Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39126095

RESUMEN

Olfactory perception is an important physiological function for human well-being and health. Loss of olfaction, or anosmia, caused by viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has received considerable attention, especially in persistent cases that take a long time to recover. This review discusses the integration of different components of the olfactory epithelium to serve as a structural and functional unit and explores how they are affected during viral infections, leading to the development of olfactory dysfunction. The review mainly focused on the role of receptors mediating the disruption of olfactory signal transduction pathways such as angiotensin converting enzyme 2 (ACE2), transmembrane protease serine type 2 (TMPRSS2), neuropilin 1 (NRP1), basigin (CD147), olfactory, transient receptor potential vanilloid 1 (TRPV1), purinergic, and interferon gamma receptors. Furthermore, the compromised function of the epithelial sodium channel (ENaC) induced by SARS-CoV-2 infection and its contribution to olfactory dysfunction are also discussed. Collectively, this review provides fundamental information about the many types of receptors that may modulate olfaction and participate in olfactory dysfunction. It will help to understand the underlying pathophysiology of virus-induced anosmia, which may help in finding and designing effective therapies targeting molecules involved in viral invasion and olfaction. To the best of our knowledge, this is the only review that covered all the receptors potentially involved in, or mediating, the disruption of olfactory signal transduction pathways during COVID-19 infection. This wide and complex spectrum of receptors that mediates the pathophysiology of olfactory dysfunction reflects the many ways in which anosmia can be therapeutically managed.


Asunto(s)
Anosmia , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , COVID-19/complicaciones , COVID-19/fisiopatología , COVID-19/virología , Anosmia/fisiopatología , Anosmia/etiología , Anosmia/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/virología , Transducción de Señal , Serina Endopeptidasas/metabolismo , Neuropilina-1/metabolismo , Basigina/metabolismo , Canales Catiónicos TRPV/metabolismo
2.
Cells ; 13(16)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39195201

RESUMEN

Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity, including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor heterogeneity and its connections with metabolic reprogramming and epithelial-mesenchymal transition (EMT) were investigated with explorative shotgun proteomics complemented by a Random Forest (RF) machine-learning approach. Deep and superficial tumor regions and distant-site non-tumor samples from the same patients (n = 16) were analyzed. Among the 2009 proteins analyzed, 91 proteins, including 23 novel potential CRC hallmarks, showed significant quantitative changes. In addition, a 98.4% accurate classification of the three analyzed tissues was obtained by RF using a set of 21 proteins. Subunit E1 of 2-oxoglutarate dehydrogenase (OGDH-E1) was the best classifying factor for the superficial tumor region, while sorting nexin-18 and coatomer-beta protein (beta-COP), implicated in protein trafficking, classified the deep region. Down- and up-regulations of metabolic checkpoints involved different proteins in superficial and deep tumors. Analogously to immune checkpoints affecting the TME, cytoskeleton and extracellular matrix (ECM) dynamics were crucial for EMT. Galectin-3, basigin, S100A9, and fibronectin involved in TME-CRC-ECM crosstalk were found to be differently variated in both tumor regions. Different metabolic strategies appeared to be adopted by the two CRC regions to uncouple the Krebs cycle and cytosolic glucose metabolism, promote lipogenesis, promote amino acid synthesis, down-regulate bioenergetics in mitochondria, and up-regulate oxidative stress. Finally, correlations with the Dukes stage and budding supported the finding of novel potential CRC hallmarks and therapeutic targets.


Asunto(s)
Neoplasias Colorrectales , Matriz Extracelular , Aprendizaje Automático , Proteómica , Microambiente Tumoral , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/inmunología , Proteómica/métodos , Matriz Extracelular/metabolismo , Transición Epitelial-Mesenquimal , Transducción de Señal , Masculino , Femenino , Persona de Mediana Edad , Anciano , Bosques Aleatorios
3.
Int J Mol Sci ; 25(12)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38928225

RESUMEN

Acute myeloid leukemia (AML) is an aggressive blood cancer. With low survival rates, new drug targets are needed to improve treatment regimens and patient outcomes. Pseudolaric acid B (PAB) is a plant-derived bioactive compound predicted to interact with cluster of differentiation 147 (CD147/BSG). CD147 is a transmembrane glycoprotein overexpressed in various malignancies with suggested roles in regulating cancer cell survival, proliferation, invasion, and apoptosis. However, the detailed function of PAB in AML remains unknown. In this study, AML cell lines and patient-derived cells were used to show that PAB selectively targeted AML (IC50: 1.59 ± 0.47 µM). Moreover, proliferation assays, flow cytometry, and immunoblotting confirmed that PAB targeting of CD147 resulted in AML cell apoptosis. Indeed, the genetic silencing of CD147 significantly suppressed AML cell growth and attenuated PAB activity. Overall, PAB imparts anti-AML activity through transmembrane glycoprotein CD147.


Asunto(s)
Apoptosis , Basigina , Proliferación Celular , Diterpenos , Leucemia Mieloide Aguda , Humanos , Basigina/metabolismo , Basigina/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Diterpenos/farmacología , Supervivencia Celular/efectos de los fármacos
4.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928332

RESUMEN

CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.


Asunto(s)
Basigina , Diferenciación Celular , Fagocitosis , Humanos , Células Jurkat , Basigina/metabolismo , Basigina/genética , Células THP-1 , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Anticuerpos Monoclonales Humanizados/farmacología , Animales , Células CHO , Cricetulus , Monocitos/metabolismo , Monocitos/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Sistemas CRISPR-Cas
5.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892056

RESUMEN

Desmoplasia is a common feature of aggressive cancers, driven by a complex interplay of protein production and degradation. Basigin is a type 1 integral membrane receptor secreted in exosomes or released by ectodomain shedding from the cell surface. Given that soluble basigin is increased in the circulation of patients with a poor cancer prognosis, we explored the putative role of the ADAM12-generated basigin ectodomain in cancer progression. We show that recombinant basigin ectodomain binds ß1 integrin and stimulates gelatin degradation and the migration of cancer cells in a matrix metalloproteinase (MMP)- and ß1-integrin-dependent manner. Subsequent in vitro and in vivo experiments demonstrated the altered expression of extracellular matrix proteins, including fibronectin and collagen type 5. Thus, we found increased deposits of collagen type 5 in the stroma of nude mice tumors of the human tumor cell line MCF7 expressing ADAM12-mimicking the desmoplastic response seen in human cancer. Our findings indicate a feedback loop between ADAM12 expression, basigin shedding, TGFß signaling, and extracellular matrix (ECM) remodeling, which could be a mechanism by which ADAM12-generated basigin ectodomain contributes to the regulation of desmoplasia, a key feature in human cancer progression.


Asunto(s)
Proteína ADAM12 , Basigina , Proteínas de la Matriz Extracelular , Animales , Femenino , Humanos , Ratones , Proteína ADAM12/metabolismo , Proteína ADAM12/genética , Basigina/metabolismo , Basigina/genética , Línea Celular Tumoral , Movimiento Celular , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Células MCF-7 , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Unión Proteica , Dominios Proteicos , Integrina beta1/metabolismo
6.
Int J Biol Sci ; 20(6): 2297-2309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617545

RESUMEN

Background: Tyrosine kinase with immunoglobulin and EGF-like domains 1 (TIE1) is known as an orphan receptor prominently expressed in endothelial cells and participates in angiogenesis by regulating TIE2 activity. Our previous study demonstrated elevated TIE1 expression in cervical cancer cells. However, the role of TIE1 in cervical cancer progression, metastasis and treatment remains elusive. Methods: Immunohistochemistry staining for TIE1 and Basigin was performed in 135 human cervical cancer tissues. Overexpressing vectors and siRNAs were used to manipulate gene expression in tumor cells. Colony formation, wound healing, and transwell assays were used to assess cervical cancer cell proliferation and migration in vitro. Subcutaneous xenograft tumor and lung metastasis mouse models were established to examine tumor growth and metastasis. Co-Immunoprecipitation and Mass Spectrometry were applied to explore the proteins binding to TIE1. Immunoprecipitation and immunofluorescence staining were used to verify the interaction between TIE1 and Basigin. Cycloheximide chase assay and MG132 treatment were conducted to analyze protein stability. Results: High TIE1 expression was associated with poor survival in cervical cancer patients. TIE1 overexpression promoted the proliferation, migration and invasion of cervical cancer cells in vitro, as well as tumor growth and metastasis in vivo. In addition, Basigin, a transmembrane glycoprotein, was identified as a TIE1 binding protein, suggesting a pivotal role in matrix metalloproteinase regulation, angiogenesis, cell adhesion, and immune responses. Knockdown of Basigin or treatment with the Basigin inhibitor AC-73 reversed the tumor-promoting effect of TIE1 in vitro and in vivo. Furthermore, we found that TIE1 was able to interact with and stabilize the Basigin protein and stimulate the Basigin-matrix metalloproteinase axis. Conclusion: TIE1 expression in cervical cells exerts a tumor-promoting effect, which is at least in part dependent on its interaction with Basigin. These findings have revealed a TIE2-independent mechanism of TIE1, which may provide a new biomarker for cervical cancer progression, and a potential therapeutic target for the treatment of cervical cancer patients.


Asunto(s)
Neoplasias Pulmonares , Neoplasias del Cuello Uterino , Animales , Femenino , Humanos , Ratones , Basigina , Adhesión Celular , Células Endoteliales , Neoplasias del Cuello Uterino/genética
7.
J Cell Sci ; 137(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38661040

RESUMEN

Expression levels of the lactate-H+ cotransporter MCT4 (also known as SLC16A3) and its chaperone CD147 (also known as basigin) are upregulated in breast cancers, correlating with decreased patient survival. Here, we test the hypothesis that MCT4 and CD147 favor breast cancer invasion through interdependent effects on extracellular matrix (ECM) degradation. MCT4 and CD147 expression and membrane localization were found to be strongly reciprocally interdependent in MDA-MB-231 breast cancer cells. Overexpression of MCT4 and/or CD147 increased, and their knockdown decreased, migration, invasion and the degradation of fluorescently labeled gelatin. Overexpression of both proteins led to increases in gelatin degradation and appearance of the matrix metalloproteinase (MMP)-generated collagen-I cleavage product reC1M, and these increases were greater than those observed upon overexpression of each protein alone, suggesting a concerted role in ECM degradation. MCT4 and CD147 colocalized with invadopodia markers at the plasma membrane. They also colocalized with MMP14 and the lysosomal marker LAMP1, as well as partially with the autophagosome marker LC3, in F-actin-decorated intracellular vesicles. We conclude that MCT4 and CD147 reciprocally regulate each other and interdependently support migration and invasiveness of MDA-MB-231 breast cancer cells. Mechanistically, this involves MCT4-CD147-dependent stimulation of ECM degradation and specifically of MMP-mediated collagen-I degradation. We suggest that the MCT4-CD147 complex is co-delivered to invadopodia with MMP14.


Asunto(s)
Basigina , Neoplasias de la Mama , Matriz Extracelular , Proteína 1 de la Membrana Asociada a los Lisosomas , Metaloproteinasa 14 de la Matriz , Transportadores de Ácidos Monocarboxílicos , Invasividad Neoplásica , Podosomas , Femenino , Humanos , Basigina/metabolismo , Basigina/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Matriz Extracelular/metabolismo , Gelatina/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Invasividad Neoplásica/genética , Podosomas/metabolismo
8.
Hypertension ; 81(1): 114-125, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37955149

RESUMEN

BACKGROUND: Polycystic kidney disease is the most common hereditary kidney disorder with early and frequent hypertension symptoms. The mechanisms of cyst progression in polycystic kidney disease remain incompletely understood. METHODS: Bsg (basigin) heterozygous and homozygous knockout mice were generated using cas9 system, and Bsg overexpression was achieved by adeno-associated virus serotype 9 injection. Renal morphology was investigated through histological and imaging analysis. Molecular analysis was performed through transcriptomic profiling and biochemical approaches. RESULTS: Bsg-deficient mice exhibited significantly elevated arterial blood pressure. Further investigation demonstrated that Bsg deficiency triggers spontaneous cystic formation in mouse kidneys, which shares similar cyst pathological features and common transcriptional regulatory pathways with human polycystic kidney disease. Moreover, Bsg disruption promoted polycystin-1 ubiquitination and degradation, leading to activation of polycystic kidney disease associated cAMP and AMPK signaling pathways in Bsg knockout mouse kidneys. Finally, adeno-associated virus serotype 9 mediated Bsg reexpression reversed cystic progression in Bsg knockout mice in vivo, and Bsg overexpression inhibited the expansion of Madin-Darby canine kidney cysts in vitro. CONCLUSIONS: Our findings show that Bsg deficiency leads to an early-onset spontaneous polycystic kidney phenotype, suggesting that dysregulated Bsg signaling may be a contributing factor in cystogenesis.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Animales , Perros , Humanos , Ratones , Basigina/genética , Basigina/metabolismo , Quistes/metabolismo , Quistes/patología , Riñón/metabolismo , Ratones Noqueados , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo
9.
Elife ; 122023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37796723

RESUMEN

Basigin is an essential host receptor for invasion of Plasmodium falciparum into human erythrocytes, interacting with parasite surface protein PfRH5. PfRH5 is a leading blood-stage malaria vaccine candidate and a target of growth-inhibitory antibodies. Here, we show that erythrocyte basigin is exclusively found in one of two macromolecular complexes, bound either to plasma membrane Ca2+-ATPase 1/4 (PMCA1/4) or to monocarboxylate transporter 1 (MCT1). PfRH5 binds to each of these complexes with a higher affinity than to isolated basigin ectodomain, making it likely that these are the physiological targets of PfRH5. PMCA-mediated Ca2+ export is not affected by PfRH5, making it unlikely that this is the mechanism underlying changes in calcium flux at the interface between an erythrocyte and the invading parasite. However, our studies rationalise the function of the most effective growth-inhibitory antibodies targeting PfRH5. While these antibodies do not reduce the binding of PfRH5 to monomeric basigin, they do reduce its binding to basigin-PMCA and basigin-MCT complexes. This indicates that the most effective PfRH5-targeting antibodies inhibit growth by sterically blocking the essential interaction of PfRH5 with basigin in its physiological context.


Asunto(s)
Malaria Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/fisiología , Basigina , Eritrocitos/parasitología , Anticuerpos Neutralizantes , Malaria Falciparum/parasitología , Proteínas Protozoarias/metabolismo , Unión Proteica , Antígenos de Protozoos
10.
Microorganisms ; 11(8)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37630479

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical manifestations of COVID-19 range from mild flu-like symptoms to severe respiratory failure. Nowadays, extracellular matrix metalloproteinase inducer (EMMPRIN), also known as cluster of differentiation 147 (CD147) or BASIGIN, has been studied as enabling viral entry and replication within host cells. However, the impact of the CD147 rs8259T>A single nucleotide variant (SNV) on SARS-CoV-2 susceptibility remains poorly investigated. OBJECTIVE: To investigate the impact of rs8259T>A on the CD147 gene in individuals from Mexico with COVID-19 disease. METHODS: We genotyped the CD147 rs8359T>A SNV in 195 patients with COVID-19 and 185 healthy controls from Mexico. In addition, we also measured the expression levels of CD147 and TNF mRNA and miR-492 from whole blood of patients with COVID-19 through RT-q-PCR. RESULTS: We observed a significant association between the CD147 rs8259T>A SNV and susceptibility to COVID-19: T vs. A; OR 1.36, 95% CI 1.02-1.81; p = 0.037; and TT vs. AA; OR 1.77, 95% CI 1.01-3.09; p = 0.046. On the other hand, we did not find differences in CD147, TNF or miR-492 expression levels when considering the genotypes of the CD147 rs8259T>A SNV. CONCLUSIONS: Our results suggest that the CD147 rs8259T>A variant is a risk factor for COVID-19.

11.
Nephrology (Carlton) ; 28(11): 629-638, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37562415

RESUMEN

AIM: Irrespective of the cause, albumin/proteinuria induces tubulointerstitial damage and accelerates the progression of kidney diseases. Our series of studies demonstrated that proteinuria, an independent prognostic factor for chronic kidney disease (CKD), is correlated with urinary basigin/CD147 (Bsg) levels. We examined the morphology and origin of Bsg in the tubular lumen through the effects of filtered glucose and protein solutes on the tubules. METHODS: Diabetic kidney disease (DKD) patients (N = 50) were treated with spironolactone 25 mg for 4 weeks or by conservative treatment. The associations between urinary Bsg values and clinical indicators were examined. Primary-cultured proximal tubular epithelial cells (PTECs) from human adult kidneys were exposed to high glucose or bovine serum albumin (BSA). RESULTS: In patients with early phase DKD, urinary Bsg levels were closely correlated with proteinuria but not HbA1c. Full-length Bsg on extracellular vesicles (EVs) was investigated primarily in urine collected from DKD patients. EVs obtained from the urine of DKD patients included Bsg and SGLT2 proteins. Notably, spironolactone treatment concomitantly suppressed the release of Bsg-bearing EVs in correlation with decreased albuminuria. Exposure of PTECs to BSA (but not high glucose) enhanced the storage of supernatant Bsg in EVs despite the absence of exposure-specific changes in Bsg transcription. CONCLUSION: Proteinuria induces the release of Bsg-bearing EVs derived from PTECs into the tubular lumen.


Asunto(s)
Vesículas Extracelulares , Insuficiencia Renal Crónica , Adulto , Humanos , Albuminuria/tratamiento farmacológico , Albuminuria/metabolismo , Basigina/metabolismo , Espironolactona/metabolismo , Epitelio/metabolismo , Proteinuria , Insuficiencia Renal Crónica/metabolismo
12.
Elife ; 122023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37158588

RESUMEN

Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions. Silencing of SNX32 leads to a defect in intracellular trafficking of TfR and CIMPR. Further, using SILAC-based differential proteomics of the wild-type and the mutant SNX32, impaired in cargo binding, we identified Basigin (BSG), an immunoglobulin superfamily member, as a potential interactor of SNX32 in SHSY5Y cells. We then demonstrated that SNX32 binds to BSG through its PX domain and facilitates its trafficking to the cell surface. In neuroglial cell lines, silencing of SNX32 leads to defects in neuronal differentiation. Moreover, abrogation in lactate transport in the SNX32-depleted cells led us to propose that SNX32 may contribute to maintaining the neuroglial coordination via its role in BSG trafficking and the associated monocarboxylate transporter activity. Taken together, our study showed that SNX32 mediates the trafficking of specific cargo molecules along distinct pathways.


Asunto(s)
Endosomas , Proyección Neuronal , Endosomas/metabolismo , Transporte de Proteínas , Membrana Celular/metabolismo , Nexinas de Clasificación/metabolismo
13.
J Histochem Cytochem ; 71(4): 169-197, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37026452

RESUMEN

Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 RNA has been found in the human testis on occasion, but subgenomic SARS-CoV-2 and infectious SARS-CoV-2 virions have not been found. There is no direct evidence of SARS-CoV-2 infection of testicular cells. To better understand this, it is necessary to determine whether SARS-CoV-2 receptors and proteases are present in testicular cells. To overcome this limitation, we focused on elucidating with immunohistochemistry the spatial distribution of the SARS-CoV-2 receptors angiotensin-converting enzyme 2 (ACE2) and cluster of differentiation 147 (CD147), as well as their viral spike protein priming proteases, transmembrane protease serine 2 (TMPRSS2) and cathepsin L (CTSL), required for viral fusion with host cells. At the protein level, human testicular tissue expressed both receptors and proteases studied. Both ACE2 and TMPRSS2 were found in interstitial cells (endothelium, Leydig, and myoid peritubular cells) and in the seminiferous epithelium (Sertoli cells, spermatogonia, spermatocytes, and spermatids). The presence of CD147 was observed in all cell types except endothelium and peritubular cells, while CTSL was exclusively observed in Leydig, peritubular, and Sertoli cells. These findings show that the ACE2 receptor and its protease TMPRSS2 are coexpressed in all testicular cells, as well as the CD147 receptor and its protease CTSL in Leydig and Sertoli cells, indicating that testicular SARS-CoV-2 infection cannot be ruled out without further investigation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Péptido Hidrolasas/metabolismo , Testículo , ARN Viral , Peptidil-Dipeptidasa A/genética , Peptidil-Dipeptidasa A/metabolismo
14.
FEBS J ; 290(10): 2673-2691, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36595342

RESUMEN

Exploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy-dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish 'white' and 'brown' adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice. By contrast, Bsg expression increased in the mature adipocyte fraction of BAT upon cold acclimation. Additionally, Bsg levels were highly induced during brown adipocyte maturation in vitro and were further increased upon ß-adrenergic stimulation in a HIF-1α-dependent manner. siRNA-mediated Bsg gene silencing in cultured brown adipocytes did not impact adipogenesis nor mitochondrial function. However, a significant decrease in mitochondrial respiration, lipolysis and Ucp1 transcription was observed in adipocytes lacking Bsg, when activated by norepinephrine. Furthermore, using gas chromatography/mass spectrometry-time-of-flight analysis to assess the composition of cellular metabolites, we demonstrate that brown adipocytes lacking Bsg have lower levels of intracellular lactate and acetoacetate. Bsg was additionally required to regulate intracellular AcAc and tricarboxylic acid cycle intermediate levels in NE-stimulated adipocytes. Our study highlights the critical role of Bsg in active brown adipocytes, possibly by controlling cellular metabolism.


Asunto(s)
Adipocitos Marrones , Tejido Adiposo Pardo , Ratones , Animales , Adipocitos Marrones/metabolismo , Tejido Adiposo Pardo/metabolismo , Basigina/metabolismo , Lipólisis , Obesidad/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
15.
Biochem Biophys Res Commun ; 638: 163-167, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36459880

RESUMEN

Chronic inflammation of the retina, like that of diabetic retinopathy, disrupts the blood-retina barrier (BRB). Disruption of the BRB increases vascular permeability and leads to vision loss. Basigin gene products, cell-adhesion molecules and members of the immunoglobulin superfamily, are expressed on endothelial cells, photoreceptor cells and Müller glial cells. Basigin variant-1 on photoreceptors interacts with Basigin variant-2 on Müller glial cells and to rod-derived cone viability factor (RdCVF) to form metabolic support mechanisms necessary for the survival of photoreceptor neurons. The goal of the current study was to determine the gene expression changes of Basigin gene products in ex vivo neonatal, adolescent, and adult retina when exposed to an inflammatory insult in acute and chronic phases. Retinas extracted from mice at postnatal day (P) 7, 30, and 180 were incubated with either phosphate-buffered saline (PBS), as a control, or lipopolysaccharide (LPS), an endotoxin, for 3, 6, 12, or 24 h. RNA was then extracted and Basigin gene products were quantified by qPCR. Analyses indicate both gene products are influenced by LPS exposure in a time and age dependent manner. Specifically, P180 retinas exposed to LPS showed significant decreases in both Basigin gene products, suggesting older retinas may be susceptible to chronic inflammation and subsequent vision loss.


Asunto(s)
Basigina , Células Endoteliales , Animales , Ratones , Basigina/genética , Lipopolisacáridos/metabolismo , Retina/metabolismo , Inflamación/genética , Inflamación/metabolismo , ARN/metabolismo
16.
Biomolecules ; 12(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36551222

RESUMEN

The transmembrane transport of weak acid and base metabolites depends on the local pH conditions that affect the protonation status of the substrates and the availability of co-substrates, typically protons. Different protein designs ensure the attraction of substrates and co-substrates to the transporter entry sites. These include electrostatic surface charges on the transport proteins and complexation with seemingly transport-unrelated proteins that provide substrate and/or proton antenna, or enzymatically generate substrates in place. Such protein assemblies affect transport rates and directionality. The lipid membrane surface also collects and transfers protons. The complexity in the various systems enables adjustability and regulation in a given physiological or pathophysiological situation. This review describes experimentally shown principles in the attraction and facilitation of weak acid and base transport substrates, including monocarboxylates, ammonium, bicarbonate, and arsenite, plus protons as a co-substrate.


Asunto(s)
Proteínas de Transporte de Membrana , Protones , Transporte Biológico , Proteínas de Transporte de Membrana/metabolismo , Concentración de Iones de Hidrógeno
17.
Hum Reprod ; 37(12): 2885-2898, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36303457

RESUMEN

STUDY QUESTION: Does basigin (BSG) regulate human endometrial stromal cell (HESC) decidualization in vitro? SUMMARY ANSWER: BSG regulates HESCs proliferation and decidualization. WHAT IS KNOWN ALREADY: Studies have shown that in the human endometrium, BSG expression is menstrual-cycle dependent and its expression was significantly lower in uterine endometrium during the luteal phase of women experiencing multiple implantation failures after IVF than in women with normal fertility. STUDY DESIGN, SIZE, DURATION: We utilized a telomerase-immortalized HESCs in an in vitro cell culture model system to investigate whether BSG regulates decidualization of stromal cells. Further, we used microarray analysis to identify changes in the gene expression profile of HESCs treated with BSG small interfering RNA (siRNA). All experiments were repeated at least three times. PARTICIPANTS/MATERIALS, SETTING, METHODS: The effect of BSG knockdown (using siRNA) on HESC proliferation was determined by counting cell number and by tritiated thymidine incorporation assays. The effect of BSG on decidualization of HESCs was determined by RT-qPCR for the decidualization markers insulin-like growth factor-binding protein 1 (IGFBP1) and prolactin (PRL). Immunoblotting was used to determine the effect of BSG siRNA on the expression of MMP-2,3. Microarray analysis was used to identify BSG-regulated genes in HESCs at Day 6 of decidualization. Functional and pathway enrichment analyses were then carried out on the differentially expressed genes (DEGs). The STRING online database was used to analyze protein-protein interaction (PPI) between DEG-encoded proteins, and CytoScape software was used to visualize the interaction. MCODE and CytoHubba were used to construct functional modules and screen hub genes separately. Several BSG-regulated genes identified in the microarray analysis were confirmed by qPCR. MAIN RESULTS AND THE ROLE OF CHANCE: Knockdown of BSG expression in cultured stromal cells by siRNA significantly (P < 0.05) inhibited HESC proliferation, disrupted cell decidualization and down-regulated MMP-2 and MMP-3 expression. Microarray analysis identified 721 genes that were down-regulated, and 484 genes up-regulated with P < 0.05 in BSG siRNA treated HESCs. GO term enrichment analysis showed that the DEGs were significantly enriched in cell communication, signaling transduction and regulation, response to stimulus, cell adhesion, anatomical structure morphogenesis, extracellular matrix organization, as well as other functional pathways. KEGG pathway analysis identified upregulated gene enriched in pathways such as the MAPK signaling pathway, colorectal cancer, melanoma and axon guidance. In contrast, downregulated genes were mainly enriched in pathways including ECM-receptor interaction, PI3K-Akt signaling pathway, pathways in cancer, antigen processing, type I diabetes mellitus and focal adhesion. The top 10 hub nodes were identified using 12 methods analyses. The hub genes that showed up in two methods were screened out. Among these genes, upregulated genes included EGFR, HSP90AA1, CCND1, PXN, PRKACB, MGAT4A, EVA1A, LGALS1, STC2, HSPA4; downregulated genes included WNT4/5, FOXO1, CDK1, PIK3R1, IGF1, JAK2, LAMB1, ITGAV, HGF, MXRA8, TMEM132A, UBE2C, QSOX1, ERBB2, GNB4, HSP90B1, LAMB2, LAMC1 and ITGA1. Hub genes and module genes involved in the top three modules of PPI analysis were analyzed through the string database. Analysis showed that hub and module genes were related mainly to the WNT signaling pathway, PI3K-AKT signaling pathway and pathways in cancer. LARGE SCALE DATA: The microarray data set generated in this study has been published online at databank.illinois.edu. LIMITATIONS, REASONS FOR CAUTION: Most of the findings were obtained using an in vitro cell culture system that may not necessarily reflect in vivo functions. WIDER IMPLICATIONS OF THE FINDINGS: Our results demonstrate that BSG plays a vital role in decidualization and that downregulation of BSG in the uterine endometrium may be associated with infertility in women. The identified hub genes and pathways increase our understanding of the genetic etiology and molecular mechanisms underlying the regulation of decidualization by BSG. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the NIH U54 HD40093 (R.A.N.). The authors have no competing interests to declare.


Asunto(s)
Basigina , Metaloproteinasa 2 de la Matriz , Femenino , Humanos , Basigina/metabolismo , Endometrio/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Interferente Pequeño/metabolismo , Células del Estroma/metabolismo
18.
Front Genet ; 13: 900849, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36017494

RESUMEN

We studied the origin of rod-derived cone viability factor (RdCVF) during evolution. In mammals, the nucleoredoxin-like 1 gene (NXNL1) produces a truncated thioredoxin-like protein, RdCVF, by intron retention in rod photoreceptors of the retina. This protein prevents the secondary cone degeneration in animal models of rod-cone degeneration. Extracellular RdCVF binds to a complex at the surface of the cones, composed of the basigin-1, a photoreceptor specific alternative splicing product of the basigin gene, and GLUT1, the glucose transporter. RdCVF accelerates glucose uptake allosterically. Glucose is either metabolized by aerobic glycolysis to sustain cone outer segment renewal or by the pentose phosphate pathway to support redox power to the thioredoxin RdCVFL. RdCVF signaling predates the appearance of the eye and evolved through two alternative splicing events. RdCVF signaling is observed first in hydra where it regulates an unknown signaling. A scallop RdCVF protein is produced by ciliated photoreceptors of the retina and binds its receptor, BSG1, the first occurrence of RdCVF/BSG1 signaling. In the lamprey, RdCVF metabolic signaling between rod and cones is fully operational. In the mouse, the production of BSG1 is regulated through alternative splicing. This signaling was extended to other regions of the brain, via its paralogue NXNL2.

19.
Infect Immun ; 90(8): e0020522, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35913173

RESUMEN

The role of specific host cell surface receptors during Toxoplasma gondii invasion of host cells is poorly defined. Here, we interrogated the role of the well-known malarial invasion receptor, basigin, in T. gondii infection of astrocytes. We found that primary astrocytes express two members of the BASIGIN (BSG) immunoglobulin family, basigin and embigin, but did not express neuroplastin. Antibody blockade of either basigin or embigin caused a significant reduction of parasite infectivity in astrocytes. The specific role of basigin during T. gondii invasion was further examined using a mouse astrocytic cell line (C8-D30), which exclusively expresses basigin. CRISPR-mediated deletion of basigin in C8-D30 cells resulted in decreased T. gondii infectivity. T. gondii replication and invasion efficiency were not altered by basigin deficiency, but parasite attachment to astrocytes was markedly reduced. We also conducted a proteomic screen to identify T. gondii proteins that interact with basigin. Toxoplasma-encoded cyclophilins, the protein 14-3-3, and protein disulfide isomerase (TgPDI) were among the putative basigin-ligands identified. Recombinant TgPDI produced in E. coli bound to basigin and pretreatment of tachyzoites with a PDI inhibitor decreased parasite attachment to host cells. Finally, mutagenesis of the active site cysteines of TgPDI abolished enzyme binding to basigin. Thus, basigin and its related immunoglobulin family members may represent host receptors that mediate attachment of T. gondii to diverse cell types.


Asunto(s)
Toxoplasma , Toxoplasmosis , Basigina , Escherichia coli , Humanos , Proteómica
20.
Semin Cancer Biol ; 86(Pt 2): 334-346, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820598

RESUMEN

The evolutionary pressure for life transitioning from extended periods of hypoxia to an increasingly oxygenated atmosphere initiated drastic selections for a variety of biochemical pathways supporting the robust life currently present on the planet. First, we discuss how fermentative glycolysis, a primitive metabolic pathway present at the emergence of life, is instrumental for the rapid growth of cancer, regenerating tissues, immune cells but also bacteria and viruses during infections. The 'Warburg effect', activated via Myc and HIF-1 in response to growth factors and hypoxia, is an essential metabolic and energetic pathway which satisfies nutritional and energetic demands required for rapid genome replication. Second, we present the key role of lactic acid, the end-product of fermentative glycolysis able to move across cell membranes in both directions via monocarboxylate transporting proteins (i.e., MCT1/4) contributing to cell-pH homeostasis but also to the complex immune response via acidosis of the tumor microenvironment. Importantly lactate is recycled in multiple organs as a major metabolic precursor of gluconeogenesis and energy source protecting cells and animals from harsh nutritional or oxygen restrictions. Third, we revisit the Warburg effect via CRISPR-Cas9 disruption of glucose-6-phosphate isomerase (GPI-KO) or lactate dehydrogenases (LDHA/B-DKO) in two aggressive tumors (melanoma B16-F10, human adenocarcinoma LS174T). Full suppression of lactic acid production reduces but does not suppress tumor growth due to reactivation of OXPHOS. In contrast, disruption of the lactic acid transporters MCT1/4 suppressed glycolysis, mTORC1, and tumor growth as a result of intracellular acidosis. Finally, we briefly discuss the current clinical developments of an MCT1 specific drug AZ3965, and the recent progress for a specific in vivo MCT4 inhibitor, two drugs of very high potential for future cancer clinical applications.


Asunto(s)
Simportadores , Virosis , Animales , Humanos , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/genética , Simportadores/metabolismo , Línea Celular Tumoral , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Bacterias/metabolismo , Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...