Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Intervalo de año de publicación
1.
J Biol Chem ; 300(6): 107371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750791

RESUMEN

The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.


Asunto(s)
Cisteína , Cisteína/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bilophila/metabolismo , Bilophila/enzimología , Racemasas y Epimerasas/metabolismo , Oxidación-Reducción , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/química , Sulfitos/metabolismo , Humanos
2.
Eur J Clin Invest ; : e14228, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655910

RESUMEN

BACKGROUND: Gut microbiota and its by-products are increasingly recognized as having a decisive role in cardiovascular diseases. The aim is to study the relationship between gut microbiota and early vascular ageing (EVA). METHODS: A cross-sectional study was developed in Salamanca (Spain) in which 180 subjects aged 45-74 years were recruited. EVA was defined by the presence of at least one of the following: carotid-femoral pulse wave velocity (cf-PWV), cardio-ankle vascular index (CAVI) or brachial-ankle pulse wave velocity (ba-PWV) above the 90th percentile of the reference population. All other cases were considered normal vascular ageing (NVA). MEASUREMENTS: cf-PWV was measured by SphygmoCor® System; CAVI and ba-PWV were determined by Vasera 2000® device. Gut microbiome composition in faecal samples was determined by 16S rRNA Illumina sequencing. RESULTS: Mean age was 64.4 ± 6.9 in EVA group and 60.4 ± 7.6 years in NVA (p < .01). Women in EVA group were 41% and 53% in NVA. There were no differences in the overall composition of gut microbiota between the two groups when evaluating Firmicutes/Bacteriodetes ratio, alfa diversity (Shannon Index) and beta diversity (Bray-Curtis). Bilophila, Faecalibacterium sp.UBA1819 and Phocea, are increased in EVA group. While Cedecea, Lactococcus, Pseudomonas, Succiniclasticum and Dielma exist in lower abundance. In logistic regression analysis, Bilophila (OR: 1.71, 95% CI: 1.12-2.6, p = .013) remained significant. CONCLUSIONS: In the studied Spanish population, early vascular ageing is positively associated with gut microbiota abundance of the genus Bilophila. No relationship was found between phyla abundance and measures of diversity.

3.
Microbiol Spectr ; 12(4): e0347423, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38385739

RESUMEN

The microbiota of perianal abscesses is scarcely investigated. Identifying causative bacteria is essential to develop antibiotic therapy. However, culture-based methods and molecular diagnostics through 16S PCR technology are often hampered by the polymicrobial nature of perianal abscesses. We sought to characterize the microbiota composition of perianal abscesses via metagenomic next-generation sequencing (mNGS). Fourteen patients suffering from perianal abscesses between March 2023 and August 2023 underwent retrospective assessment. Information from medical records was used, including clinical information, laboratory data, and culture and mNGS results. Forty bacterial taxa were identified from perianal abscesses through mNGS, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) representing the most prevalent species. mNGS identified an increased number of bacterial taxa, with an average of 6.1 compared to a traditional culture-based method which only detected an average of 1.1 in culture-positive perianal abscess patients, predominantly E. coli (75.0%), revealing the polymicrobial nature of perianal abscesses. Our study demonstrates that a more diverse bacterial profile is detected by mNGS in perianal abscesses, and that Bilophila wadsworthia is the most prevalent microorganism, potentially serving as a potential biomarker for perianal abscess.IMPORTANCEAccurately, identifying the bacteria causing perianal abscesses is crucial for effective antibiotic therapy. However, traditional culture-based methods and 16S PCR technology often struggle with the polymicrobial nature of these abscesses. This study employed metagenomic next-generation sequencing (mNGS) to comprehensively analyze the microbiota composition. Results revealed 40 bacterial taxa, with Bilophila wadsworthia (71.4%), Bacteroides fragilis (57.1%), and Escherichia coli (50.0%) being the most prevalent species. Compared to the culture-based approach, mNGS detected a significantly higher number of bacterial taxa (average 6.1 vs 1.1), highlighting the complex nature of perianal abscesses. Notably, Bilophila wadsworthia emerged as a potential biomarker for these abscesses. This research emphasizes the importance of mNGS in understanding perianal abscesses and suggests its potential for improving diagnostic accuracy and guiding targeted antibiotic therapy in the future.


Asunto(s)
Microbiota , Enfermedades de la Piel , Adulto , Humanos , Absceso/diagnóstico , Escherichia coli/genética , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento , Antibacterianos , Bacteroides fragilis/genética , Metagenómica , Biomarcadores
4.
Int J Mol Sci ; 24(14)2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37511464

RESUMEN

The powerful immune responses elicited by the mRNA vaccines targeting the SARS-CoV-2 Spike protein contribute to their high efficacy. Yet, their efficacy can vary greatly between individuals. For vaccines not based on mRNA, cumulative evidence suggests that differences in the composition of the gut microbiome, which impact vaccine immunogenicity, are some of the factors that contribute to variations in efficacy. However, it is unclear if the microbiome impacts the novel mode of immunogenicity of the SARS-CoV-2 mRNA vaccines. We conducted a prospective longitudinal cohort study of individuals receiving SARS-CoV-2 mRNA vaccines where we measured levels of anti-Spike IgG and characterized microbiome composition, at pre-vaccination (baseline), and one week following the first and second immunizations. While we found that microbial diversity at all timepoints correlated with final IgG levels, only at baseline did microbial composition and predicted function correlate with vaccine immunogenicity. Specifically, the phylum Desulfobacterota and genus Bilophila, producers of immunostimulatory LPS, positively correlated with IgG, while Bacteroides was negatively correlated. KEGG predicted pathways relating to SCFA metabolism and sulfur metabolism, as well as structural components such as flagellin and capsular polysaccharides, also positively correlated with IgG levels. Consistent with these findings, depleting the microbiome with antibiotics reduced the immunogenicity of the BNT162b2 vaccine in mice. These findings suggest that gut microbiome composition impacts the immunogenicity of the SARS-CoV-2 mRNA vaccines.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Humanos , Ratones , Vacunas contra la COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Estudios Longitudinales , Estudios Prospectivos , COVID-19/prevención & control , Vacunación , Vacunas de ARNm , Inmunoglobulina G , Anticuerpos Antivirales
5.
Int J Biol Macromol ; 250: 126002, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506789

RESUMEN

The presence of excessive hydrogen sulfide (H2S)-producing bacteria, particularly Bilophila wadsworthia in appendices, is linked to a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Thus, targeting this bacterium could reduce sulfide levels and address associated health concerns. Here, we utilized reverse vaccinology and immunoinformatics to design a chimeric vaccine against B. wadsworthia, focusing on membrane-bound and extracellular proteins. Subtractive proteome analysis identified 18 potential vaccine candidates (PVCs), from which six B-cell, eight CD8+ T cell, and six CD4+ T cell epitopes were predicted. Chosen epitopes were assessed for immunological properties and cross-reactivity with human and mouse proteomes. Subsequently, these epitopes were fused with appropriate linkers, PADRE epitope, TAT peptide, and Cholera Toxin B subunit adjuvant to form a robust multi-epitope vaccine (MEV). The MEV's tertiary structure was modelled and validated for reliable analysis. Molecular docking and dynamics simulations demonstrated stable binding of MEV with Toll-like receptor 4. The MEV showed favorable physicochemical characteristics, high expression potential in Escherichia coli, broad population coverage (∼98 %), and cross-protection against different B. wadsworthia strains. Immune simulation suggested induction of strong B and T cell responses, including primary, secondary, and tertiary immune responses. Further experimental studies are necessary to validate these findings.

6.
J Biol Chem ; 299(8): 105010, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414148

RESUMEN

The obligately anaerobic sulfite-reducing bacterium Bilophila wadsworthia is a common human pathobiont inhabiting the distal intestinal tract. It has a unique ability to utilize a diverse range of food- and host-derived sulfonates to generate sulfite as a terminal electron acceptor (TEA) for anaerobic respiration, converting the sulfonate sulfur to H2S, implicated in inflammatory conditions and colon cancer. The biochemical pathways involved in the metabolism of the C2 sulfonates isethionate and taurine by B. wadsworthia were recently reported. However, its mechanism for metabolizing sulfoacetate, another prevalent C2 sulfonate, remained unknown. Here, we report bioinformatics investigations and in vitro biochemical assays that uncover the molecular basis for the utilization of sulfoacetate as a source of TEA (STEA) for B. wadsworthia, involving conversion to sulfoacetyl-CoA by an ADP-forming sulfoacetate-CoA ligase (SauCD), and stepwise reduction to isethionate by NAD(P)H-dependent enzymes sulfoacetaldehyde dehydrogenase (SauS) and sulfoacetaldehyde reductase (TauF). Isethionate is then cleaved by the O2-sensitive isethionate sulfolyase (IseG), releasing sulfite for dissimilatory reduction to H2S. Sulfoacetate in different environments originates from anthropogenic sources such as detergents, and natural sources such as bacterial metabolism of the highly abundant organosulfonates sulfoquinovose and taurine. Identification of enzymes for anaerobic degradation of this relatively inert and electron-deficient C2 sulfonate provides further insights into sulfur recycling in the anaerobic biosphere, including the human gut microbiome.


Asunto(s)
Bilophila , Humanos , Alcanosulfonatos/metabolismo , Bilophila/metabolismo , Sulfitos/metabolismo , Azufre/metabolismo , Taurina/metabolismo , Microbioma Gastrointestinal
7.
Int J Biol Macromol ; 240: 124428, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062383

RESUMEN

Bilophila wadsworthia is one of the prominent sources of hydrogen sulfide (H2S) production in appendices, excessive levels of which can result in a weaker colonic mucus barrier, inflammatory bowel disease, and colorectal cancer. Isethionate sulfite-lyase (IslA) enzyme catalyzes H2S production by cleaving CS bond in isethionate, producing acetaldehyde and sulfite. In this study, we aimed to identify potential substrate antagonists for IsIA using a structure-based drug design. Initially, pharmacophore-based computational screening of the ZINC20 database yielded 66 hits that were subjected to molecular docking targeting the isethionate binding site of IsIA. Based on striking docking scores, nine compounds showed strong interaction with critical IsIA residues (Arg189, Gln193, Glu470, Cys468, and Arg678), drug-like features, appropriate adsorption, metabolism, excretion, and excretion profile with non-toxicity. Molecular dynamics simulations uncovered the significant impact of binding the compounds on protein conformational dynamics. Finally, binding free energies revealed substantial binding affinity (ranging from -35.23 to -53.88 kcal/mol) of compounds (ZINC913876497, ZINC913856647, ZINC914263733, ZINC914137795, ZINC915757996, ZINC914357083, ZINC913934833, ZINC9143362047, and ZINC913854740) for IsIA. The compounds proposed herein through a multi-faceted computational strategy can be experimentally validated as potential substrate antagonists of B. wadsworthia's IsIA for developing new medications to curb gut-associated illness in the future.


Asunto(s)
Bilophila , Liasas , Simulación del Acoplamiento Molecular , Bilophila/metabolismo , Liasas/metabolismo , Simulación de Dinámica Molecular , Sulfitos/metabolismo , Ligandos
8.
Cancers (Basel) ; 15(3)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36765864

RESUMEN

A glycal radical enzyme called isethionate sulfite-lyase (Isla) breaks the C-S bond in isethionate to produce acetaldehyde and sulfite. This enzyme was found in the Gram-negative, colonial Bilophila wadsworthia bacteria. Sulfur dioxide, acetate, and ammonia are produced by the anaerobic respiration route from (sulfonate isethionate). Strong genotoxic H2S damages the colon's mucous lining, which aids in the development of colorectal cancer. H2S production also contributes to inflammatory bowel diseases such as colitis. Here, we describe the structure-based drug designing for the Isla using an in-house database of naturally isolated compounds and synthetic derivatives. In structure-based drug discovery, a combination of methods was used, including molecular docking, pharmacokinetics properties evaluation, binding free energy calculations by the molecular mechanics/generalized born surface area (MM/GBSA) method, and protein structure dynamics exploration via molecular dynamic simulations, to retrieve novel and putative inhibitors for the Isla protein. Based on the docking score, six compounds show significant binding interaction with the Isla active site crucial residues and exhibit drug-like features, good absorption, distribution, metabolism, and excretion profile with no toxicity. The binding free energy reveals that these compounds have a strong affinity with the Isla. In addition, the molecular dynamics simulations reveal that these compounds substantially affect the protein structure dynamics. As per our knowledge, this study is the first attempt to discover Isla potential inhibitors. The compounds proposed in the study using a multi-fold computational technique may be verified in vitro as possible inhibitors of Isla and possess the potential for the future development of new medications that target Isla.

9.
Anaerobe ; 78: 102641, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36108892

RESUMEN

We report a rare case of polymicrobial anaerobic bacteremia caused by four different gut anaerobes: Bacteroides fragilis, Eggerthella lenta, Bilophila wadsworthia, and Ruminococcus gnavus. Early initiation of appropriate therapy and species identification with matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) resulted in full recovery from the infection. Our case highlights the clinical significance of polymicrobial cultures and the importance of performing anaerobic cultures for blood specimens to ensure proper identification and treatment.


Asunto(s)
Bacteriemia , Infecciones Bacterianas , Neoplasias , Humanos , Bacteroides fragilis , Bilophila , Anaerobiosis , Bacterias Anaerobias , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
10.
Genes (Basel) ; 13(5)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35627315

RESUMEN

BACKGROUND: The influence of the microbiome on neurological diseases has been studied for years. Recent findings have shown a different composition of gut microbiota detected in patients with multiple sclerosis (MS). The role of this dysbiosis is still unknown. OBJECTIVE: We analyzed the gut microbiota of 15 patients with active relapsing-remitting multiple sclerosis (RRMS), comparing with diet-matched healthy controls. METHOD: To determine the composition of the gut microbiota, we performed high-throughput sequencing of the 16S ribosomal RNA gene. The specific amplified sequences were in the V3 and V4 regions of the 16S ribosomal RNA gene. RESULTS: The gut microbiota of RRMS patients differed from healthy controls in the levels of the Lachnospiraceae, Ezakiella, Ruminococcaceae, Hungatella, Roseburia, Clostridium, Shuttleworthia, Poephyromonas, and Bilophila genera. All these genera were included in a logistic regression analysis to determine the sensitivity and the specificity of the test. Finally, the ROC (receiver operating characteristic) and AUC with a 95% CI were calculated and best-matched for Ezakiella (AUC of 75.0 and CI from 60.6 to 89.4) and Bilophila (AUC of 70.2 and CI from 50.1 to 90.4). CONCLUSIONS: There is a dysbiosis in the gut microbiota of RRMS patients. An analysis of the components of the microbiota suggests the role of some genera as a predictive factor of RRMS prognosis and diagnosis.


Asunto(s)
Microbioma Gastrointestinal , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Biomarcadores , Disbiosis , Microbioma Gastrointestinal/genética , Humanos , ARN Ribosómico 16S/genética
11.
Front Microbiol ; 13: 811922, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572712

RESUMEN

Being one of the most dynamic entities in the human body, glycosylation of proteins fine-tunes the activity of the organismal machinery, including the immune system, and mediates the interaction with the human microbial consortium, typically represented by the gut microbiome. Using data from 194 healthy individuals, we conducted an associational study to uncover potential relations between the gut microbiome and the blood plasma N-glycome, including N-glycome of immunoglobulin G. While lacking strong linkages on the multivariate level, we were able to identify associations between alpha and beta microbiome diversity and the blood plasma N-glycome profile. Moreover, for two bacterial genera, namely, Bilophila and Clostridium innocuum, significant associations with specific glycans were also shown. The study's results suggest a non-trivial, possibly weak link between the total plasma N-glycome and the gut microbiome, predominantly involving glycans related to the immune system proteins, including immunoglobulin G. Further studies of glycans linked to microbiome-related proteins in well-selected patient groups are required to conclusively establish specific associations.

12.
Front Endocrinol (Lausanne) ; 13: 848715, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574004

RESUMEN

Background: In adults, gut dysbiosis may contribute to the pathogenesis of gout. However, the characteristics of gut microbiota in children with hyperuricemia (HUA) in the absence of clinical gout have not been explored. Objective: This present study analyzed the gut microbiota in children with HUA as compared to controls (Con) and explored bacterial associations that may account for differences. Methods: A total of 80 children were enrolled in this study; they were divided into HUA and Con according to the level of serum uric acid (UA). The composition of gut microbiota was investigated by 16S rRNA high-throughput sequencing. Results: Principal coordinate analysis revealed that gut microbiota of the HUA group was clustered together and separated partly from the Con group. There was no difference in alpha-diversity between the two groups. However, Spearman's correlation analysis revealed that serum UA level positively correlated with genera Actinomyces, Morganella, and Streptococcus, and negatively associated with the producers of short-chain fatty acids (SCFAs), such as Alistipes, Faecalibacterium, and Oscillospira, and the sulfidogenic bacteria Bilophila. The members of the genera Alistipes and Bilophila in the Con group were significantly more prevalent than the HUA subjects. Compared to the Con cohort, metabolic pathway predictions found that the superpathways of purine nucleotide de novo biosynthesis were decreased in HUA subjects, whereas the superpathway of purine deoxyribonucleoside de gradation was increased. Conclusion: The composition of the gut microbiota in children with HUA differs from Con. Although causality cannot be established, modification in the microbiota that produces SCFA and sulfide may promote HUA.


Asunto(s)
Microbioma Gastrointestinal , Gota , Hiperuricemia , Adulto , Bacterias/genética , Niño , Humanos , ARN Ribosómico 16S/genética , Ácido Úrico
13.
Cell Host Microbe ; 29(9): 1378-1392.e6, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358434

RESUMEN

Many genetic and environmental factors increase susceptibility to cognitive impairment (CI), and the gut microbiome is increasingly implicated. However, the identity of gut microbes associated with CI risk, their effects on CI, and their mechanisms remain unclear. Here, we show that a carbohydrate-restricted (ketogenic) diet potentiates CI induced by intermittent hypoxia in mice and alters the gut microbiota. Depleting the microbiome reduces CI, whereas transplantation of the risk-associated microbiome or monocolonization with Bilophila wadsworthia confers CI in mice fed a standard diet. B. wadsworthia and the risk-associated microbiome disrupt hippocampal synaptic plasticity, neurogenesis, and gene expression. The CI is associated with microbiome-dependent increases in intestinal interferon-gamma (IFNg)-producing Th1 cells. Inhibiting Th1 cell development abrogates the adverse effects of both B. wadsworthia and environmental risk factors on CI. Together, these findings identify select gut bacteria that contribute to environmental risk for CI in mice by promoting inflammation and hippocampal dysfunction.


Asunto(s)
Bilophila/metabolismo , Disfunción Cognitiva/patología , Dieta Cetogénica/efectos adversos , Hipocampo/fisiopatología , Hipoxia Encefálica/fisiopatología , Células TH1/inmunología , Animales , Microbioma Gastrointestinal/fisiología , Interferón gamma/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células TH1/citología
14.
Cell Chem Biol ; 28(9): 1333-1346.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-33773110

RESUMEN

Desulfonation of isethionate by the bacterial glycyl radical enzyme (GRE) isethionate sulfite-lyase (IslA) generates sulfite, a substrate for respiration that in turn produces the disease-associated metabolite hydrogen sulfide. Here, we present a 2.7 Å resolution X-ray structure of wild-type IslA from Bilophila wadsworthia with isethionate bound. In comparison with other GREs, alternate positioning of the active site ß strands allows for distinct residue positions to contribute to substrate binding. These structural differences, combined with sequence variations, create a highly tailored active site for the binding of the negatively charged isethionate substrate. Through the kinetic analysis of 14 IslA variants and computational analyses, we probe the mechanism by which radical chemistry is used for C-S bond cleavage. This work further elucidates the structural basis of chemistry within the GRE superfamily and will inform structure-based inhibitor design of IsIA and thus of microbial hydrogen sulfide production.


Asunto(s)
Carbono/metabolismo , Liasas/metabolismo , Azufre/metabolismo , Bilophila/enzimología , Carbono/química , Cristalografía por Rayos X , Liasas/química , Modelos Moleculares , Azufre/química
15.
Int J Med Microbiol ; 311(3): 151494, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33711649

RESUMEN

The interplay between diet, intestinal microbiota and host is a major factor impacting health. A diet rich in unsaturated fatty acids has been reported to stimulate the growth of Bilophila wadsworthia by increasing the proportion of the sulfonated bile acid taurocholate (TC). The taurine-induced overgrowth of B. wadsworthia promoted the development of colitis in interleukin-10-deficient (IL-10-/-) mice. This study aimed to investigate whether intake of the sulfonates sulfoquinovosyl diacylglycerols (SQDG) with a dietary supplement or their degradation product sulfoquinovose (SQ), stimulate the growth of B. wadsworthia in a similar manner and, thereby, cause intestinal inflammation. Conventional IL-10-/- mice were fed a diet supplemented with the SQDG-rich cyanobacterium Arthrospira platensis (Spirulina). SQ or TC were orally applied to conventional IL-10-/- mice and gnotobiotic IL-10-/- mice harboring a simplified human intestinal microbiota with or without B. wadsworthia. Analyses of inflammatory parameters revealed that none of the sulfonates induced severe colitis, but both, Spirulina and TC, induced expression of pro-inflammatory cytokines in cecal mucosa. Cell numbers of B. wadsworthia decreased almost two orders of magnitude by Spirulina feeding but slightly increased in gnotobiotic SQ and conventional TC mice. Changes in microbiota composition were observed in feces as a result of Spirulina or TC feeding in conventional mice. In conclusion, the dietary sulfonates SQDG and their metabolite SQ did not elicit bacteria-induced intestinal inflammation in IL-10-/- mice and, thus, do not promote colitis.


Asunto(s)
Colitis , Dieta , Microbioma Gastrointestinal , Metilglucósidos , Animales , Colitis/inducido químicamente , Interleucina-10/genética , Lípidos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Spirulina
16.
Gut Microbes ; 12(1): 1799734, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32779963

RESUMEN

In Canada and the US, the infant diet is supplemented with vitamin D via supplement drops or formula. Pregnant and nursing mothers often take vitamin D supplements. Since little is known about the impact of this supplementation on infant gut microbiota, we undertook a study to determine the association between maternal and infant vitamin D supplementation, infant gut microbiota composition and Clostridioides difficile colonization in 1,157 mother-infant pairs of the CHILD (Canadian Healthy Infant Longitudinal Development) Cohort Study over 2009-2012. Logistic and MaAsLin regression were employed to assess associations between vitamin D supplementation, and C. difficile colonization, or other gut microbiota, respectively. Sixty-five percent of infants received a vitamin D supplement. Among all infants, infant vitamin D supplementation was associated with a lower abundance of genus Megamonas (q = 0.01) in gut microbiota. Among those exclusively breastfed, maternal prenatal supplementation was associated with lower abundance of Bilophila (q = 0.01) and of Lachnospiraceae (q = 0.02) but higher abundance of Haemophilus (q = 0.02). There were no differences in microbiota composition with vitamin D supplementation among partially and not breastfed infants. Neither infant nor maternal vitamin D supplementation were associated with C. difficile colonization, after adjusting for breastfeeding status and other factors. However, maternal consumption of vitamin-D fortified milk reduced the likelihood of C. difficile colonization in infants (adjustedOR: 0.40, 95% CI: 0.19-0.82). The impact of this compositional difference on later childhood health, especially defense against viral respiratory infection, may go beyond the expected effects of vitamin D supplements and remains to be ascertained.


Asunto(s)
Clostridioides difficile/efectos de los fármacos , Suplementos Dietéticos , Microbioma Gastrointestinal/efectos de los fármacos , Vitamina D/farmacología , Adulto , Clostridioides difficile/aislamiento & purificación , Estudios de Cohortes , Femenino , Firmicutes/efectos de los fármacos , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/genética , Humanos , Lactante , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , Infecciones del Sistema Respiratorio/microbiología , Infecciones del Sistema Respiratorio/virología , Vitamina D/administración & dosificación
17.
Rev. Ateneo Argent. Odontol ; 62(1): 52-56, jun. 2020.
Artículo en Español | LILACS | ID: biblio-1148211

RESUMEN

Si partimos de que la microbiología es una ciencia fundante, podemos estar de acuerdo también en la necesidad de la continua actualización de sus contenidos y su vinculación con la odontología. Nuevas técnicas de diagnóstico permiten, no solo poder identificar características especiales de cada microorganismo y su reubicación en la taxonomía general, sino también habilitan a reconocer a aquellos ­hasta el momento­ desconocidos en la cotidianeidad de la práctica profesional y que revisten importancia por sus afecciones sistémicas ya que pueden transformar, en algunos casos, a que el paciente sea considerado de riesgo. En este trabajo, se abordan tres ejemplares bacterianos seleccionados por su complejidad en la identificación y por la magnitud de las lesiones que producen. Granulicatella spp., Kingela kingae y Bilophila wadsworthia afectan no solo adultos sino también pacientes pediátricos, siendo afectados por patologías severas. Se describen cuadros clínicos que afectan tejido óseo, corazón, cerebro, hígado, bazo, riñón y las manifestaciones orales a las cuales pueden asociarse grupos microbianos que agravan el pronóstico. Aplicar la tecnología adecuadamente, no solo a procedimientos odontológicos, sino también para diagnóstico (PCR ­ MALDI ­ TOF) facilita la detección e identificación con mayor celeridad de estos agentes microbianos, evitando la rotación farmacológica, la resistencia microbiana y la automedicación (AU)


Considering microbiology as a key science in the approach of infectious processes, we understand the need for a continuous update of its contents and its link with dentistry. The incorporation of new technological approaches, such as molecular methods or mass spectrometry, allow us not only to identify special characteristics of the microorganism and its relocation in taxonomy, but also to know those microorganisms until now unknown in professional´s life everyday practice and that are important for their systemic implications, modifying in some cases, the risk assessment of the patient. Three bacterial specimens are developed in this work, due to their complexity in the identification and the magnitude of the lesions they produce, Granulicatella spp., Kingela kingae and Bilophila wadsworthia. These affects both adult and paediatric patients, describing several clinical conditions that affect bone tissue, heart, brain, liver, spleen, kidney and oral manifestations to which these microbial groups can be associated, aggravating the prognosis. Applying new technology, not only to dental procedures but also to diagnosis, facilitates the detection and identification with greater speed of these microbial agents, avoiding pharmacological rotation, microbial resistance and self-medication (AU)


Asunto(s)
Microbiología , Enfermedades de la Boca/microbiología , Farmacorresistencia Microbiana , Reacción en Cadena de la Polimerasa , Kingella kingae , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Bilophila
18.
BMC Gastroenterol ; 20(1): 12, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941439

RESUMEN

BACKGROUND: Gankyrin (GK) is an oncoprotein which regulates inflammatory responses and its inhibition is considered as a possible anti-inflammatory therapy for inflammatory bowel disease (IBD). METHODS: In this study, we investigated the role of GK in epithelial cells using mice with intestinal epithelial cell-specific GK deletion in (i) the entire small intestine and colon (Villin-Cre;Gankyrinf/f) and (ii) the distal intestine and colon (Cdx2-Cre;Gankyrinf/f). RESULT: Unexpectedly, GK-deficiency in the upper small bowel augmented inflammatory activity compared with control mice when colitis was induced with dextran sodium sulfate. Biochemical analyses have revealed GK-deficiency to have caused reduction in the expression of antimicrobial peptides, α-Defensin-5 and -6, in the upper small bowel. Examination of human samples have further confirmed that the reduction of GK expression in the small bowel is associated with colonic involvement in human Crohn's disease. Through the sequencing of bacterial 16S rRNA gene amplicons, bacteria potentially deleterious to intestinal homeostasis such as Helicobacter japonicum and Bilophila were found to be over-represented in colitis induced Villin-Cre;Gankyrinf/f mice when compared to Gankyrinf/f control mice under the same condition. CONCLUSION: These results highlight the distinct site dependence of the pro- and anti-inflammatory functions of GK and provide important insights into the pathogenesis of IBD.


Asunto(s)
Colitis/genética , Enfermedad de Crohn/genética , Microbioma Gastrointestinal/genética , Intestino Delgado/metabolismo , Factores de Transcripción/deficiencia , Animales , Colitis/inducido químicamente , Colitis/microbiología , Colon/metabolismo , Colon/microbiología , Enfermedad de Crohn/microbiología , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Eliminación de Gen , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Intestino Delgado/microbiología , Intestinos/microbiología , Ratones , ARN Ribosómico 16S
19.
J Infect Chemother ; 25(9): 708-713, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30982727

RESUMEN

PURPOSE: Controversy exists over whether bacterial flora within the appendix differs between patients with and without appendicitis. To examine these potential differences, we cultured the appendiceal luminal microbiota of patients with and without acute appendicitis, and identified the bacterial species therein. METHODS: Fifty-seven patients with acute appendicitis and 37 patients without acute appendicitis who underwent curative resection of colorectal cancer and prophylactic appendectomies (control group) were included. Appendicitis patients were classified into the phlegmonous group or the gangrenous appendicitis group histopathologically. There was no patient with perforated appendicitis. Aerobic isolates were identified using standard identification schemata, and anaerobic isolates were identified according to the Japanese guidelines. RESULTS: There were no significant differences among the three groups in the median number aerobe species present per patient. However, the median number anaerobe species in the gangrenous appendicitis group was significantly higher than that of the control group and the phlegmonous appendicitis group. In addition, the incidence of patients with Bacillus species, Fusobacterium nucleatum, and Bilophila wadsworthia increased as the disease progressed from phlegmonous to gangrenous appendicitis. CONCLUSION: The present results suggest that increased diversity of anaerobes and the translocation of Bacillus species, F. nucleatum, and B. wadsworthia are associated with the progression of acute appendicitis.


Asunto(s)
Apendicitis/microbiología , Apéndice/microbiología , Infecciones Bacterianas/microbiología , Enfermedad Aguda , Adulto , Apendicectomía , Apendicitis/patología , Apendicitis/cirugía , Bacillus/aislamiento & purificación , Bacterias Aerobias/aislamiento & purificación , Bacterias Anaerobias/aislamiento & purificación , Infecciones Bacterianas/patología , Infecciones Bacterianas/cirugía , Bilophila/aislamiento & purificación , Femenino , Fusobacterium nucleatum/aislamiento & purificación , Humanos , Masculino , Microbiota , Persona de Mediana Edad
20.
Genes (Basel) ; 9(3)2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29494510

RESUMEN

Colorectal cancer is the fourth most common neoplasia in Europe, where it accounts for 28.2 new cases per 100,000 inhabitants. In an effort to decrease the incidence of this disease, various prevention measures are being studied, one of which are anthocyanin-rich foods. Anthocyanins are potent antioxidant flavonoids mainly found in flowers and colorful fruits and vegetables. These nutraceuticals have diverse biological functions once ingested, including immunomodulatory, anti-inflammatory and antitumor functions. In order to test the preventive effect of these flavonoids against colorectal cancer, an animal model (Rattus norvegicus F344) was developed. In this model two doses of azoxymethane (10 mg/kg) and two treatments with dextran sodium sulfate (DSS) were administered to the animals. For 20 weeks they were fed either control rat feed, control sausages, or functional sausages containing 0.1% (w/w) of anthocyanins from a mixture of dehydrated blackberries and strawberries. At the end of that period, the animals were sacrificed and their antioxidant plasma levels and digestive tract tissues were analyzed. The results revealed a statistically significant reduction in the number of colon tumors in the functional sausages cohort with respect to the control animals and an increase in the FRAP (ferric reducing ability of plasma) total antioxidant activity in that same cohort. Colon microbiota differences were also examined via metagenomics 16S ribosomal RNA (rRNA) sequencing, revealing a significant reduction in populations of the pro-inflammatory Bilophila wadsworthia. Therefore, the design of functional processed meat products, such as ones enriched with anthocyanins, may be an effective strategy for preventing inflammatory digestive diseases and colorectal cancer in human populations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...