Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409010, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012678

RESUMEN

Site-selective C-H bond functionalization of arenes at the para position remains extremely challenging primarily due to its relative inaccessibility from the catalytic site. As a consequence, it is significantly restricted to the limited molecular scaffolds. Herein, we report a method for the para-C-H borylation of aromatic aldimines and benzylamines using commercially available ligands under iridium catalysis. The established method displayed excellent para-selectivity for variously substituted aromatic aldimines, benzylamines and bioactive molecules. Based on the several control experiments, it has been realized that a Lewis acid-base interaction between the nitrogen and boron functionality guides the para selectivity via a steric shield for the aromatic aldimines, where Bpin acts as a transient directing group. However, the steric shield of the in situ generated N-Bpin moiety controlled the overall selectivity for the para borylation of benzylamines.

2.
Angew Chem Int Ed Engl ; : e202411158, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008194

RESUMEN

The selective borylation of specific C-H bonds in organic synthesis remains a formidable challenge. In this study, we present a novel spirobipyridine ligand that features a binaphthyl backbone. This ligand facilitates the iridium-catalyzed selective C-H borylation of benzene derivatives. The ligand is designed with "side-arm-wall" substituents that allow vicinal di- or multi-substituted benzene derivatives to approach metal center and effectively block other reactive sites by non-covalent interactions with substrates. The effectiveness of this strategy is demonstrated by the successful selective distal C-H activation of various alkaloids and its broad compatibility with functional groups.

3.
ACS Infect Dis ; 10(6): 1958-1969, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38841740

RESUMEN

About 100,000 deaths are attributed annually to infections with methicillin-resistant Staphylococcus aureus (MRSA) despite concerted efforts toward vaccine development and clinical trials involving several preclinically efficacious drug candidates. This necessitates the development of alternative therapeutic options against this drug-resistant bacterial pathogen. Using the Masuda borylation-Suzuki coupling (MBSC) sequence, we previously synthesized and modified naturally occurring bisindole alkaloids, alocasin A, hyrtinadine A and scalaradine A, resulting in derivatives showing potent in vitro and in vivo antibacterial efficacy. Here, we report on a modified one-pot MBSC protocol for the synthesis of previously reported and several undescribed N-tosyl-protected bisindoles with anti-MRSA activities and moderate cytotoxicity against human monocytic and kidney cell lines. In continuation of the mode of action investigation of the previously synthesized membrane-permeabilizing hit compounds, mechanistic studies reveal that bisindoles impact the cytoplasmic membrane of Gram-positive bacteria by promiscuously interacting with lipid II and membrane phospholipids while rapidly dissipating membrane potential. The bactericidal and lipid II-interacting lead compounds 5c and 5f might be interesting starting points for drug development in the fight against MRSA.


Asunto(s)
Antibacterianos , Alcaloides Indólicos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Humanos , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Alcaloides Indólicos/síntesis química , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Línea Celular , Relación Estructura-Actividad , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Estructura Molecular
4.
Chemistry ; : e202401623, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825798

RESUMEN

Photoredox catalysis provides a green and sustainable alternative for C-H activation of organic molecules that eludes harsh conditions and use of transition metals. The photocatalytic C-N borylation and C-H arylation mostly depend on the ruthenium and iridium complexes or eosin Y and the use of porphyrin catalysts is still in infancy. A series of novel 21-thiaporphyrins (A2B2 and A3B type) were synthesized having carbazole/phenothiazine moieties at their meso-positions and screened as catalysts for C-N borylation and C-H arylation. This paper demonstrates the 21-thiaporphyrin catalyzed C-N borylation and het-arylation of anilines under visible light. The method utilizes only 0.1 mol % of 21-thiaporphyrin catalyst under blue light for the direct C-N borylation and het-arylation reactions. A variety of substituted anilines were used as source for expensive and unstable aryl diazonium salts in the reactions. The heterobiaryls and aryl boronic esters were obtained in decent yields (up to 88 %). Versatility of the 21-thiaporphyrin catalyst was tested by thiolation and selenylation of anilines under similar conditions. Mechanistic insight was obtained from DFT studies, suggesting that 21-thiaporphyrin undergo an oxidative quenching pathway. The photoredox process catalyzed by 21-thiaporphyrins offers a mild, efficient and metal-free alternative for the formation of C-C, C-S, and C-Se bonds in aryl compounds; it can also be extended to borylation reaction.

5.
Molecules ; 29(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38675603

RESUMEN

Due to boron's metalloid properties, aromatic boron reagents are prevalent synthetic intermediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl C-H bond borylation using simple and readily available starting materials still remains a challenge. In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex by selecting different bases to replace the organic base (NEt3) used in our previous research. To our delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared with our previous borylation methodologies, this protocol provides a more efficient and broader scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol's good functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of biologically relevant compounds and novel cascade transformations. Mechanistic experiments and theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H bond borylation might proceed through a new reaction mechanism, which involves the formation of a novel transient EDA complex.

6.
Int J Biol Macromol ; 268(Pt 1): 131205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643922

RESUMEN

A series of new kind green cellulose-supported bimetallic TiO2/Cu2O (Cell@TiO2/Cu2O) catalytic materials were obtained by in-situ reduction method employing cellulose as the carrier. The effects of metal percentage composition on the morphology and construction of the catalytic materials were systematically investigated. The Cell@TiO2/Cu2O were characterized by FT-IR, TG, XPS, SEM, TEM, EDS, and the element content was obtained by elemental analysis. Then, the achieved catalytic materials were applied to the chiral borylation reaction of α,ß-unsaturated compounds, including nitrile compounds, esters, and α,ß-unsaturated ketones. Remarkably, this approach provides an efficient strategy to gain an important class of chiral organic boron compounds with target chiral products in high yields as well as enantioselectivities. Besides, the Cell@TiO2/Cu2O could be easily recycled and effectively reused. This work constructed bimetallic TiO2/Cu2O on cellulose as a newly catalyst to obtain chiral boron compounds in aqueous phase.


Asunto(s)
Celulosa , Cobre , Titanio , Titanio/química , Cobre/química , Celulosa/química , Catálisis , Agua/química , Compuestos de Boro/química
7.
ChemistryOpen ; 13(7): e202300285, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38456364

RESUMEN

This research article uses density functional theory (DFT) to study photoinduced borylation. This work examined the electron donor-acceptor complex (EDA) of bis(catecholato)diboron with different redox-active leaving groups and bis(pinacol)diboron with aryl N-hydroxyphthalimide. The results of these DFT studies show the complex ratio of B2cat2 and N, N-dimethylacetamide (DMA) should be 1 : 2 which is consistent with the experimental results in the literature. We further proposed a reaction mechanism and calculated the energies associated with each step.

8.
Chemistry ; 30(24): e202400098, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38376431

RESUMEN

4,4'-Biazulene is a potentially attractive key component of an axially chiral biaryl compound, however, its structure and properties have not been clarified owing to the lack of its efficient synthesis. We report a breakthrough in the reliable synthesis of 4,4'-biazulene, which is achieved by the access to azulen-4-ylboronic acid pinacol ester and 4-iodoazulene as novel key synthetic intermediates for the Suzuki-Miyaura cross-coupling reaction. The X-ray crystallographic analysis of 4,4'-biazulene confirmed its axial chirality. The enantiomers of 4,4'-biazulene were successfully resolved by HPLC on the chiral stationary phase column. The kinetic experiments and DFT calculations indicate that the racemization energy barrier of 4,4'-biazulene is comparable to that of 1,1'-binaphthyl.

9.
Angew Chem Int Ed Engl ; 63(18): e202402020, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38385590

RESUMEN

1,4-BN-doped polycyclic aromatic hydrocarbons (PAHs) have emerged as very promising emitters in organic light-emitting diodes (OLEDs) due to their narrowband emission spectra that may find application in high-definition displays. While considerable research has focused on investigating the properties of these materials, less attention has been placed on their synthetic methodology. Here we developed an efficient synthetic method for 1,4-BN-doped PAHs, which enables sustainable production of narrowband organic emitting materials. By strategically introducing substituents, such as methyl, tert-butyl, phenyl, and chloride, at the C5 position of the 1,3-benzenediamine substrates, we achieved remarkable regioselective borylation in the para-position of the substituted moiety. This approach facilitated the synthesis of a diverse range of 1,4-BN-doped PAHs emitters with good yields and exceptional regioselectivity. The synthetic method demonstrated excellent scalability for large-scale production and enabled late-stage transformation of the borylated products. Mechanistic investigations provided valuable insights into the pivotal roles of electron effect and steric hindrance effect in achieving highly efficient regioselective borylation. Moreover, the outstanding device performance of the synthesized compounds 10 b and 6 z, underscores the practicality and significance of the developed method.

10.
Angew Chem Int Ed Engl ; 63(10): e202318613, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38196396

RESUMEN

Skeletal editing of N-heterocycles has recently received considerable attention, and the introduction of boron atom into heterocycles often results in positive property changes. However, direct enlargement of N-heterocycles through boron atom insertion is rarely reported in the literature. Here, we report a N-heterocyclic editing reaction through the combination boron atom insertion and C-H borylation, accessing the fused-BN-heterocycles. The synthetic potential of this chemistry was demonstrated by substrate scope and late-stage diversification of products.

11.
Chemistry ; 30(6): e202303468, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-37962392

RESUMEN

We herein describe a protocol to synthesize trifluoromethylated alkyl boronates from alkenes by the mutual activation of the Togni II and the bis(catecholato)diboron reagents in the absence of any catalyst and additives. This reaction enables synthesizing a series of trifluoromethylated alkyl boronates using unactivated alkenes, including natural products and drug derivatives, in a regioselective manner. Moreover, the synthetic utility of the boronic ester present in the product allows access to a range of trifluoromethyl containing compounds. The radical trapping and gas detection experiments reveal that the more Lewis acidic diboron reagent determines the rapid formation of trifluoromethyl and boron centered radicals.

12.
Angew Chem Int Ed Engl ; 63(6): e202317614, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38123525

RESUMEN

A catalyst-free 1,2-diborylation of aryllithium with tetra(o-tolyl)diborane(4) has been achieved, giving a series of 1,2-diborylaryl lithium species in excellent yields under mild reaction conditions, which leads to 1,2-di(tolyl)borylarenes in 60-91 % yields upon treatment with the hydride-abstracting reagent. In these transformations, one sp2 C-H of arene is activated and both boryl units are utilized to build two new (sp2 )C-B bonds. This represents a new strategy for selective arene diborylation. Density functional theory (DFT) calculations suggest that an aromatic nucleophilic substitution is a key step in the formation of the products.

13.
Chem Asian J ; 19(4): e202300911, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38131458

RESUMEN

Synthesis of alkyl, aryl, and vinyl boronic esters carrying various chiral and achiral diol-protecting groups were synthesized starting from the corresponding alkyl, aryl, and vinyl lithium or Grignard reagents. Good to excellent yields were obtained for a large range of substrates. The reaction can be conducted in a gram scale to obtain the product over 80 % yield. This approach provides direct access to neopentyl, pinene, and other boronic esters that are difficult to achieve. Using trimethoxyborane or 2-isopropoxy pinacolboronic ester. Detailed mechanistic studies have been conducted to understand the mechanism behind the formation of boronic ester starting from organometallic reagents.

14.
Chimia (Aarau) ; 77(4): 225-229, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38047801

RESUMEN

Alkali-metal amides have become key reagents in synthetic chemistry, with special focus in deprotonation reactions. Despite the higher reactivity found in the heavier sodium and potassium amides, their insolubility and low stability has favoured the use of the more soluble  lithium analogues, converting them into the most used non-nucleophilic bases. Studying the coordination effects of Lewis donor molecules such as tridentate amine PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine) in combination with the sodium amide NaTMP (TMP = 2,2',6,6'-tetramethylpiperidide), we have been able to unlock the use of these reagents for the functionalisation of arenes, i.e. the deuterium incorporation by hydrogen isotope exchange and the deprotonative borylation of unactivated arenes. These findings show how sodium amides are not just a simple more sustainable replacement of their lithium counterparts, but also that they can display significantly enhanced reactivities allowing for the development of new transformations.

15.
Angew Chem Int Ed Engl ; 62(50): e202312054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877778

RESUMEN

Enones are widely utilized linchpin functional groups in chemical synthesis and molecular biology. We herein report the direct conversion of boronic esters into enones using commercially available methoxyallene as a three-carbon building block. Following boronate complex formation by reaction of the boronic ester with lithiated-methoxyallene, protonation triggers a stereospecific 1,2-migration before oxidation generates the enone. The protocol shows broad substrate scope and complete enantiospecificity is observed with chiral migrating groups. In addition, various electrophiles could be used to induce 1,2-migration and give a much broader range of α-functionalized enones. Finally, the methodology was applied to a 14-step synthesis of the enone-containing polyketide 10-deoxymethynolide.

16.
Angew Chem Int Ed Engl ; 62(48): e202312055, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37823345

RESUMEN

Heteroatom-doped peri-acenes (PAs) have recently attracted considerable attention considering their fascinating physical properties and chemical stability. However, the precise sole addition of boron atoms along the zigzag edges of PAs remains challenging, primarily due to the limited synthetic approach. Herein, we present a novel one-pot modular synthetic strategy toward unprecedented boron-doped PAs (B-PAs), including B-[4,2]PA (1 a-2), B-[4,3]PA (1 b-2) and B-[7,2]PA (1 c-3) derivatives, through efficient intramolecular electrophilic borylation. Their chemical structures are unequivocally confirmed with a combination of mass spectrometry, NMR, and single-crystal X-ray diffraction analysis. Notably, 1 b-2 exhibits an almost planar geometry, whereas 1 a-2 displays a distinctive bowl-like distortion. Furthermore, the optoelectronic properties of this series of B-PAs are thoroughly investigated by UV/Vis absorption and fluorescence spectroscopy combined with DFT calculation. Compared with their parent all-carbon analogs, the obtained B-PAs exhibit high stability, wide energy gaps, and high photoluminescence quantum yields of up to 84 %. This study reveals the exceptional ability of boron doping to finely tune the physicochemical properties of PAs, showcasing their potential applications in optoelectronics.

17.
Chem Asian J ; 18(23): e202300638, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37847482

RESUMEN

The discovery of milder and robust strategies to enable the introduction of organoboronates in peptides remains conspicuously underdeveloped. Herein, we demonstrate an efficient method for the site-selective sp2 -C7-H borylation of tryptophan under metal-free condition using BBr3 directed by pivaloyl group. The versatility of this approach is that gram scale synthesis and C7-borylated N-Phth-Trp(N-Piv)(C7-BPin)-OMe was modified into various C7-substituted derivatives. Moreover, the strategy enables for the peptide elongation and late-stage borylation of peptides, natural product Brevianamide F and drug Oglufanide.


Asunto(s)
Productos Biológicos , Triptófano , Péptidos , Metales
18.
Chem Asian J ; 18(20): e202300649, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37655883

RESUMEN

Transition metal-catalyzed borylation has emerged as a powerful and versatile strategy for synthesizing organoboron compounds. These compounds have found widespread applications in various aspects, including organic synthesis, materials science, and medicinal chemistry. This review provides a concise summary of the recent advances in palladium- and rhodium-catalyzed borylation from 2013 to 2023. The review covers the representative examples of catalysts, substrates scope and reaction conditions, with particular emphasis on the development of catalyst systems, such as phosphine ligands, NHC-carbene, and more. The diverse array of borylative products obtained for further applications in Suzuki-Miyaura coupling, and other transformations, are also discussed. Future directions in this rapidly evolving field, with the goal of designing more efficient, selective borylation methodologies are highlighted, too.

19.
Angew Chem Int Ed Engl ; 62(44): e202313205, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37721200

RESUMEN

Enamides, functional derivatives of enamines, play a significant role as synthetic targets. However, the stereoselective synthesis of these molecules has posed a longstanding challenge in organic chemistry, particularly for acyclic enamides that are less thermodynamically stable. In this study, we present a general strategy for constructing ß-borylenamides by C-H borylation, which provides a versatile platform for generating the stereodefined enamides. Our approach involves the utilization of metalloid borenium cation, generated through the reaction of BBr3 and enamides in the presence of two different additives, avoiding any exogenous catalyst. Importantly, the stereoconvergent nature of this methodology allows for the use of starting materials with mixed E/Z configurations, thus highlighting the unique advantage of this chemistry. Mechanistic investigations have shed light on the pivotal roles played by the two additives, the reactive boron species, and the phenomenon of stereoconvergence.

20.
Adv Sci (Weinh) ; 10(31): e2304672, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37632714

RESUMEN

Metallocenes are privileged backbones in the fields of synthetic chemistry, catalysis, polymer science, etc. Direct C-H functionalization is undoubtedly the simplest approach for tuning the properties of metallocenes. However, owing to the presence of multiple identical C(sp2 )-H sites, this protocol often suffers from low reactivity and selectivity issues, especially for the regioselective synthesis of 1,3-difunctionalized metallocenes. Herein, an efficient iridium-catalyzed meta-selective C-H borylation of metallocenes is reported. With no need of preinstalled directing groups, this approach enables a rapid synthesis of various boronic esters based on benzoferrocenes, ferrocenes, ruthenocene, and related half sandwich complex. A broad range of electron-deficient and -rich functional groups are all compatible with the process. Notably, C-H borylation of benzoferrocenes takes place exclusively at the benzene ring, which is likely ascribed to the shielding effect of pentamethylcyclopentadiene. The synthetic utility is further demonstrated by easy scalability to gram quantities, the conversion of boron to heteroatoms including N3 , SePh, and OAc, as well as diverse cross-coupling reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...