RESUMEN
Based on precolumn derivatization, an analytical method has been developed for the determination of six high boiling point polyhydric alcohols (HBPAs, b.p. > 300 â) in cosmetics and toothpaste, including erythritol, xylitol, Pro-Xylane-S, inositol, mannitol, and sorbitol. The water dispersion and oil in water samples were extracted by distilled water. The water in oil sample was firstly pre-dispersed with acetone, and then extracted by distilled water. The extract was concentrated to dry under nitrogen, and derivatized with acetic anhydride under the dispersion and catalysis of anhydrous pyridine. The derivatives were detected by gas chromatography-tandem mass spectrometry in the selected reaction monitoring mode, and quantified using arabinitol as internal standard. The experimental conditions such as the selection of columns, extraction procedures, and derivative conditions were optimized. This method was properly validated under the optimized conditions, and obtained excellent analytical features. Specifically, the correlation coefficients in the range of 0.02 â¼ 0.5â¯mg/L all exceed 0.992. The method limits of detection and quantification were 0.25 and 0.8â¯mg/kg, respectively. The average recoveries in toothpaste, cosmetics with oil in water and water in oil were 81.8 â¼ 107.1â¯%, with the relative standard deviation were 3.1 â¼ 7.2â¯%. The established method was successfully applied to commercial samples of different matrices, showing the advantages of simplicity, sensitivity, and good reproducibility, and can be used for the determination of HBPAs in cosmetics and toothpaste. The proposed methodology solves the problem that there is no detection method for HBPAs in cosmetics.
RESUMEN
Accurate genetic analysis is essential for the detection of pathogens as it necessitates suitable DNA extraction methods tailored to specific microorganisms such as Gram-positive bacteria. This study examined several commercial and simplified DNA extraction methods for their suitability in isothermal downstream applications. Extracted DNA was assessed using spectrophotometry, electrophoresis, polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) while its stability was inspected after five months of storage. The findings revealed variations in DNA yield, purity and integrity among the extraction methods. While extraction kits demonstrated high yield and purity, the in-house extraction techniques showed incoherent correlation between yield and purity, yet showed promise for a streamlined extraction process. The DNA acquired from all methods yielded positive amplification in PCR and LAMP. DNA extracted by kits exhibits prolonged stability than those obtained via boiling lysis. Both methods offer distinct advantages, with commercial kits providing longer stability and high-quality DNA while boiling lysis stands out for its simplicity, with shorter handling and processing periods. This study emphasizes selecting ideal extraction methods for Streptococcus agalactiae, in the prospect of aquaculture settings. In particular, successful LAMP reaction suggests that boiled extracts are feasible enough for detection, and suited for point-of-care (POC) testing where prompt detection of aquatic pathogens is often critical. Ultimately, the choice of method should be contemplated on a case-by-case basis such as the study goals, intended settings, and type of samples.
Asunto(s)
ADN Bacteriano , Técnicas de Amplificación de Ácido Nucleico , Streptococcus agalactiae , Streptococcus agalactiae/genética , Streptococcus agalactiae/aislamiento & purificación , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa/métodos , Acuicultura , Técnicas de Diagnóstico Molecular/métodosRESUMEN
Bubble dynamics is paramount in comprehending the heat transfer mechanisms of flow boiling in the microchannel within ultrasonic field, which is regarded as a promising method to confront challenges of thermal management posed by microelectronic devices. Nevertheless, the impact of ultrasound on bubble behaviors and its underlying mechanisms remain largely unexplored. This study first delves into the effect of ultrasonic parameters on bubble dynamic behaviors and associated mechanisms, subsequently further analyzing the forces acting on bubbles through the constructed force model. The findings suggest that although growth force serves as the significant resistance, the primary Bjerknes force dominates the rapid detachment of bubbles. The secondary Bjerknes force results in the bubble only sliding along the bottom wall rather than lifting off. Furthermore, the elevated ultrasonic pressure amplitude resulting from augmenting ultrasonic power induces a substantial increase in the critical detachment diameter and growth rate by 55.49 % and 59.42 %, respectively. The enhanced primary Bjerknes force, attributed to the rise in ultrasonic frequency, leads to a 71.42 % increase in sliding velocity and a 46.45 % reduction in growth time. The positive impacts arising from ultrasonic power and frequency are anticipated to notably enhance the thermal performance of microchannels. Besides, surface tension acts as the resistance and diminishes slightly with an augmentation of the boiling number, resulting in a moderate variation in sliding velocity and growth time.
RESUMEN
Boiling heat transfer has become increasingly importance in a variety of industrial fields, but it involves chaotic nature phenomena that remain experimentally challenging. From the perspective of nucleation, bubble embryos emerge at the early stage on extremely small time and length scales. Therefore, molecular dynamics (MD) simulation is a popular and useful tool to uncover the distinctive boiling mechanisms at microscale. Recently, such method has yielded meaningful achievements, but there is still elusive on the current status and bottlenecks behind complex boiling processes. In this work, the state-of-the-art studies on bubble nucleation and boiling heat transfer that covers 129 papers up to 2024 have been comprehensively reviewed. Meanwhile, fundamental concepts of MD are briefly introduced, including MD principles, force fields, and determination of nucleation-related parameters. In contrast to microscopic boiling, bubble nucleation stems from the competition between potential and kinetic energies on micro/nano scale. Then, the key factors such as interfacial wettability and mixture component are thoroughly elucidated for bubble nucleation. In addition, both passive and active techniques are systematically discussed to unveil the underlaying mechanisms for boiling heat transfer enhancement. Finally, the ongoing trials needed for MD simulation are identified, together with an outlook for how to address these challenges. This review aims to offer an up-to-date summary of boiling mechanisms and draw more attention to the development of advanced MD techniques.
RESUMEN
Codonopsis pilosula (Franch.) Nannf. is a traditional herb for treating immunosuppression. C. pilosula boiling powder (CP-BP) contains particles of a small size made from C. pilosula decoction pieces (CP-DP). It is still unclear how changes in particle size during the decoction process affect the dissolution of various chemical components in C. pilosula. Herein, an ultra-high-performance liquid chromatography-quadrupole-Exactive Orbitrap mass spectrometry technique was established to characterize the components of CP-BP and CP-DP decoctions. The contents of the components were evaluated based on the relative peak area, extract yield, and alcohol solubility rate. A total of 71 compounds were finally identified, and their content in the CP-BP decoction was generally higher than that in the CP-DP decoction. Alkaloids had the highest average content, whereas terpenoids were the most affected by changes in particle size. In addition, immunosuppression was used as model to investigate whether these changes have practical significance. The results of network pharmacology suggested that the phosphoinositide 3-kinase (PI3K)-Akt pathway may be a potential pathway of C. pilosula for treating immunosuppression. The results of molecular docking indicated that compounds with large content variations have good docking affinity with key targets (epidermal growth factor receptor [EGFR], prostaglandin-endoperoxide synthase 2 [PTGS2], and peroxisome proliferator-activated receptor gamma [PPARG]). These results provide an important reference for further development and use of C. pilosula.
RESUMEN
Alkali printing was one of the traditional techniques employed for printing on silk georgette in ancient China. This study investigates two degumming methods in alkaline printing processes, namely alkaline boiling and alkaline steaming, based on the principles of Tang Dynasty alkaline printing techniques. The effects of slaked lime concentration, steam temperature, and steam duration on the degumming rate of silk georgette are studied. Alkaline boiling is found to be rapid and effective, achieving a degumming rate of 27% at 80 °C in 30 min, whereas alkaline steaming requires a prolonged process with a maximum degumming rate of less than 20% before the water reaches its boiling point. Additionally, the differences in dyeing effects at various degumming rates, and the variations in pattern clarity and detail under alkaline steaming, were compared. Although both degumming methods can achieve the desired amount of degumming rate through process control, alkaline steaming allows for integration with methods like screen printing and rotary printing, offering better control over pattern freedom and detail. The combination of these two processes can further expand the artistic expression and application of traditional alkaline printing techniques in contemporary silk degumming printing.
RESUMEN
OBJECTIVE: Non-invasive surgical approaches, including boiling histotripsy (BH), are currently being developed for the treatment of brain disorders aiming to avoid craniotomy and exposure of intervening tissues, and, thus, minimize associated complications. This work aimed to demonstrate the feasibility of BH for mechanical fractionation of human brain tissues ex vivo under B-mode guidance, with preliminary measurements of tissue stiffness via shear wave elastography. METHODS: Young's moduli of 25 human autopsy brain samples obtained from de-identified patients of 51-91 y old (median 77 y old) were measured via shear wave elastography prior to BH sonication. Seventeen volumetric BH lesions (1-4 layers of 5 × 5 points with a 1- mm step) were produced near brain surface (n = 10), in white matter (n = 3), in thalamus (n = 2), and globus pallidus (n = 2) using 12 element 1.5 MHz sector transducer under B-mode guidance with 10 ms or 2 ms pulses delivered 10 or 15 times per sonication point with 1% duty cycle. After treatment, the lesions were evaluated grossly through bisection, histologically with hematoxylin and eosin staining, and ultrastructurally via scanning and transmission electron microscopy. RESULTS: Young's moduli of autopsy brain samples were lower in older patients (from 32.9 ± 6.6 kPa in 51 y olds to 10 ± 2 kPa in 91 y olds) and at higher temperature (6%-50% lower at 37°Ð¡ vs 23°Ð¡), and were within the range observed clinically. All tested BH treatments performed near the brain surface (i.e., mostly in gray matter) resulted in formation of well-demarcated rectangular lesions with homogenized content and sharp boundaries, with majority of residual fragments below 100 microns. The use of shorter pulses (2 ms vs 10 ms) accelerated the treatment at least threefold, and the highest liquefaction rate was 568 mm3/min. White matter was more resistant to BH vs gray matter: at least 15 pulses of 2 ms duration were required per each sonication point, and the liquefaction rate was three times lower. The ability of BH to produce lesions in thalamus and globus pallidus was also confirmed. CONCLUSION: This work presents the first demonstration of BH proof-of-concept in human brain tissues ex vivo under B-mode guidance with clinically relevant treatment rates.
RESUMEN
BACKGROUND: Climate changes have led to health and environmental risks, so it has become essential to measure climate change literacy among the entire population, especially nursing students. The significant role of nursing students in raising public awareness and future healthcare roles emphasizes assessing the predictors of climate change literacy among nursing students. AIMS: This study seeks to identify the predictors of climate change literacy among nursing students in A Multi-Site Survey. DESIGN: A multi-site descriptive cross-sectional study adheres to the guidelines outlined in A Consensus-Based Checklist for Reporting Survey Studies collected for five months, from the 1st of July 2023 to November 2023. The study participants comprise 10,084 nursing students from all 27 governments in Egypt. The researcher used the Predictors of Nursing Students' Climate Change Literacy scale in this study. Data was collected, with 25 min average time to complete. Backward multiple linear regression was used to identify these predictors. RESULTS: In the current study, nursing students demonstrated a moderate understanding of climate science (mean score 14.38), communication and advocacy skills (mean score 14.41), and knowledge of adaptation and mitigation strategies (mean score 13.33). Climate health impacts (mean score 17.72) emerged as the domain with the highest level of knowledge. No significant differences in climate literacy were observed across diverse student backgrounds (all p-values were > 0.05). Perceived faculty knowledge of climate change positively correlated with all four domains of climate literacy and emerged as a significant predictor in multiple linear regression analyses (all p-values were < 0.001). IMPLICATION: While our findings highlight significant predictors of climate literacy, it is essential to recognize that these results identify associations rather than causal relationships. Based on these associations, it is recommended that nursing professionals be equipped with comprehensive knowledge of climate adaptation strategies to better advocate for and implement effective public health measures.
RESUMEN
OBJECTIVE: In the context of developing boiling histotripsy (BH) as a potential clinical approach for non-invasive mechanical ablation of kidney tumors, the concept of BH dose (BHD) was quantitatively investigated in porcine and canine kidney models in vivo and ex vivo. METHODS: Volumetric lesions were produced in renal tissue using a 1.5-MHz 256-element HIFU-array with various pulsing protocols: pulse duration tp = 1-10 ms, number of pulses per point ppp = 1-15. Two BHD metrics were evaluated: BHD1 = ppp, BHD2 = tp × ppp. Quantitative assessment of lesion completeness was performed by their histological analysis and assignment of damage score to different renal compartments (i.e., cortex, medulla, and sinus). Shear wave elastography (SWE) was used to measure the Young's modulus of renal compartments in vivo vs ex vivo, and before vs after BH treatments. RESULTS: In vivo tissue required lower BH doses to achieve identical degree of fractionation as compared to ex vivo. Renal cortex (homogeneous, low in collagen) was equal or higher in stiffness than medulla (anisotropic, collagenous), 5.8-12.2 kPa vs 4.7-9.6 kPa, but required lower BH doses to be fully fractionated. Renal sinus (fatty, irregular, with abundant collagenous structures) was significantly softer ex vivo vs in vivo, 4.9-5.1 kPa vs 9.7-15.2 kPa, but was barely damaged in either case with any tested BH protocols. BHD1 was shown to be relevant for planning the treatment of renal cortex (sufficient BHD1 = 5 pulses in vivo and 10 pulses ex vivo), while none of the tested doses resulted in complete fractionation of medulla or sinus. Post-treatment SWE imaging revealed reduction of tissue stiffness ex vivo by 27-58%, increasing with the applied dose, and complete absence of shear waves within in vivo lesions, both indicative of tissue liquefaction. CONCLUSION: The results imply that tissue resistance to mechanical fractionation, and hence required BH dose, are not solely determined by tissue stiffness but also depend on its composition and structural arrangement, as well as presence of perfusion. The SWE-derived reduction of tissue stiffness with increasing BH doses correlated with tissue damage score, indicating potential of SWE for post-treatment confirmation of BH lesion completeness.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Ultrasonido Enfocado de Alta Intensidad de Ablación , Riñón , Animales , Diagnóstico por Imagen de Elasticidad/métodos , Porcinos , Riñón/diagnóstico por imagen , Riñón/patología , Perros , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodosRESUMEN
The drying process of inkjet-printed organic light-emitting diodes (OLEDs) is influenced by both ink properties and external environmental factors, which ultimately affect the film profile. First, we conducted a detailed investigation of the drying time based on changes in the boiling point (BP) of mixed solvents and analyzed the correlation with the film profile. Under atmospheric drying conditions in a nitrogen (N2) atmosphere, the increased drying time under capillary-driven flow leads to greater particle movement toward the edges, significantly increasing the coffee-ring effect. Additionally, using a high-boiling-point solvent mixture of ethyl 4-methylbenzoate (EMB) and 2-ethylhexyl benzoate (EHB), we produced uniform thin films both between and within pixels (inter and intrapixel uniformity) through a vacuum drying process. In particular, we proposed a drying process model that divides the drying of inkjet pixels into a microfluidic phase and a gelation phase. Through five gelation phase-controlled vacuum drying experiments, the morphology within the pixels was precisely investigated. By sufficiently removing residual solvents after the microfluidic phase and then proceeding with heating, we produced uniform thin films. Furthermore, we fabricated OLED devices using this gelation phase-controlled vacuum drying process, achieving uniform pixel emission and improved device performance.
RESUMEN
Beef flavor profiles are strongly influenced by cooking methods and lipid composition. However, the effect of instant-boiling on the aroma of different beef slices was unclear. This study investigated the lipid profiles and instant-boiling volatile profiles of chuck tender (M. Supraspinatus), sirloin (M. Longissimus dorsi) and silverside (M. Biceps femoris). Quantitative lipidomics identified 336 lipid molecular species, of which 84-112 were quantitatively different among the three beef slices. Sirloin had lower phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol and free fatty acids than chuck tender and silverside. The unsaturated fatty acid acyl chains in phosphatidylethanolamine differed significantly. Solid phase microextraction-gas chromatography-olfactometry-mass spectrometry (SPME-GC-O-MS) identified hexanal, octanal, nonanal, decanal, (E)-2-octenal, (E)-2-nonenal, (E)-2-undecenal, (E,E)-2,4-nonadienal, (E,E)-2,4-decadienal, 1-octen-3-ol, 2-pentylfuran and acetoin as the aroma-active compounds of instant-boiled beef. Unsaturated free fatty acids and phosphatidylglycerols with unsaturated fatty acid residues positively correlated with the aroma-active compounds and might be crucial in flavor differences among the three beef slices. These findings provide greater understanding of the lipid and instant-boiling aroma-active compound profiles in chuck tender, sirloin and silverside, and reflect the suitability of different beef slices for instant-boiling from the aroma perspective.
RESUMEN
Histotripsy is a noninvasive focused ultrasound therapy that mechanically fractionates tissue to create well-defined lesions. In a previous clinical pilot trial to treat benign prostatic hyperplasia (BPH), histotripsy did not result in consistent objective improvements in symptoms, potentially because of the fibrotic and mechanically tough nature of this tissue. In this study, we aimed to identify the dosage required to homogenize BPH tissue by different histotripsy modalities, including boiling histotripsy (BH) and cavitation histotripsy (CH). A method for histotripsy lesion quantification via entropy (HLQE) analysis was developed and utilized to quantify lesion area of the respective treatments. These data were correlated to changes in mechanical stiffness measured by ultrasound shear-wave elastography before and after treatment with each parameter set and dose. Time points corresponding to histologically observed complete lesions were qualitatively evaluated and quantitatively measured. For the BH treatment, complete lesions occurred with > = 30 s treatment time, with a corresponding maximum reduction in stiffness of -90.9 ± 7.2(s.d.)%. High pulse repetition frequency (PRF) CH achieved a similar reduction to that of BH at 288 s (-91.6 ± 6.0(s.d.)%), and low-PRF CH achieved a (-82.1 ± 5.1(s.d.)%) reduction in stiffness at dose > = 144 s. Receiver operating characteristic curve analysis showed that a > ~ 75% reduction in stiffness positively correlated with complete lesions observed histologically, and can provide an alternative metric to track treatment progression.
Asunto(s)
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/terapia , Hiperplasia Prostática/patología , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Diagnóstico por Imagen de Elasticidad/métodos , Fibrosis , Próstata/patología , Próstata/diagnóstico por imagenRESUMEN
Introduction: Ayurvedic marine drugs derived from mollusc shells and coral are regularly used by Ayurvedic physicians to treat several disease conditions like acid peptic disease, irritable bowel syndrome, osteoporosis, etc. However, standard operating procedures for manufacturing these drugs and their complete characterization have not been published in the Ayurvedic Formulary and Ayurvedic Pharmacopeia of India to date. Methods: Present study describes the traditional manufacturing process and thorough characterization using classical and advanced analytical tools. The raw materials characters, in-process parameters, and finished product specifications have been elaborated to develop monographs. Especially, the identity and purity of raw coral and pearl were checked by Raman Spectroscopy and Energy Dispersive X-ray Fluorescence analysis. Results: In the finished product analysis, the X-Ray Diffraction study revealed that incineration after trituration with Aloe barbadensis leaf pulp or rose water converted the aragonite phase of calcium carbonate into calcite phase in mother pearl, cowry, and pearl while the calcite form of raw coral was retained. The prominent bands around 1390, 870, and 712 cm-1 detected by Fourier Transform-Infrared Spectroscopy and mass loss between 39-44% (w/w) revealed by thermogravimetric analysis confirmed the carbonate form of these calcium-based drugs. The finished products were very fine grayish-white powders constituted by irregularly shaped nano-micro particulate calcium carbonate exhibiting particle size between 600 nm (D10 value) to 1.2 µm (D90 value). Conclusion: The quality control and assurance achieved in this study may be further utilized by the pharmaceutical industries to manufacture quality marine drugs and conduct efficacy studies.
RESUMEN
Background: High intensity focused ultrasound (HIFU) can destroy tissue by thermal ablation which may be accompanied by acoustic cavitation and/or tissue water boiling, but the biological and histological effects of these treatments have not been fully documented. Here, detailed histological analysis over time using well characterized HIFU exposures in in vivo rat livers is described.Methods: Exposures used invoked either (i) thermal, with acoustic cavitation and/or tissue water boiling or (ii) predominantly thermal damage. Cavitation activity was detected using both active and passive methods. Histological assessment involved hematoxylin and eosin (H&E), picrosirius red and immunohistochemical staining.Results: Distinct concentric damage regions were identified after HIFU exposures. The outermost ring showed a red H&E-stained rim that was characterized by hemorrhage. The adjacent inner band appeared white due to increased extracellular spaces. The morphology of the next zone depended on the exposure. Where there was no tissue acoustic cavitation/water boiling, this was the lesion center, in which heat-fixed cells were seen. Where acoustic cavitation/boiling occurred, a centermost zone with irregular holes up to several hundred microns across was seen. Cleaved caspase-3 and Hsp70 staining in the periphery of both types of HIFU exposures was seen within the outermost ring of hemorrhage, where an inflammatory response was also observed. By day 7, a distinct acellular region in the center of the HIFU lesions had been created.Conclusions: These results identify the morphological effects and elucidate the similarities and differences of HIFU-induced thermal lesions in the presence or absence of acoustic cavitation/tissue water boiling.
Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Animales , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Ratas , Hígado/patología , Masculino , Ratas Sprague-DawleyRESUMEN
Boiling is a high-performance heat dissipation process that is central to electronics cooling and power generation. However, there exists a practical limit of boiling heat transfer known as the critical heat flux (CHF), beyond which significant performance degradation is observed. Understanding the physical mechanism that triggers CHF is essential to meet the increasing cooling demands driven by power densification and device miniaturization. However, the high dimensionality, stochasticity, and dynamicity of the boiling process have led to strong challenges in the experimental characterization and modeling of boiling CHF. As such, high-frame rate, high-resolution, multi-physics boiling datasets are critical to advancing the fundamental understanding of boiling heat transfer. To this end, this paper presents a multimodal boiling dataset consisting of synchronized thermal, acoustic, and optical signals collected from five different heater surfaces under two distinct heat load conditions. With its high sampling frequency, diverse signal types, large data volume, and detailed recorded information, this dataset provides valuable "data blood" for the field of thermal crisis monitoring. This dataset will not only promote fundamental research on bubble dynamics during boiling but also support the implementation of advanced monitoring technologies in industrial applications such as power electronics, motors, data centers, and power plants.
RESUMEN
Liver fibrosis is a hallmark of chronic liver disease which could lead to liver cirrhosis or liver cancer. However, there is currently lack of a direct treatment for liver fibrosis. Boiling histotripsy (BH) is an emerging non-invasive high-intensity focused ultrasound technique that can be employed to mechanically destruct solid tumour at the focus via acoustic cavitation without significant adverse effect on surrounding tissue. Here, we investigated whether BH can mechanically fractionate liver fibrotic tissue thereby exhibiting an anti-fibrotic effect in an animal model of liver fibrosis. BH-treated penumbra and its identical lobe showed reduced liver fibrosis, accompanied by increased hepatocyte specific marker expression, compared to the BH-untreated lobe. Furthermore, BH treatment improved serological liver function markers without notable adverse effects. The ability of BH to reduce fibrosis and promote liver regeneration in liver fibrotic tissue suggests that BH could potentially be an effective and reliable therapeutic approach against liver fibrosis.
Asunto(s)
Modelos Animales de Enfermedad , Ultrasonido Enfocado de Alta Intensidad de Ablación , Cirrosis Hepática , Animales , Cirrosis Hepática/terapia , Cirrosis Hepática/patología , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Masculino , Regeneración Hepática , Hígado/patología , Hígado/metabolismo , Ratones , RatasRESUMEN
Pool boiling is essential in many industrial manufacturing applications. In addition, it can become critical in the journey towards improving energy generation efficiency and accomplishing the goal of net-zero carbon emissions by 2050 via new or traditional power generation applications. The effectiveness of boiling is governed by the bubble cycle. The chemistry and topographical features of the surface being heated have been found to highly impact the boiling performance, such as in the case of pool boiling enhancement when employing hydrophilic and hydrophobic surfaces via nano/micro heater surface modification. Nevertheless, it is questionable how feasible it is to create these surfaces for large-scale applications due to their manufacturing and maintenance cost and complexity. The current work assesses whether the use of nanoparticles in traditional coolants could potentially unlock the mass production of optimised heating surface modification through a metadata literature review analysis. It was discovered that self-assembled layers created as a result of the deposition of nanoparticles in coolants undergoing pool boiling seem to behave most similarly to manufactured hydrophilic surfaces. The creation of enhanced patterned-heat transfer surfaces is shown to be possible via the use of a combination of different nanoparticle suspensions in coolants.
RESUMEN
Moringa oleifera is a plant native to India that is well adapted to warm climates with a high yield and low agronomic requirements. Pods are one of the edible parts of this plant and are commonly consumed in some places, (India, Morocco, etc.) when in an early vegetative state. However, both production and consumption of this plant are scarce and seasonal in Europe and treatments to extend its shelf life are required. Therefore, the aim of this study has been to evaluate the variation in the physicochemical properties of Moringa oleifera pods at two stages of maturity, tender and mature, in terms of mass variation, optical and mechanical properties, protein content, total antioxidant capacity and phenolic profile, after boiling them in tap water at 100 °C for different lengths of time (0, 2, 5, 8, 12, 16, and 20 min). The mass of the tender pods increased by 15% during cooking, while the mature pods gradually lost weight. The protein content was approximately 4% with no significant change brought about by cooking. Ferulic, trans-cinnamic, p-coumaric, and ellagic acids were found in the fresh pods. During cooking, these phenols disappeared, and others appeared, including epicatechin and quercetin 3-glucoside, especially in the tender pods. In conclusion, boiling could contribute to an improvement in the organoleptic properties of moringa pods and to an extension of their storage and to wider availability on the market.
RESUMEN
Quinoa is an Andean crop that stands out as a high-quality protein-rich and gluten-free food. However, its increasing popularity exposes quinoa products to the potential risk of adulteration with cheaper cereals. Consequently, there is a need for novel methodologies to accurately characterize the composition of quinoa, which is influenced not only by the variety type but also by the farming and processing conditions. In this study, we present a rapid and straightforward method based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to generate global fingerprints of quinoa proteins from white quinoa varieties, which were cultivated under conventional and organic farming and processed through boiling and extrusion. The mass spectra of the different protein extracts were processed using the MALDIquant software (version 1.19.3), detecting 49 proteins (with 31 tentatively identified). Intensity values from these proteins were then considered protein fingerprints for multivariate data analysis. Our results revealed reliable partial least squares-discriminant analysis (PLS-DA) classification models for distinguishing between farming and processing conditions, and the detected proteins that were critical for differentiation. They confirm the effectiveness of tracing the agricultural origins and technological treatments of quinoa grains through protein fingerprinting by MALDI-TOF-MS and chemometrics. This untargeted approach offers promising applications in food control and the food-processing industry.
RESUMEN
Boiling heat transfer has a high thermal efficiency by latent heat absorption, which makes it an attractive process for cooling electronic device chips. Critical heat flux (CHF), the maximum heat flux, is a crucial factor determining the operating range of the boiling applications. The CHF can be enhanced by improving the fluid supply to the boiling surface. Herein, micropillar interfacial surfaces have been proposed to increase the CHF by increasing the rewetting flow, which determines the fluid-supply capacity near the bubble contact line. A state-of-art two-phase particle image velocimetry (two-phase PIV) technique is introduced for rewetting flow measurement on micropillar structures (MPSs) to analyze the CHF-enhancement mechanism. The two-phase PIV visualization setup offers high spatial (â¼120 µm) and temporal (â¼2000 Hz) resolutions for measuring rewetting flow during bubble growth. The MPS samples exhibit enhanced CHF and rewetting flows compared to those on a plain surface. The roughest case, D04G10 sample, had a CHF of 164 W/cm2, 1.84 times higher than that of the plain surface. The D04G10 sample also recorded the highest rewetting velocity of 0.311 m/s, 4.7 times higher than that of the plain surface. The comparison between the rewetting flow and wicking performance shows that wicking-induced flow accounted for a substantial part (â¼17%) of the rewetting flow and contributed significantly to the CHF enhancement owing to large rewetting flow by delaying vapor-film formation. Based on these findings, a new CHF model suggested by introducing the rewetting parameter shows a high CHF prediction accuracy of 94%.