RESUMEN
Bismuth Vanadate (BiVO4) is a promising oxide-based photoanode for electrochemical applications, yet its practical use is constrained by poor charge transport properties, particularly under dark conditions. This study introduces a novel BiVO4 variant (Bi-BiVO4-10) that incorporates abundant oxygen vacancies and in-situ formed Bi metal, significantly enhancing its electrical conductivity and catalytic performance. Bi-BiVO4-10 demonstrates superior electrochemical performances compared to conventional BiVO4 (C-BiVO4), demonstrated by its most positive half-wave potential with the highest diffusion-limiting current in the oxygen reduction reaction (ORR) and earliest onset potential in the oxygen evolution reaction (OER). Notably, Bi-BiVO4-10 is explored for the first time as an electrocatalyst for lithium-oxygen (Li-O2) cells, showing reduced overcharge (610 mV) in the first cycle and extended cycle life (1050 h), outperforming carbon (320 h) and C-BiVO4 (450 h) references. The enhancement is attributed to the synergy of oxygen vacancies, Bi metal formation, increased surface area, and improved electrical conductivity, which collectively facilitate Li2O2 growth, enhance charge transport kinetics, and ensure stable cycling. Theoretical calculations reveal enhanced chemical interactions between intermediate molecules and the defect-rich surfaces of Bi-BiVO4-10, promoting efficient discharge and charge processes in Li-O2 batteries. This research highlights the potential of unconventional BiVO4-based materials as durable electrocatalysts and for broader electrochemical applications.
RESUMEN
Constructing heterostructures is an effective way to improve the carrier mobility for metal oxide sensing material, since heterojunctions are usually built only on the surface of the material, the carrier transport efficiency inside the material still needs to be improved. In this paper, BiVO4 nanocrystals (BVO NCs) with an average size of 1 nm generated by pulsed laser irradiation were embedded in situ at the particle boundaries (PBs) of SnO2 nanofibers to form an effective n-n heterojunctions inside the material. After embedding the BVO NCs in the SnO2 samples, the response value for 10 ppm NO was improved to 48.91, which was 2.5 times higher than that of pure SnO2 at near room temperature (50 °C). Meanwhile, the detection limit was lowered to 50 ppb with excellent long term stability. Detailed analysis and theoretical calculations demonstrated that the formation of abundant n-n heterojunctions not only promotes the electron-hole separation and the carrier mobility, but also reduces the conductivity and adsorption energy of the material, which significantly improves its sensing performance. This work demonstrates a new approach to modulate the gas-sensing performance of metal oxide semiconductors by generating heterostructure inside the bulk of the material.
RESUMEN
Oxygen vacancies (OVs) are widely considered as active sites in photocatalytic reactions, yet the crucial role of OVs in S-scheme heterojunction photocatalysts requires deeper understanding. In this work, OVs at hetero-interface regulated S-scheme BiVO4-OVs/g-C3N4 photocatalysts are constructed. The Fermi-level structures of BiVO4 and g-C3N4 lead to a redistribution of charges at the heterojunction interface, inducing an internal electric field at the interface, which tends to promote the recombination of photogenerated carriers at the interface. Importantly, the introduction of OVs induces defect electronic states in the BiVO4 bandgap, creating indirect recombination energy level that serves as crucial intermediator for photogenerated carrier recombination in the S-scheme heterojunction. As a result, the photocatalytic degradation rate on Rhodamine B (RhB) and tetracyclines (TCs) for the optimal sample is 10.7 and 11.8 times higher than the bare one, the photocatalytic hydrogen production rate is also improved to 558 µmol g-1 h-1. This work shows the importance of OVs in heterostructure photocatalysis from both thermodynamic and kinetic aspects and may provide new insight into the rational design of S-scheme photocatalysts.
RESUMEN
Potassium-ion batteries (PIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs), thanks to the cost-effectiveness of potassium resources and a favorable redox potential of approximately -2.936 V. The monoclinic BiVO4, known for its layered structure, shows noteworthy electrochemical properties when utilized as an anode material for both LIBs and sodium-ion batteries. However, the fundamental electrochemical reaction mechanisms of the BiVO4 anode during the potassium insertion/extraction processes remain unclear. Here, we constructed a BiVO4 anode PIB inside the transmission electron microscope (TEM) to explore the real-time potassiation/depotassiation behaviors of BiVO4 during electrochemical cycling. Utilizing the state-of-art in situ TEM technique, the BiVO4 nanorods are found to undergo an asymmetric phase transformation for the first time, where the pristine BiVO4 material is transformed into an amorphous KxBiVO4 phase after the first cycle. More interestingly, the anode materials near and far from the potassium source exhibit opposite volume-changing trends under the same voltage potential. Also, this phenomenon should be attributed to the mass flow of the unstable K-Bi alloy under the electric field. Our findings provide significant insights into the electrochemical mechanism of BiVO4 nanorods during the potassiation/depotassiation process, with the hope of assistance in designing anodes for high-performance PIBs.
RESUMEN
Green hydrogen production is a key area of importance for advancing into a completely sustainable world, not only for its use in industry and ammonia production, but also for its potential as a new fuel. One promising method for generating green hydrogen is light-driven water splitting using photoelectrodes. Here, a bismuth vanadate (BiVO4) photoanode deposition process was developed using new, bespoke dual-source precursors, tailored for use in aerosol-assisted chemical vapour deposition (AACVD). The resulting thin films were highly nanostructured and consisted of phase-pure monoclinic BiVO4. Pristine films under 1 sun solar irradiation yielded photocurrent densities of 1.23 mA cm-2 at 1.23 V vs RHE and a peak incident photon-electron conversion efficiency (IPCE) of 82% at 674 nm, the highest performance of any CVD-grown BiVO4 film to date. A new, AACVD-compatible WO3 precursor was subsequently designed and synthesised for the deposition of W-doped BiVO4 within the same single deposition step.
RESUMEN
Efficient photoelectrochemical (PEC) water splitting systems in photoelectrodes are primarily challenged by electron-hole pair recombination. Constructing a heterostructure is an effective strategy to overcome this issue and to enhance PEC efficiency. In this study, we integrated NiMoO4, known for its proper electrocatalytic conductivity, into a BiVO4/Sn-doped WO3 heterojunction using solution-based hydrothermal and spin-coating methods, forming an innovative double heterojunction concept. The resulting NiMoO4/BiVO4/Sn:WO3 triple-layer heterojunction photoanode exhibits a photocurrent density of 2.06 mA cm-2 in a potassium borate buffer (KBi) electrolyte at 1.23 V vs RHE, outperforming the bilayer BiVO4/Sn:WO3 heterojunction (1.45 mA cm-2) and Sn:WO3 photoanodes (0.55 mA cm-2) by approximately 1.4 and 3.7 times, respectively. Remarkably, the NiMoO4/BiVO4/Sn:WO3 double heterojunction photoanode exhibits notable stability, showing only an approximate 30% reduction in initial photocurrent density after 10 h of measurement in the KBi electrolyte without a hole scavenger. This stability is attributed to the excellent corrosion resistance of the thin NiMoO4 layer, effectively protecting the bilayer BiVO4/Sn:WO3 heterojunction photoanode from photocorrosion. Our findings show how this novel double heterojunction, established through simple and cost-effective solution-based methods, offers a promising approach to enhancing PEC water splitting applications.
RESUMEN
Converting CO2 into high-value chemical fuels through green photoelectrocatalytic reaction path is considered as a potential strategy to solve energy and environmental problems. In this work, BiVO4/ZIF-8 heterojunctions are prepared by in-situ synthesis of ZIF-8 nanocrystals with unique pore structure on the surface of BiVO4. The experimental results show that the silkworm pupa-like BiVO4 is successfully combined with porous ZIF-8, and the introduction of ZIF-8 can provide more sites for CO2 capture. The optimal composite ratio of 4:1-BiVO4/ZIF-8 showed excellent CO2 reduction activity and the lowest electrochemical transport resistance. In the electrocatalytic system, 4:1-BiVO4/ZIF-8 exhibits formate Faraday efficiency of 82.60% at -1.0 V vs. RHE. Furthermore, the Faraday efficiency increases to 91.24% at - 0.9 V vs. RHE in the photoelectrocatalytic system, which is 10.8 times that of pristine BiVO4. The results show that photoelectric synergism can not only reduce energy consumption, but also improve the Faraday efficiency of formate. In addition, the current density did not decrease during 34 h electrolysis, showing long-term stability. This work highlights the importance of the construction of heterojunction to improve the performance of photoelectrocatalytic CO2 reduction.
RESUMEN
Phloroglucinol (PL) or 1,3,5-trihydroxybenzene is a phenolic compound used therapeutically for its antispasmodic properties. However, an overdose or prolonged exposure to PL can have harmful effects on human health. This work describes for the first time the development of a photoelectrochemical (PEC) sensor to determine PL. The proposed sensor is based on a fluorine-doped tin oxide (FTO) substrate modified with bismuth calcium tantalate (CaBi2Ta2O9), a ceramic perovskite powder, and bismuth vanadate (BiVO4). Both materials were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The morphology of the BiVO4/CaBi2Ta2O9/FTO platform was evaluated using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The photoelectrochemical response of the platform was evaluated by exploiting with light from a 36 W LED lamp confined in a low-cost homemade box. The BiVO4/CaBi2Ta2O9/FTO sensor showed superior photocurrent response compared to the FTO modified by the individual components (BiVO4/FTO and CaBi2Ta2O9/FTO). Under optimized experimental conditions, the photoelectrochemical sensor showed two linear ranges for PL concentrations ranging from 1 up to 900 µmol L-1 and from 900 up to 2000 µmol L-1, respectively. The BiVO4/CaBi2Ta2O9/FTO sensor exhibited excellent results regarding precision, accuracy, and selectivity for PL detection. PL determination was successfully performed in water and artificial urine samples, with recovery values between 100.1 and 102.2%.
RESUMEN
In the quest for efficient and stable oxygen evolution catalysts (OECs) for photoelectrochemical water splitting, the surface modification of BiVO4 is a crucial step. In this study, a novel and robust OEC, based on 3-(bis(pyridin-2-ylmethyl) amino) propanoic acid bifunctional linker known as dipicolyl alanine acid (DPAA) and cobalt ions, is prepared and fully characterized. The DPAA is anchored to the surface of BiVO4 and utilized to tether cobalt ions. The Co-DPAA/BiVO4 photoanode exhibits remarkable stability and efficiency toward photoelectrochemical water oxidation. Specifically, it showed anodic photocurrent increase of 7.1, 5.0, 3.0, and 1.3-fold at 1.23 VRHE as compared to pristine BiVO4, DPAA/BiVO4, Co-BiVO4, and Co-Pi/BiVO4 photoanodes, respectively. The photoelectrochemical and IMPS studies revealed that the Co-DPAA/BiVO4 photoanode exhibits a longer transient decay time for surface-trapped holes, higher charge transfer kinetics, and charge separation efficiency compared to Co-Pi/BiVO4 and pristine BiVO4 photoelectrodes. This indicates that the Co-DPAA effectively reduces surface recombination and facilitates charge transfer. Moreover, at 1.23 VRHE, the Co-DPAA/BiVO4 photoanode achieved a faradic efficiency of 92% for oxygen evolution reaction and could retain a turnover frequency of 3.65 s-1. The- exhibited effeciency is higher than most of the efficient molecular oxygen evolution catalyst based on Ru.
RESUMEN
BiVO4 has garnered substantial interest as a promising photoanode material for photoelectrochemical water-splitting due to its narrow band gap and appropriate band edge positions for water oxidation. Nevertheless, its practical use has been impeded by poor charge transport and sluggish water oxidation kinetics. Here, a hybrid composite photoanode is fabricated by uniformly embedding SnS2 nanoparticles near the surface of a BiVO4 thin film, creating a type II heterostructure with strong interactions between the nanoparticles and the film for efficient charge separation. This structure forms via eutectic melting during atomic layer deposition of SnS2 with subsequent phase separation between SnS2 and BiVO4 at room temperature, offering greater advantages and flexibilities over conventional exsolution techniques. Furthermore, the SnS2/BiVO4 hybrid composite is coated with a thin amorphous ZnS passivation layer to accelerate charge transfer process and enhance long-term stability. The optimized BiVO4/SnS2/ZnS photoanode exhibits a photocurrent density of 5.44 mA cm-2 at 1.23 V versus RHE, which is 2.73 times higher than that of the BiVO4 photoanode, and a dramatic improvement in photostability retention at 1.23 V versus RHE, increasing from 55% to 91% over 24 hours. This method of anchoring nanoparticles onto host materials proves highly valuable for energy and environmental applications.
RESUMEN
Bismuth vanadate ranks among the most promising photoanodes for photoelectrochemical water splitting. Nonetheless, slow charge separation and transport are key barriers to its photoefficiency. Here, we present a co-doping strategy that significantly improves the charge separation performance of BVO. Under standard one sun illumination, the Fe-N co-doped BVO photoanode (Fe-N-BVO) by N-coordinated Fe precursor reaches a record photocurrent density of 7.01 mA cm-2 at 1.23 V vs RHE after modified a surface co-catalyst. By contrast, much lower photocurrent density is obtained for the N-doped and Fe-doped BVO with separated N and Fe precursors. The detailed characterizations show that the high activity of the Fe-N-BVO is attributed to the enhanced photo-induced bulk charge separation and the accelerated surface water oxidation kinetics. XPS, EXAFS and DFT calculations clearly show that, instead of formation of deep trapping state in the individually doped BVO, the co-doping of Fe-N into BVO generates Fe-based electronic states just below the bottom of conduction band and N-derived states just above the top of valence band. Such modulations in electronic structure enable the efficient trap of the electrons and holes to enhance the separation of photo-induced carriers, but hinder the charge recombination originated from the deep trapping sites.
RESUMEN
Hydrogen generation via photoelectrochemical (PEC) overall water splitting is an attractive means of renewable energy production so developing and designing the cost-effective and high-activity bifunctional PEC catalysts both for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) has been focused on. Based on first-principles calculations, we propose a feasible strategy to enhance either HER or OER performance in the monoclinic exposed BiVO4 (110) facet by the introduction of oxygen vacancies (Ovacs). Our results show that oxygen vacancies induce charge rearrangements, which enhances charge transfer between active sites and adatoms. Furthermore, the incorporation of oxygen vacancies reduces the work function of the system, which makes charge transfer from the inner to the surface more easily; thus, the charges possess stronger redox capacity. As a result, the Ovac reduces both the hydrogen adsorption-free energy (ΔGH*) for the HER and the overpotential for the OER, facilitating the PEC activity of overall water splitting. The findings provide not only a method to develop bifunctional PEC catalysts based on BiVO4 but also insight into the mechanism of enhanced catalytic performance.
RESUMEN
A BiVO4/Fe2O3 heterojunction for non-enzymatic photoelectrochemical (PEC) determination of hydrogen sulfide (H2S) is reported. The BiVO4/Fe2O3 heterojunction promoted the separation of photo-generated carriers, reduced electron-hole recombination, and thus improved electron collection and photocurrent. The proposed BiVO4/Fe2O3/FTO sensor exhibited a linear range of 1-500 µM and a detection limit of 0.51 nM H2S. In addition, high selectivity, good reproducibility, and stability were obtained for H2S sensing. The detection of H2S in water and serum samples demonstrated its feasibility. This work provides a new strategy to detect and understand the bio-function of H2S in the biological environment.
RESUMEN
Bismuth vanadate (BiVO4) has long been considered a promising photoanode material for photoelectrochemical (PEC) water splitting. Despite its potential, significant challenges such as slow surface water evolution reaction (OER) kinetics, poor carrier mobility, and rapid charge recombination limit its application. To address these issues, a triadic photoanode has been fabricated by sequentially depositing CdS nanoparticles and NiFe-layered double hydroxide (NiFe-LDH) nanosheets onto BiVO4, creating a NiFe-LDH/CdS/BiVO4 composite. This newly engineered photoanode demonstrates a photocurrent density of 3.1 mA cm-2 at 1.23 V vs. RHE in 0.1 M KOH under AM 1.5 G illumination, outperforming the singular BiVO4 photoanode by a factor of 5.8 and the binary CdS/BiVO4 and NiFe-LDH/BiVO4 photoanodes by factors of 4.9 and 4.3, respectively. Furthermore, it exhibits significantly higher applied bias photon-to-current efficiency (ABPE) and incident photon-to-current efficiency (ICPE) compared to pristine BiVO4 and its binary counterparts. This enhancement in PEC performance is ascribed to the formation of a CdS/BiVO4 heterojunction and the presence of a NiFe-LDH OER co-catalyst, which synergistically facilitate charge separation and transfer efficiencies. The findings suggest that dual modification of BiVO4 with CdS and NiFe-LDH is a promising approach to enhance the efficiency of photoanodes for PEC water splitting.
RESUMEN
A biofunctional immunosensor combining photoelectrochemical (PEC) and electrochemical (EC) was proposed for the quantitative detection of the liver cancer marker alpha-fetoprotein (AFP) in human blood. BiVO4/BiOI-MWCNTs photoactive materials were first prepared on conductive glass FTO, and the photoelectrode was functionalized by chitosan and glutaraldehyde. Then, the AFP capture antibody (Ab1) was successfully modified on the photoelectrode, and the label-free rapid detection of AFP antigen was achieved by PEC. In addition, Au@PdPt nanospheres were also used as a marker for binding to AFP detection antibody (Ab2). Due to the excellent catalytic properties of Au@PdPt in EC reaction, a signal increase in the EC response can be achieved when Ab2 binds to the AFP antigen, which ensures high sensitivity for the detection of AFP. The detection limits of PEC and EC are 0.050 pg/mL and 0.014 pg/mL, respectively. The sensor also possesses good specificity, stability and reproducibility, shows excellent performance in the detection of clinical samples and has good clinical applicability.
Asunto(s)
Técnicas Biosensibles , Bismuto , Técnicas Electroquímicas , Oro , Vanadatos , alfa-Fetoproteínas , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/inmunología , Oro/química , Humanos , Bismuto/química , Vanadatos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos , Inmunoensayo/métodos , Nanotubos de Carbono/química , Paladio/química , Límite de Detección , Platino (Metal)/química , Nanopartículas del Metal/química , Anticuerpos Inmovilizados/química , Anticuerpos Inmovilizados/inmunologíaRESUMEN
Vanadate-based photocatalysts have recently attracted substantial attention owing to their outstanding photocatalytic activity for degrading organic pollutants and generating energy via photocatalytic processes. However, the relatively high price of vanadium has hindered the development of vanadate-based photocatalysts for various applications. Spent catalysts obtained from oil refineries typically contain a significant quantity of vanadium, making them valuable for recovery and utilization as precursors for the production of high-value-added photocatalysts. In this study, we transformed the V present in spent catalysts produced by the petrochemical industry into ternary vanadate-based photocatalysts [BiVO4/InVO4/Ag3VO4 (BVO/IVO/AVO, respectively)] designed for water remediation. The ternary composites revealed an enhanced photocatalytic capability, which was 1.42 and 5.1 times higher than those of the binary BVO/IVO and pristine AVO due to the facilitated charge separation. The ternary photocatalysts not only effectively treated wastewater containing various organic dyes, such as methylene blue (MB), rhodamine 6G (R6G), and brilliant green (BG), but also exhibited remarkable photocatalytic performance in the degradation of antibiotics, reduction of Cr(VI), and bacterial inactivation. This paper proposes a feasible route for recycling industrial waste as a source of vanadium to produce highly efficient vanadate-based photocatalysts.
Asunto(s)
Bismuto , Vanadatos , Vanadio , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Vanadatos/química , Contaminantes Químicos del Agua/química , Vanadio/química , Purificación del Agua/métodos , Bismuto/química , Colorantes/química , Aguas Residuales/química , Procesos FotoquímicosRESUMEN
BiVO4-based photoanode is one of the most promising photoanodes for photoelectrocatalytic water splitting. However, the serious problem of interface charge recombination limits its further development. Here, a Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi photoanode is constructed with double hole transport layer and an energy level gradient to achieve an effective photo-generated holes extraction and accumulation at the surface electrocatalyst. The conjugated polycarbazole framework CPF-TCzB is used as hole transport layer to eliminate the charge recombination center between Mo:BiVO4 and NiCoBi electrocatalyst and realize the extraction and storage of photo-generated hole; NiOx nanoparticles are further inserted between Mo:BiVO4 and CPF-TCzB to form a gradient energy level, eliminating the energy level barrier and optimizing band alignment. As a result, Mo:BiVO4/NiOx/CPF-TCzB/NiCoBi achieves a much higher photocurrent densities of 3.14 mA cm-2 than that of Mo:BiVO4 (0.42 mA cm-2) at 0.6 V versus RHE. This work provides an specific way to adjust the band structure of BiVO4-based photoanodes and realize efficient hole extraction and storage for PEC water splitting.
RESUMEN
In this work, Er-doped BiVO4/BiFeO3 composites are prepared using the sonochemical process with a difference of rare earth loading compositions. The crystallinity and chemical and morphological structure of as-synthesized samples were investigated via X-ray diffraction, Raman scattering, and electron microscopy, respectively. The diffuse reflectance technique was used to extract the optical property and calculate the optical band gap of the composite sample. The piezo-photocatalytic performance was evaluated according to the decomposition of a Rhodamine B organic compound. The decomposition of the organic compound was achieved under ultrasonic bath irradiation combined with light exposure. The Er-doped BiVO4/BiFeO3 composite heterojunction material exhibited significant enhancement of the piezo-photocatalytic activity under both ultrasonic and light irradiation due to the improvement in charge generation and separation. The result indicates that Er dopant strongly affects the phase transformation, change in morphology, and alternation in optical band gap of the BiVO4 matrix. The incorporation of BiFeO3 in the composite form with BiVO4 doped with 1%Er can improve the photocatalytic performance of BiVO4 via piezo-induced charge separation and charge recombination retardment.
RESUMEN
In this study, unique BiVO4-Au-Cu2O nanosheets (NSs) are well designed and multiple charge transfer paths are consequently constructed. The X-ray photoelectron spectroscopy measurement during a light off-on-off cycle and redox capability tests of the photo-generated charge carriers confirmed the formation of Z-scheme heterojunction, which can facilitate the charge carrier separation and transfer and maintain the original strong redox potentials of the respective component in the heterojunction. The ultrathin 2D structure of the BiVO4 NSs provided sufficient surface area for the photocatalytic reaction. The local surface plasmon resonance (LSPR) effect of the electron mediator, Au NPs, enhanced the light absorption and promoted the excitation of hot electrons. The multiple charge transfer paths effectively promoted the separation and transfer of the charge carrier. The synergism of the abovementioned properties endowed the BiVO4-Au-Cu2O NSs with satisfactory photocatalytic activity in the degradation of tetracycline (Tc) with a removal rate of ≈80% within 30 min under visible light irradiation. The degradation products during the photocatalysis are confirmed by using ultra-high performance liquid chromatography-mass spectrometry and the plausible degradation pathways of Tc are consequently proposed. This work paves a strategy for developing highly efficient visible-light-driven photocatalysts with multiple charge transfer paths for removing organic contaminants in water.
RESUMEN
The photoelectrochemical (PEC) conversion of organic small molecules offers a dual benefit of synthesizing value-added chemicals and concurrently producing hydrogen (H2). Ethylene glycol, with its dual hydroxyl groups, stands out as a versatile organic substrate capable of yielding various C1 and C2 chemicals. In this study, we demonstrate that pH modulation markedly enhances the photocurrent of BiVO4 photoanodes, thus facilitating the efficient oxidation of ethylene glycol while simultaneously generating H2. Our findings reveal that in a pH = 1 ethylene glycol solution, the photocurrent density at 1.23 V vs. RHE can attain an impressive 7.1 mA cm-2, significantly surpassing the outputs in neutral and highly alkaline environments. The increase in photocurrent is attributed to the augmented adsorption of ethylene glycol on BiVO4 under acidic conditions, which in turn elevates the activity of the oxidation reaction, culminating in the maximal production of formic acid. This investigation sheds light on the pivotal role of electrolyte pH in the PEC oxidation process and underscores the potential of the PEC strategy for biomass valorization into value-added products alongside H2 fuel generation.