Wnt signaling pathway, which are closely related to embryonic growth. BDE-47 and MPs may activate the Wnt signaling pathway to affect the normal development of embryos. Our results suggest that MPs and BDE-47 exposure may cause growth disorders in the early life stages of H.otakii, leading to abnormal embryonic development. All these results will contribute to the further study of the ecological risk assessment and toxicity of MPs and organic pollutant mixtures in marine fish.


Asunto(s)
Embrión no Mamífero , Éteres Difenilos Halogenados , Microplásticos , Contaminantes Químicos del Agua , Animales , Éteres Difenilos Halogenados/toxicidad , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Embrión no Mamífero/efectos de los fármacos , Poliestirenos/toxicidad , Desarrollo Embrionario/efectos de los fármacos
5.
Antioxidants (Basel) ; 13(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38671893

RESUMEN

2,2',4,4'-Tetrabrominated biphenyl ether (BDE-47) is a polybrominated diphenyl ether (PBDE) homologue that is ubiquitous in biological samples and highly toxic to humans and other organisms. Prior research has confirmed that BDE-47 can induce oxidative damage in RAW264.7 cells, resulting in apoptosis and impaired immune function. The current study mainly focused on how Isoliquiritigenin (ISL) and Licochalcone B (LCB) might protect against BDE-47's immunotoxic effects on RAW264.7 cells. The results show that ISL and LCB could increase phagocytosis, increase the production of MHC-II, and decrease the production of inflammatory factors (TNF-α, IL-6, and IL-1ß) and co-stimulatory factors (CD40, CD80, and CD86), alleviating the immune function impairment caused by BDE-47. Secondly, both ISL and LCB could reduce the expressions of the proteins Bax and Caspase-3, promote the expression of the protein Bcl-2, and reduce the apoptotic rate, alleviating the apoptosis initiated by BDE-47. Additionally, ISL and LCB could increase the levels of antioxidant substances (SOD, CAT, and GSH) and decrease the production of reactive oxygen species (ROS), thereby counteracting the oxidative stress induced by BDE-47. Ultimately, ISL and LCB suppress the NF-κB pathway by down-regulating IKBKB and up-regulating IκB-Alpha in addition to activating the Nrf2 pathway and promoting the production of HO-1 and NQO1. To summarize, BDE-47 causes oxidative damage that can be mitigated by ISL and LCB through the activation of the Nrf2 pathway and inhibition of the NF-κB pathway, which in turn prevents immune function impairment and apoptosis. These findings enrich the current understanding of the toxicological molecular mechanism of BDE-47 and the detoxification mechanism of licorice.

6.
Environ Pollut ; 349: 123966, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621451

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are widely present in water ecosystems where they pose a significant threat to aquatic life, but our knowledge about how PBDEs affect feeding is limited. Therefore, this study explored the effects of continuous dietary exposure to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) (40 and 4000 ng/g) on the feeding in common carp (Cyprinus carpio) and the underlying mechanism. BDE-47 significantly decreased the food intake of carp. Transcriptome analysis of brain tissue showed that BDE-47 mainly affected the nervous, immune, and endocrine systems. Further examination of the expression levels of appetite factors in the brain revealed that BDE-47 caused dysregulation of appetite factors expressions such as agrp, pomc, cart, etc. In addition, the JAK-STAT signaling pathway was activated under BDE-47 exposure. It can be concluded from these findings that BDE-47 activated the JAK-STAT signaling pathway, causing imbalanced expression of appetite factors, leading to disordered feeding behavior and decreased food intake in carp. These results provide an important reference for a more comprehensive understanding of the hazards posed by BDE-47 on animal feeding and the associated mechanisms.


Asunto(s)
Carpas , Exposición Dietética , Éteres Difenilos Halogenados , Quinasas Janus , Transducción de Señal , Contaminantes Químicos del Agua , Animales , Éteres Difenilos Halogenados/toxicidad , Carpas/metabolismo , Carpas/fisiología , Transducción de Señal/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Conducta Alimentaria/efectos de los fármacos
7.
Ecotoxicol Environ Saf ; 274: 116192, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38461574

RESUMEN

To investigate the mechanisms of BDE-47 on hepatotoxicity in fish, this study examined the effects of dietary exposure to BDE-47 (40 and 4000 ng/g) on carp for 42 days. The results showed that BDE-47 significantly increased carp's condition factor and hepatosomatic index. Pathological results revealed unclear hepatic cord structure, hepatocytes swelling, cellular vacuolization, and inflammatory cell infiltration in the hepatopancreas of carp. Further investigation showed that ROS levels significantly increased on days 7, 14, and 42. Moreover, the activities of antioxidant enzymes SOD, GSH, CAT, and GST increased significantly from 1 to 7 days, and the transcription levels of antioxidant enzymes CAT, Cu-Zn SOD, Mn-SOD, GST, and GPX, and antioxidant pathway genes Keap1, Nrf2, and HO-1 changed significantly at multiple time-points during the 42 days. The results of apoptosis pathway genes showed that the mitochondrial pathway genes Bax, Casp3, and Casp9 were significantly upregulated and Bcl2 was significantly downregulated, while the transcription levels of FADD and PERK were significantly enhanced. These results indicate that BDE-47 induced oxidative damage in hepatopancreas, then it promoted cell apoptosis mainly through the mitochondrial pathway. This study provides a foundation for analyzing the mechanism of hepatotoxicity induced by BDE-47 on fish.


Asunto(s)
Carpas , Enfermedad Hepática Inducida por Sustancias y Drogas , Éteres Difenilos Halogenados , Animales , Antioxidantes/metabolismo , Carpas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Éter/metabolismo , Éter/farmacología , Hepatopáncreas/metabolismo , Exposición Dietética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Apoptosis , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
8.
Food Chem X ; 22: 101274, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38524778

RESUMEN

The occurrence of persistent organic pollutants like polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in food represents a public health concern. The BfR MEAL Study was initiated to generate a comprehensive data base of occurrence data for chemicals in the most consumed foods in Germany. Non-dioxin-like PCBs (NDL-PCBs) and PBDEs were analysed in 300 foods, purchased and prepared representatively for the eating behaviour of the population in Germany. Highest levels of NDL-PCBs and PBDEs were detected in spiny dogfish, cod liver, herring, and eel. High NDL-PCB and PBDE levels were observed in other oily fish, wild boar meat, sheep liver, and high-fat dairy products. The comparison of food from conventional and organic production revealed higher NDL-PCB values in the food group 'meat and meat products' if produced organically. Occurrence data of this study will improve future dietary exposure and risk assessments in Germany.

9.
Toxicol Sci ; 199(1): 120-131, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407484

RESUMEN

The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.


Asunto(s)
Células Acinares , Apoptosis , Éteres Difenilos Halogenados , Pancreatitis Crónica , Pancreatitis , Animales , Éteres Difenilos Halogenados/toxicidad , Apoptosis/efectos de los fármacos , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/patología , Células Acinares/efectos de los fármacos , Células Acinares/patología , Células Acinares/metabolismo , Masculino , Pancreatitis/inducido químicamente , Pancreatitis/patología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Ceruletida/toxicidad , Páncreas/efectos de los fármacos , Páncreas/patología , Inflamación/inducido químicamente , Inflamación/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retardadores de Llama/toxicidad , Células Cultivadas
10.
Environ Pollut ; 344: 123358, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242302

RESUMEN

Marine warming and polybrominated diphenyl ethers (PBDEs) pollution are two of the most concerning environmental problems in recent years. However, the impact of their co-occurrence on marine bivalves and the tolerance of bivalves with different traits remain unknown. In this study, thick shell mussels Mytilus coruscus were divided into two personalities according to individual feeding and byssus growth. The reliability of the classification was validated by respiration, self-organization, and post-stress behavior. Then, the survival rate, hemolymph immunity, and digestive glands oxidase activity of classified mussels were evaluated after 21 days of compound exposure to warming and BDE-47. The results showed that mussels could be divided into proactive and reactive types consistently. Compared to reactive mussels, proactive mussels exhibited some traits, such as faster food recovery, more byssus growth, higher metabolic rate, and more efficient clustering. Both single or combined warming and BDE-47 exposure impacted the individual survival, hemolymph, and antioxidase of mussels. Notably, the negative impacts of BDE-47 were exacerbated by warming. Moreover, proactive mussels displayed better adaptability with higher survival rates along with less damage to hemolymph immunity and antioxidant ability compared to reactive ones when facing environmental challenges. This study highlights potential risks associated with the coexistence of marine warming and PBDEs pollution while demonstrating differential fitness among individuals with distinct personalities.


Asunto(s)
Éteres Difenilos Halogenados , Mytilus , Humanos , Animales , Éteres Difenilos Halogenados/toxicidad , Reproducibilidad de los Resultados , Personalidad , Océanos y Mares
11.
Environ Toxicol ; 39(1): 289-298, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705237

RESUMEN

We have previously found that a mixture exposure of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and cadmium (Cd) causes kidney damage; however, the mechanism was not fully understood. The aryl hydrocarbon receptor (AhR) is a ligand-receptor transcription factor that plays an important role in the adaptive response or metabolic detoxification of environmental toxins. Thus, this study aimed to examine the role of AhR in kidney toxicity. BDE-47 (50 µM) or Cd (5 µM) exposure reduced cell viability in renal tubular epithelial cells (HKC), with a larger effect observed in co-treatment. The cell morphology presented pyroptotic changes, including swollen cells, large bubbles, and plasma membrane pore formation. The gene expressions of AhR, heat shock protein 90 (Hsp90), AhR nuclear translocator (ARNT), and cytochrome P450 1B1 (CYP1B1) were increased, while CYP1A1 was decreased. Reactive oxygen species (ROS) were generated, which was reduced by the AhR antagonist CH223191. The apoptosis, necrosis, and intracellular lactated hydrogenase (LDH) release was elevated, and this was attenuated by N-acetylcysteine (NAC). Furthermore, the pyroptosis pathway was activated with increased protein levels of cleaved-caspase-3 and gasdermin E N-terminal (GSDME-NT), while caspase-8, caspase-3, and GSDME were decreased. These effects were alleviated by NAC and CH223191. Our data demonstrate a combined effect of BDE-47 and Cd on nephrotoxicity by activating AhR to induce ROS contributing to GSDME-dependent pyroptosis, and retardation of the AhR pathway could reduce this toxicity.


Asunto(s)
Cadmio , Receptores de Hidrocarburo de Aril , Receptores de Hidrocarburo de Aril/metabolismo , Cadmio/toxicidad , Caspasa 3/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Piroptosis , Éter , Células Epiteliales/metabolismo
12.
Chemosphere ; 349: 140739, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38000557

RESUMEN

2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) is widespread in the environment and biological samples. Its association with health risks is an increasing concern, yet information on BDE-47 immunotoxicity remains limited. This study investigated the impact of BDE-47 on innate and adaptive immune responses through in vitro and in vivo approaches. BDE-47's capacity to directly induce cell responses and modulate responses induced by known stimuli was studied in vitro using the RAW 264.7 murine macrophage cell line and spleen-derived lymphocytes, and in vivo using keyhole limpet hemocyanin (KLH)-immunized BALB/c mice orally administered (28 d) at dose levels (7.5, 15.0 and 30 mg/kg/bw/d) derived from relevant toxicokinetic data from rodent models. RAW 264.7 cells stimulated with lipopolysaccharide (LPS) and exposed to BDE-47 exhibited unchanged cell viability but decreased release of interleukin (IL)-6. Primary splenocytes from naïve mice stimulated with anti-CD3/anti-CD28 antibodies and exposed to BDE-47 showed a significant decrease of IL-17 A and IFNγ production. In vivo data showed that BDE-47 significantly reduced the KLH-specific antibody response. A generally decreasing trend of IFNγ, IL-10 and IL-5 production was observed after in vitro antigen-specific restimulation of spleen cells. Histopathological effects on liver, spleen, small intestine and thyroid were detected at the highest dose in the absence of general toxicity. In addition, the expression of Mm_mir155 and Mm_let7a was induced in livers of exposed mice. The data obtained in this study suggest that exposure to BDE-47 may perturb innate and adaptive immune responses, thus possibly decreasing resistance to bacterial and viral infections.


Asunto(s)
Inmunidad , Interleucina-6 , Ratones , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Hemocianinas
13.
Toxicol Lett ; 391: 100-110, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38040069

RESUMEN

The widespread existence of 2,2',4,4'-tetra-bromodiphenyl ether (BDE-47) in the environment has aroused great concern. BDE-47 induces the occurrence of metabolic dysfunction-associated steatotic liver disease (MASLD), but the mechanism has not been fully elucidated. Here, we further investigate the underlying mechanism using BALB/c mice. After BDE-47 exposure, the livers of mice enlarged, the serum levels of ALT, ALP, TG and TC enhanced, and hepatic steatosis occurred. Transcriptome sequencing identifies 2250 differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis reveals that down-regulated DEGs are mainly enriched in pathways associated with lipid metabolism, particularly in fatty acid (FA) degradation. And up-regulated DEGs are mainly enriched in pathways related to lipid and FA transport. The expression levels of AhR, Pparγ and Cd36 involved in FA uptake are up-regulated, and those of PPARα and target genes including Cpt1 and Cyp4a1 related to ß and ω-oxidation are inhibited. These results reveal BDE-47 could lead to metabolic dysfunction-associated steatotic liver disease (MASLD) by promoting FA uptake via upregulating Cd36 and hindering oxidative utilization by downregulating PPARα.


Asunto(s)
Hígado Graso , Éteres Difenilos Halogenados , Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Ácidos Grasos/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratones Endogámicos BALB C , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hígado/metabolismo , Metabolismo de los Lípidos , Antígenos CD36/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo
14.
Chem Biol Interact ; 388: 110831, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38101597

RESUMEN

Polybrominated Diphenyl Ethers (PBDEs) are a major class of brominated flame retardants, and their widespread use has led them to be considered contaminants with emerging concern. PBDEs have been detected in the indoor air, house dust, food, and all environmental compartments. The congener BDE-47 (2,2',4,4'-tetrabromodiphenyl ether) is the most prevalent, and hepatotoxicity, neurotoxicity, immunological changes, endocrine disruption, and genotoxic potential have been related to its exposure. Although the BDE-47 molecular toxicity pathway is directly related to intrinsic apoptotic cell death, the role of autophagy in BDE-47 toxicity remains unclear. In this context, three-dimensional cell culture has emerged as a good strategy for the replacement of animals in toxicological testing. Here, we used HepaRG spheroids cultured in alginate microcapsules to investigate the role of autophagy in BDE-47-mediated hepatotoxicity. We developed mature and functional HepaRG spheroids by culturing them in alginate microcapsules. Histological analysis revealed that HepaRG spheroids formed an extracellular matrix and stored glycogen. No apoptotic and/or necrotic cores were observed. BDE-47 showed concentration- and time-dependent cytotoxicity in HepaRG spheroids. In the early exposure period, BDE-47 initially disrupted mitochondrial activity and increased the formation of acid compartments that promoted the increase in autophagic activity; however, this autophagy was blocked, and long-term exposure to BDE-47 promoted efficient apoptotic cell death through autophagy blockade, as evidenced by an increased number of fragmented/condensed nuclei. Therefore, for the first time, we demonstrated BDE-47 toxicity and its cell pathway induces cell death using a three-dimensional liver cell culture, the HepaRG cell line.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Retardadores de Llama , Animales , Éteres Difenilos Halogenados/toxicidad , Cápsulas , Autofagia , Retardadores de Llama/toxicidad
15.
Chemosphere ; 344: 140401, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839753

RESUMEN

Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.


Asunto(s)
Contaminantes Químicos del Agua , Pez Cebra , Masculino , Animales , Femenino , Pez Cebra/metabolismo , Toxicogenética , Reproducción , Éteres Difenilos Halogenados/análisis , Larva/genética , Contaminantes Químicos del Agua/análisis
16.
Ecotoxicol Environ Saf ; 266: 115558, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37820477

RESUMEN

The persistent organic pollutant 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), a prevalent congener among polybrominated diphenyl ethers (PBDEs), exhibits potent bioaccumulation and toxicity. Despite extensive research into the adverse effects of BDE-47, its neurotoxicity in sea cucumbers remains unexplored. Given the crucial role of the sea cucumber's nervous system in survival and adaptation, evaluating the impacts of BDE-47 is vital for sustainable aquaculture and consumption. In this study, we employed ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Triple-TOF-MS) to analyze metabolomic changes in neuro-related tissues of Apostichopus japonicus exposed to low (0.1 µg/L), medium (1.0 µg/L), and high (10.0 µg/L) BDE-47 concentrations. We identified significantly changed metabolites in each exposure group (87 in low, 79 in medium, and 102 in high), affecting a variety of physiological processes such as steroid hormone balance, nucleotide metabolism, energy metabolism, neurotransmitter levels, and neuroprotection. In addition, we identified concentration-dependent, common, and some other metabolic responses in the neuro-related tissues. Our findings reveal critical insights into the neurotoxic effects of BDE-47 in sea cucumbers and contribute to risk assessment related to BDE-47 exposure in the sea cucumber industry, paving the way for future neurotoxicological research in invertebrates.


Asunto(s)
Fenómenos Fisiológicos , Pepinos de Mar , Stichopus , Animales , Éteres Difenilos Halogenados/toxicidad , Éteres Difenilos Halogenados/metabolismo
17.
Toxics ; 11(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37755743

RESUMEN

BDE-47, a flame retardant that is frequently detected in environmental compartments and human tissues, has been associated with various toxic effects. In turn, information about the effects of aluminum diethyl-phosphinate (ALPI), a halogen-free flame retardant from a newer generation, is limited. This study aims to assess and compare the toxicity of BDE-47 and ALPI to zebrafish by analyzing the tail coiling, locomotor, acetylcholinesterase activities, and oxidative stress biomarkers. At 3000 µg/L BDE-47, the coiling frequency increased at 26-27 h post-fertilization (hpf), but the burst activity (%) and mean burst duration (s) did not change significantly. Here, we considered that the increased coiling frequency is a slight neurotoxic effect because locomotor activity was impaired at 144 hpf and 300 µg/L BDE-47. Moreover, we hypothesized that oxidative stress could be involved in the BDE-47 toxicity mechanisms. In contrast, only at 30,000 µg/L did ALPI increase the catalase activity, while the motor behavior during different developmental stages remained unaffected. On the basis of these findings, BDE-47 is more toxic than ALPI.

18.
Int J Mol Sci ; 24(16)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37628905

RESUMEN

This present study was conducted to provide evidence and an explanation for the apoptosis that occurs in the marine rotifer Brachionus plicatilis when facing 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) stress. Metabolomics analysis showed that aminoacyl-tRNA biosynthesis, valine, leucine and isoleucine biosynthesis, and arginine biosynthesis were the top three sensitive pathways to BDE-47 exposure, which resulted in the reduction in the amino acid pool level. Pyrimidine metabolism and purine metabolism pathways were also significantly influenced, and the purine and pyrimidine content were obviously reduced in the low (0.02 mg/L) and middle (0.1 mg/L) concentration groups while increased in the high (0.5 mg/L) concentration group, evidencing the disorder of nucleotide synthesis and decomposition in B. plicatilis. The biochemical detection of the key enzymes in purine metabolism and pyrimidine metabolism showed the downregulation of Glutamine Synthetase (GS) protein expression and the elevation of Xanthine Oxidase (XOD) activity, which suggested the impaired DNA repair and ROS overproduction. The content of DNA damage biomarker (8-OHdG) increased in treatment groups, and the p53 signaling pathway was found to be activated, as indicated by the elevation of the p53 protein expression and Bax/Bcl-2 ratio. The ROS scavenger (N-acetyl-L-cysteine, NAC) addition effectively alleviated not only ROS overproduction but also DNA damage as well as the activation of apoptosis. The combined results backed up the speculation that purine metabolism and pyrimidine metabolism alteration play a pivotal role in BDE-47-induced ROS overproduction and DNA damage, and the consequent activation of the p53 signaling pathway led to the observed apoptosis in B. plicatilis.


Asunto(s)
Rotíferos , Proteína p53 Supresora de Tumor , Animales , Especies Reactivas de Oxígeno , Éteres Difenilos Halogenados , Apoptosis
19.
Animals (Basel) ; 13(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37508068

RESUMEN

Widely used as a flame retardant, 2,2'4,4'-tetrabromodiphenyl ether (BDE-47) is a persistent environmental pollutant with toxicological effects, including hepatotoxicity, neurotoxicity, reproductive toxicity, and endocrine disruption. To investigate the toxicological effects of BDE-47 on early porcine embryogenesis in vitro, cultured porcine embryos were exposed to BDE-47 during early development. Exposure to 100 µM BDE-47 decreased the blastocyst rate and mRNA level of pluripotency genes but increased the level of LC3 and the expression of autophagy-related genes. After BDE-47 exposure, porcine embryos' antioxidant capability decreased; ROS levels increased, while glutathione (GSH) levels and the expression of antioxidant-related genes decreased. In addition, BDE-47 exposure reduced mitochondrial abundance and mitochondrial membrane potential levels, downregulated mitochondrial biogenesis-associated genes, decreased endoplasmic reticulum (ER) abundance, increased the levels of GRP78, a marker of ER stress (ERS), and upregulated the expression of ERS-related genes. However, ER damage and low embryo quality induced by BDE-47 exposure were reversed with the ERS inhibitor, the 4-phenylbutyric acid. In conclusion, BDE-47 inhibits the development of early porcine embryos in vitro by inducing mitochondrial dysfunction and ERS. This study sheds light on the mechanisms of BDE-47-induced embryonic toxicity.

20.
Environ Pollut ; 334: 122158, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37429494

RESUMEN

The brominated flame retardant 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is widely distributed in the environment and poses a certain risk to human health. Studies have reported that oxidative stress is a key mechanism underlying BDE-47-induced neurotoxicity. Mitochondrial reactive oxygen species (mtROS) is a crucial mediator of NLRP3 inflammasome activation, which is involved in cognitive dysfunction induced by environmental toxins. However, the function of the mtROS-NLRP3 inflammasome pathway in BDE-47-elicited cognitive deficits and the underlying mechanisms remain elusive. Our data illustrated that eight weeks of BDE-47 (20 mg/kg) gavage led to cognitive deficits and hippocampal neuronal injury in mice. BDE-47 exposure downregulated Sirt3 expression and decreased the activity and expression level of SOD2, thereby inhibiting mtROS scavenging and activating NLRP3 inflammasome-mediated pyroptosis in the mouse hippocampus and BV-2 cells. In vitro, BDE-47-evoked microglial pyroptosis relied on NLRP3 inflammasome activation. Moreover, a mtROS scavenger (TEMPO) attenuated NLRP3 inflammasome activation and subsequent microglial pyroptosis under BDE-47 stress. Furthermore, Sirt3 overexpression restored the activity and expression of SOD2 and enhanced mtROS scavenging, thereby suppressing NLRP3 inflammasome activation and ameliorating microglial pyroptosis. Notably, honokiol (HKL), a pharmacological agonist of Sirt3, mitigated BDE-47-evoked hippocampal neuronal injury and cognitive impairment by inhibiting mtROS-NLRP3 axis-mediated pyroptosis via Sirt3 upregulation.


Asunto(s)
Disfunción Cognitiva , Retardadores de Llama , Sirtuina 3 , Humanos , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Piroptosis , Sirtuina 3/genética , Sirtuina 3/metabolismo , Retardadores de Llama/toxicidad , Microglía/metabolismo , Regulación hacia Abajo , Disfunción Cognitiva/inducido químicamente , Especies Reactivas de Oxígeno/metabolismo , Cognición
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...