Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39158630

RESUMEN

In recent decades, the compositions of preen oil and feathers have been studied to achieve insights into the chemistry of avian odours, which play a significant role in birds' social behaviour. Fewer studies are available regarding volatiles originating from other sources, such as faeces, eggs or a bird's whole body. The aims of this study were (i) to identify odour-active and further volatile compounds in zebra finch whole body odour and (ii) to semi-quantify selected volatiles and use the information to evaluate two different adsorbents for their suitability for whole body odour sampling. Volatiles from the headspace above zebra finches were sampled using an open loop system equipped with either activated charcoal or Tenax® TA. Samples were analysed by olfactory-guided approaches as well as gas chromatography-mass spectrometry. Using activated charcoal as sorbent, 26 odour-active and 73 further volatile compounds were detected, whereas with Tenax® TA 27 odour-active and 81 further volatile compounds were detected. In total, 104 compounds were (tentatively) identified, of which 22 had not been identified previously in zebra finch odour and 12 had not been described in any birds. Hints towards a chemical sex signature became evident for qualitative but not for quantitative differences. With the exception of some compounds, notably carboxylic acids and alkanes, relative peak areas obtained with the two adsorbent types were comparable. The approach described herein is proposed for future studies aiming to determine volatiles emitted by birds when, for example, parent birds are approaching the nest.

2.
PeerJ ; 12: e17243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737740

RESUMEN

Preen oil, the secretion from the uropygial gland of birds, may have a specific function in incubation. Consistent with this, during incubation, the chemical composition of preen oil is more likely to differ between sexes in species where only one sex incubates than in species where both sexes incubate. In this study, we tested the generality of this apparent difference, by investigating sex differences in the preen oil composition of a shorebird species, the Kentish plover (Anarhynchus, formerly Charadrius, alexandrinus). As both sexes incubate in this species, we predicted the absence of sex differences in preen oil composition during incubation. In the field, we sampled preen oil from nine females and 11 males during incubation, which we analysed with gas chromatography-mass spectrometry (GC-MS). Consistent with predictions, we found no sex difference in preen oil composition, neither in beta diversity (Bray-Curtis dissimilarities) nor in alpha diversity (Shannon index and number of substances). Based on these results, we cannot conclude whether preen oil has a function during incubation in Kentish plovers. Still, we discuss hypothetical roles, such as olfactory crypsis, protection against ectoparasites or olfactory intraspecific communication, which remain to be tested.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Femenino , Masculino , Animales , Factores Sexuales , Caracteres Sexuales
3.
Biol Rev Camb Philos Soc ; 99(3): 1085-1099, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38303487

RESUMEN

For a long time birds were assumed to be anosmic or at best microsmatic, with olfaction a poorly understood and seldom investigated part of avian physiology. The full viability of avian olfaction was first discovered through its functions in navigation and foraging. Subsequently, researchers have investigated the role of olfaction in different social and non-social contexts, including reproduction, kin recognition, predator avoidance, navigation and foraging. In parallel to the recognition of the importance of olfaction for avian social behaviour, there have been advances in the techniques and methods available for the sampling and analysis of trace volatiles and odourants, leading to insights into the chemistry underlying chemical communication in birds. This review provides (i) an overview of the current state of knowledge regarding the volatile chemical composition of preen oil and feathers, its phylogenetic coverage, chemical signatures and their potential functions, and (ii) a discussion of current methods used for the isolation and detection of volatiles. Finally, lines for future research are proposed.


Asunto(s)
Aves , Plumas , Compuestos Orgánicos Volátiles , Animales , Plumas/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Aves/fisiología
4.
Biol Rev Camb Philos Soc ; 97(3): 1193-1209, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35128775

RESUMEN

Smell is a sensory modality that is rarely considered in birds, but evidence is mounting that olfaction is an important aspect of avian behaviour and ecology. The uropygial gland produces an odoriferous secretion (preen oil) that can differ seasonally and between the sexes. These differences are hypothesized to function in olfactory camouflage, i.e. minimizing detection by nest predators (olfactory crypsis hypothesis), and/or intraspecific olfactory communication, particularly during breeding (sex semiochemical hypothesis). However, evidence for seasonal and sex differences in preen oil is mixed, with some studies finding differences and others not, and direct evidence for the putative function(s) of seasonal variation and sex differences in preen oil remains limited. We conducted a systematic review of the evidence for such changes in preen oil chemical composition, finding seasonal differences in 95% of species (57/60 species in 35 studies) and sex differences in 47% of species (28/59 species in 46 studies). We then conducted phylogenetic comparative analyses using data from 59 bird species to evaluate evidence for both the olfactory crypsis and sex semiochemical hypotheses. Seasonal differences were more likely in the incubating than non-incubating sex in ground-nesting species, but were equally likely regardless of incubation strategy in non-ground-nesting species. This result supports the olfactory crypsis hypothesis, if ground nesters are more vulnerable to olfactorily searching predators than non-ground nesters. Sex differences were more likely in species with uniparental than biparental incubation and during breeding than non-breeding, consistent with both the olfactory crypsis and sex semiochemical hypotheses. At present, the data do not allow us to disentangle these two hypotheses, but we provide recommendations that will enable researchers to do so.


Asunto(s)
Fitomejoramiento , Olfato , Animales , Aves , Comunicación , Feromonas , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...