Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891766

RESUMEN

Despite the high quality of soybean protein, raw soybeans and soybean meal cannot be directly included in animal feed mixtures due to the presence of Kunitz (KTi) and Bowman-Birk protease inhibitors (BBis), which reduces animal productivity. Heat treatment can substantially inactivate trypsin and chymotrypsin inhibitors (BBis), but such treatment is energy-intensive, adds expense, and negatively impacts the quality of seed proteins. As an alternative approach, we have employed CRISPR/Cas9 gene editing to create mutations in BBi genes to drastically lower the protease inhibitor content in soybean seed. Agrobacterium-mediated transformation was used to generate several stable transgenic soybean events. These independent CRISPR/Cas9 events were examined in comparison to wild-type plants using Sanger sequencing, proteomic analysis, trypsin/chymotrypsin inhibitor activity assays, and qRT-PCR. Collectively, our results demonstrate the creation of an allelic series of loss-of-function mutations affecting the major BBi gene in soybean. Mutations in two of the highly expressed seed-specific BBi genes lead to substantial reductions in both trypsin and chymotrypsin inhibitor activities.


Asunto(s)
Edición Génica , Glycine max , Inhibidor de la Tripsina de Soja de Bowman-Birk , Quimotripsina/metabolismo , Quimotripsina/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Glycine max/genética , Glycine max/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Semillas/genética , Semillas/metabolismo , Tripsina/metabolismo , Tripsina/genética , Tripsina/química , Inhibidor de la Tripsina de Soja de Bowman-Birk/metabolismo , Inhibidor de la Tripsina de Soja de Bowman-Birk/genética , Inhibidores de Tripsina/metabolismo
2.
J Agric Food Chem ; 72(20): 11782-11793, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717295

RESUMEN

Soybeans are the number one source of plant proteins for food and feed, but the natural presence of protein protease inhibitors (PIs), namely, the Kunitz trypsin inhibitor (KTI) and the Bowman-Birk inhibitor (BBI), exerts antinutritional effects. This communication describes a new methodology for simultaneously quantitating all parameters of PIs in soybeans. It consists of seven steps and featured enzymatically measuring trypsin and chymotrypsin inhibitory activities, respectively, and subsequently determining the contents of reactive KTI and BBI and the contributions of each toward total PI mass and total trypsin or chymotrypsin inhibition by solving a proposed system of linear equations with two variables (C = dB + eK and T = xB + yK). This enzymatic and algebraic (EA) methodology was based on differential inhibitions of KTI and BBI toward trypsin and chymotrypsin and validated by applications to a series of mixtures of purified KTI and BBI, two KTI-null and two conventional soybeans, and by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The EA methodology allowed calculations of PI composition and the contributions of individual inhibitors toward total inhibition with ease. It was first found that although BBI constituted only about 30% of the total PI mass in conventional raw soybeans, it contributed about 80% toward total chymotrypsin inhibitor activity and about 45% toward trypsin inhibitor activity. Therefore, BBI caused more total protease inhibitions than those of KTI. Furthermore, the so-called KTI-null soybean mutants still contained measurable KTI content and thus should be named KTI-low soybeans.


Asunto(s)
Quimotripsina , Glycine max , Inhibidor de la Tripsina de Soja de Bowman-Birk , Inhibidor de la Tripsina de Soja de Kunitz , Tripsina , Quimotripsina/antagonistas & inhibidores , Quimotripsina/química , Quimotripsina/metabolismo , Glycine max/química , Glycine max/enzimología , Tripsina/química , Tripsina/metabolismo , Inhibidor de la Tripsina de Soja de Bowman-Birk/análisis , Inhibidor de la Tripsina de Soja de Kunitz/análisis , Inhibidores de Tripsina/análisis
3.
Int J Biol Macromol ; 238: 124050, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36933601

RESUMEN

Bowman-Birk inhibitor (BBI ~10 kDa) and Kunitz inhibitor (KI ~20 kDa) are serine protease/proteinase inhibitor(s) [PI(s)] ubiquitously found in several Leguminous plant species with insecticidal and therapeutic properties. Due to narrow molecular mass differences, the separation of these inhibitors from a single seed variety is tedious. The present study is aimed to develop a rapid protocol (<24 h) for purifying BBI and KI from legume seeds using mild trichloroacetic acid (TCA) extraction followed by trypsin-affinity chromatography. The mature seeds of Vigna radiata and Cajanus platycarpus are used as a model to purify BBI and KI using this protocol. The BBI and KI purified from the seeds of V. radiata are labeled as VrBBI & VrKI, and C. platycarpus are labeled as CpBBI & CpKI, respectively. These PIs are confirmed by immunodetection and MALDI-TOF studies and further characterized for their structural (CD & fluorescence spectroscopy) and functional properties (temperature & DTT stability). BBI(s) purified using the above process are effective in the management of castor semi-looper 'Achaea janata', while KI(s) are effective in the management of pod borer 'Helicoverpa armigera'. Besides, both BBI(s) and KI(s) have significant potential in controlling the growth of methicillin-sensitive 'Staphylococcus aureus', a gram-positive pathogenic bacterium.


Asunto(s)
Antiinfecciosos , Fabaceae , Insecticidas , Mariposas Nocturnas , Animales , Fabaceae/química , Secuencia de Aminoácidos , Insecticidas/química , Verduras , Inhibidores de Serina Proteinasa , Semillas/química , Antiinfecciosos/análisis , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/química
4.
Int J Radiat Biol ; 99(6): 882-890, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34325613

RESUMEN

PURPOSE: The purpose of the studies described in this mini review article was to identify nontoxic compounds that could prevent or suppress the radiation induced malignant transformation of cells and be useful as human cancer preventive agents. CONCLUSIONS: (1) Many different types of potential anticarcinogenic substances were evaluated initially for their abilities to prevent or suppress radiation induced malignant transformation in vitro, and certain anticarcinogenic protease inhibitors (APIs) were observed to be the most powerful anticarcinogenic agents at suppressing this surrogate endpoint biomarker of radiation carcinogenesis. (2) Within the category of APIs, those that inhibited the activity of chymotrypsin were effective at far lower molar concentrations than other APIs. The soybean-derived protease inhibitor known as the Bowman-Birk inhibitor (BBI) is a particularly powerful chymotrypsin inhibitor that is able to prevent radiation induced transformation in vitro (at concentrations down to nanomolar levels) as well as radiation induced carcinogenesis in vivo without toxicity. (3) There were many other unusual characteristics of APIs that led to the selection of one of these APIs, BBI, as the most appropriate compound for us to develop as a human cancer preventive agent. As one example, the APIs have an irreversible effect on carcinogenesis, while the effects are reversible for most anticarcinogenic agents when they are removed from carcinogenesis assay systems. (4) Numerous studies were performed in attempts to determine the potential mechanisms by which the APIs could prevent or suppress radiation induced carcinogenesis in in vitro and in vivo systems, and the results of these studies are described in this review article. The APIs and the proteases which interact with them appear to play important roles in radiation carcinogenesis. (5) Preparations for human trials using BBI began decades ago. The cost of preparing purified BBI was far too high to consider performing human trials with this agent, so BBI Concentrate (BBIC), a soybean extract enriched in BBI, was developed for the specific purpose of performing human trials with BBI. BBIC achieved Investigational New Drug (IND) Status with the Food and Drug Administration in April,1992, and human BBIC trials began at that time. (6) Several human trials were performed using BBIC and they indicated many potentially beneficial health effects produced by BBIC administration to people in various forms (e.g. tablets). 7) It is hypothesized that BBI takes the place of α-1-antichymotrypsin, an important regulatory compound in the human body, and helps to maintain homeostasis.


Asunto(s)
Anticarcinógenos , Inhibidor de la Tripsina de Soja de Bowman-Birk , Humanos , Inhibidores de Proteasas/farmacología , Inhibidor de la Tripsina de Soja de Bowman-Birk/farmacología , Anticarcinógenos/farmacología , Péptido Hidrolasas , Quimotripsina , Transformación Celular Neoplásica
5.
Food Res Int ; 162(Pt A): 111928, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461277

RESUMEN

Chronic inflammation refers to long-lasting inflammation that occurs over a period of several months to years, and it is associated with the progression of other chronic diseases. It may be induced by alcohol consumption and a high-fat diet. Soybean bioactive compounds prevent chronic inflammation by primarily targeting the nuclear factor kappa B (NF-κB) pathway, which inhibits the phosphorylation of IkappaB kinase complex (IκB) and reduces inflammatory marker levels. We performed a systematic review of studies published between 2012 and 2022 on the impact of soybeans on diet-induced chronic inflammation. Soy bioactive compounds may mitigate chronic inflammation. However, more human intervention studies are needed to assess their efficacy as potential modulating agents for inflammation and inflammation-related diseases. The objective was to review the impact of soy-derived bioactive compounds on high-fat diet-induced and alcohol-induced inflammation. To our knowledge, it is the first review to look specifically at high-fat diet-induced and alcohol-induced inflammation and how it is modulated by specific bioactive compounds in soybean.


Asunto(s)
Fabaceae , Glycine max , Humanos , Inflamación , Dieta Alta en Grasa/efectos adversos , FN-kappa B , Etanol
6.
Front Plant Sci ; 12: 772046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34899797

RESUMEN

A Bowman-Birk protease, i.e., Mucuna pruriens trypsin inhibitor (MPTI), was purified from the seeds by 55.702-fold and revealed a single trypsin inhibitor on a zymogram with a specific activity of 202.31 TIU/mg of protein. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) under non-reducing conditions, the protease trypsin inhibitor fraction [i.e., trypsin inhibitor non-reducing (TINR)] exhibited molecular weights of 74 and 37 kDa, and under reducing conditions [i.e., trypsin inhibitor reducing (TIR)], 37 and 18 kDa. TINR-37 revealed protease inhibitor activity on native PAGE and 37 and 18 kDa protein bands on SDS-PAGE. TINR-74 showed peaks corresponding to 18.695, 37.39, 56.085, and 74.78 kDa on ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization/quadrupole time-of-flight-mass spectrometry (ESI/QTOF-MS). Similarly, TINR-37 displayed 18.695 and 37.39 kDa peaks. Furthermore, TIR-37 and TIR-18 exhibited peaks corresponding to 37.39 and 18.695 kDa. Multiple peaks observed by the UPLC-ESI/QTOF analysis revealed the multimeric association, confirming the characteristic and functional features of Bowman-Birk inhibitors (BBIs). The multimeric association helps to achieve more stability, thus enhancing their functional efficiency. MPTI was found to be a competitive inhibitor which again suggested that it belongs to the BBI family of inhibitors, displayed an inhibitor constant of 1.3 × 10-6 M, and further demonstrates potent anti-inflammatory activity. The study provided a comprehensive basis for the identification of multimeric associates and their therapeutic potential, which could elaborate the stability and functional efficiency of the MPTI in the native state from M. pruriens.

7.
Front Vet Sci ; 8: 670451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179163

RESUMEN

Oral mucosal melanomas (OMM) are aggressive cancers in dogs, and are good models for human OMM. Gap junctions are composed of connexin units, which may have altered expression patterns and/or subcellular localization in cancer cells. Cell-to-cell communication by gap junctions is often impaired in cancer cells, including in melanomas. Meanwhile, the upregulated expression of the gap junction protein connexin 43 (Cx43) inhibits melanoma progression. The α-connexin carboxyl-terminal (aCT1) peptide reportedly maintains Cx43 expression and cell-cell communication in human mammary cells and increases the communication activity through gap junctions in functional assays, therefore causing decreased cell proliferation. The Bowman-Birk protease inhibitor (BBI), a component of soybeans, induces Cx43 expression in several tumor cells as a trypsin-chymotrypsin inhibition function, with antineoplastic effects. This study investigated the effect of aCT1 peptide and BBI treatment, alone or in combination, on TLM1 canine melanoma cell viability. Cell viability after treatment with aCT1, the reverse sequence peptide (R-pep), and/or BBI for 5 days was analyzed by PrestoBlue assay. Immunofluorescence was used to observe Cx43 localization and expression. aCT1 (200 µM) alone did not significantly decrease cell viability in TLM1 cells, whereas BBI (400 µg/ml) alone significantly decreased the TLM1 viability. Combined treatment with both aCT1 (200 µM) and BBI (400 µg/ml) significantly decreased cell viability in TLM1 cells. Cx43 expression, as identified by immunostainings in TLM1 cells, was increased in the cell membrane after the combination treatment with BBI and aCT1. This dual treatment can be combined to achieve the anticancer activity, possibly by increasing Cx 43 expression and affecting Cx43 migration to the cell membrane. In conclusion, a treatment strategy targeting Cx43 with BBI and aCT1 may possibly lead to new effective therapies for canine OMM.

8.
BMC Genomics ; 22(1): 218, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33765923

RESUMEN

BACKGROUND: Bowman-Birk inhibitors (BBI) are a family of serine-type protease inhibitors that modulate endogenous plant proteolytic activities during different phases of development. They also inhibit exogenous proteases as a component of plant defense mechanisms, and their overexpression can confer resistance to phytophagous herbivores and multiple fungal and bacterial pathogens. Dicot BBIs are multifunctional, with a "double-headed" structure containing two separate inhibitory loops that can bind and inhibit trypsin and chymotrypsin proteases simultaneously. By contrast, monocot BBIs have a non-functional chymotrypsin inhibitory loop, although they have undergone internal duplication events giving rise to proteins with multiple BBI domains. RESULTS: We used a Hidden Markov Model (HMM) profile-based search to identify 57 BBI genes in the common wheat (Triticum aestivum L.) genome. The BBI genes are unevenly distributed, with large gene clusters in the telomeric regions of homoeologous group 1 and 3 chromosomes that likely arose through a series of tandem gene duplication events. The genomes of wheat progenitors also contain contiguous clusters of BBI genes, suggesting this family underwent expansion before the domestication of common wheat. However, the BBI gene family varied in size among different cultivars, showing this family remains dynamic. Because of these expansions, the BBI gene family is larger in wheat than other monocots such as maize, rice and Brachypodium. We found BBI proteins in common wheat with intragenic homologous duplications of cysteine-rich functional domains, including one protein with four functional BBI domains. This diversification may expand the spectrum of target substrates. Expression profiling suggests that some wheat BBI proteins may be involved in regulating endogenous proteases during grain development, while others were induced in response to biotic and abiotic stresses, suggesting a role in plant defense. CONCLUSIONS: Genome-wide characterization reveals that the BBI gene family in wheat is subject to a high rate of homologous tandem duplication and deletion events, giving rise to a diverse set of encoded proteins. This information will facilitate the functional characterization of individual wheat BBI genes to determine their role in wheat development and stress responses, and their potential application in breeding.


Asunto(s)
Oryza , Inhibidor de la Tripsina de Soja de Bowman-Birk , Fitomejoramiento , Estrés Fisiológico , Triticum/genética , Inhibidor de la Tripsina de Soja de Bowman-Birk/genética
9.
Food Chem ; 349: 129049, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33581435

RESUMEN

In this study the potential targeted use of zinc to inactivate proteinase inhibitors (PI) has been investigated as an alternative to the widely applied heat treatment used industrially for inactivation of PI. Zinc was utilized for the reduction of disulfide bonds leading to the structural changes in proteins, thus affecting the decreased affinity between PI and proteinases. The protein disulfide bond reduction mechanism was studied using a newly developed micellar electrokinetic capillary chromatography (MECC) with the glutathione redox reaction with dithiothreitol (DTT) as model system. This model proved efficient in monitoring the reduction of disulfide bonds in the Kunitz trypsin inhibitor (KTI) and Bowman-Birk inhibitor (BBI). The use of zinc as a reductant resulted in a significant reduction of trypsin inhibitor activity (TIA) of 72% for KTI and 85% for BBI, highlighting zinc as a promising potential agent to reduce the activity of PI as an alternative to heat treatment.


Asunto(s)
Inhibidor de la Tripsina de Soja de Bowman-Birk/metabolismo , Inhibidor de la Tripsina de Soja de Kunitz/metabolismo , Zinc/farmacología , Disulfuros/química , Activación Enzimática/efectos de los fármacos , Inhibidor de la Tripsina de Soja de Bowman-Birk/química , Inhibidor de la Tripsina de Soja de Kunitz/química
10.
Biology (Basel) ; 9(7)2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630758

RESUMEN

Serine protease inhibitors are found in plants, animals and microorganisms, where they play important roles in many physiological and pathological processes. Inhibitor scaffolds based on natural proteins and peptides have gradually become the focus of current research as they tend to bind to their targets with greater specificity than small molecules. In this report, a novel Bowman-Birk type inhibitor, named ranacyclin-NF (RNF), is described and was identified in the skin secretion of the East Asian frog, Pelophylax nigromaculatus. A synthetic replicate of the peptide was subjected to a series of functional assays. It displayed trypsin inhibitory activity with an inhibitory constant, Ki, of 447 nM and had negligible direct cytotoxicity. No observable direct antimicrobial activity was found but RNF improved the therapeutic potency of Gentamicin against Methicillin-resistant Staphylococcus aureus (MRSA). RNF shared significant sequence similarity to previously reported and related inhibitors from Odorrana grahami (ORB) and Rana esculenta (ranacyclin-T), both of which were found to be multi-functional. Two analogues of RNF, named ranacyclin-NF1 (RNF1) and ranacyclin-NF3L (RNF3L), were designed based on some features of ORB and ranacyclin-T to study structure-activity relationships. Structure-activity studies demonstrated that residues outside of the trypsin inhibitory loop (TIL) may be related to the efficacy of trypsin inhibitory activity.

11.
Plant Physiol Biochem ; 149: 286-293, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32097847

RESUMEN

Serine protease inhibitors (SPIs) play an important role in cell survival, development and host defense. In plants, serine protease inhibitors such as the Kunitz-type inhibitor (KTI) and the Bowman-Birk inhibitor (BBI) have been shown to be induced in response to abiotic stress such as salinity and drought resulting in tolerance to these stresses. In this study, Arabidopsis thaliana (T3) plants overexpressing the BBI gene from maize were generated and subjected to drought stress in order to study the role of BBI protease inhibitor in drought tolerance. Drought treatment of four-week-old Arabidopsis plants was performed by withholding water from plants for nine days and harvested plant material was used for physiological and biochemical analysis. The transgenic lines exhibited normal growth after nine days of drought as compared to the wild-type. The results also showed a higher leaf relative water content (RWC) in transgenic lines when compared to the wild-type (WT), with line 2 having the highest RWC of 72% and the WT having the lowest RWC of 32%. Trypsin-inhibitor activity indicated that the total protein of the positive transgenic plants had stronger protease inhibitory activity than the wild-type. Transgenic lines overexpressing BBI also showed reduced lipid peroxidation (MDA content) as well as enhanced activity of antioxidants glutathione-s-transferase (GST) and ascorbate peroxidase (APX). These results suggest that BBI protease inhibitor leads to drought tolerance associated with reduction in drought-induced oxidative stress.


Asunto(s)
Arabidopsis , Sequías , Inhibidores de Serina Proteinasa , Estrés Fisiológico , Arabidopsis/enzimología , Arabidopsis/genética , Plantas Modificadas Genéticamente , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/metabolismo , Estrés Fisiológico/genética
12.
Biomolecules ; 9(7)2019 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-31337113

RESUMEN

Anuran amphibian skin secretions are a rich source of peptides, many of which represent novel protease inhibitors and can potentially act as a source for protease inhibitor drug discovery. In this study, a novel bioactive Bowman-Birk type inhibitory hexadecapeptide of the Ranacyclin family from the defensive skin secretion of the Fukien gold-striped pond frog, Pelophlax plancyi fukienesis, was successfully isolated and identified, named PPF-BBI. The primary structure of the biosynthetic precursor was deduced from a cDNA sequence cloned from a skin-derived cDNA library, which contains a consensus motif representative of the Bowman-Birk type inhibitor. The peptide was chemically synthesized and displayed a potent inhibitory activity against trypsin (Ki of 0.17 µM), as well as an inhibitory activity against tryptase (Ki of 30.73 µM). A number of analogues of this peptide were produced by rational design. An analogue, which substituted the lysine (K) at the predicted P1 position with phenylalanine (F), exhibited a potent chymotrypsin inhibitory activity (Ki of 0.851 µM). Alternatively, a more potent protease inhibitory activity, as well as antimicrobial activity, was observed when P16 was replaced by lysine, forming K16-PPF-BBI. The addition of the cell-penetrating peptide Tat with a trypsin inhibitory loop resulted in a peptide with a selective inhibitory activity toward trypsin, as well as a strong antifungal activity. This peptide also inhibited the growth of two lung cancer cells, H460 and H157, demonstrating that the targeted modifications of this peptide could effectively and efficiently alter its bioactivity.


Asunto(s)
Antifúngicos/química , Inhibidores de Proteasas/química , Diseño de Fármacos , Biblioteca de Genes
13.
J Cell Biochem ; 120(7): 11150-11157, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30860639

RESUMEN

Alzheimer, a current neurodegenerative disorder has adverse effects on memory and behavior. ß-Amyloid peptide accumulations are the hallmarks of Alzheimer. Dysfunction of autophagy and apoptosis is detected in Alzheimer's disease. The effect of Bowman-Birk inhibitor (BBI), purified from soybean, was investigated in autophagy and apoptosis in Alzheimer treatment. Treated-PC12 cells with 1000 nM HgCl2 induced amyloid ß (Aß) accumulation. Treatment of PC12 cells with 1000 nM HgCl 2 and then 500 µg/mL BBI could decrease the expression ratio of Bax/Bcl2 and increase the expression of beclin1, Bnip3, Atg5, and autophagy-related genes. These results indicated that BBI could inhibit Aß accumulation by inducing autophagy, and also the neuroprotective effect was detected through decreasing apoptosis in the in vitro model of Alzheimer's disease. These results provided further evidence for the potential effectiveness of BBI in the treatment of Alzheimer's disease.

14.
Colloids Surf B Biointerfaces ; 167: 474-482, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29723819

RESUMEN

One of the major challenges in the administration of therapeutic proteins involves delivery limitations. Liposomes are well-known drug delivery systems (DDS) that have been used to overcome this drawback; nevertheless, low protein entrapment efficiency (EE) still limits their wide biomedical application on a commercial scale. In the present work, different methods for protein entrapment into liposomes were tested in order to obtain tailored DDS platforms for multiple biomedical applications. The protein used as model was the Black-eyed pea Trypsin and Chymotrypsin Inhibitor (BTCI), a member of the Bowman-Birk protease inhibitor family (BBIs), which has been largely explored for its potential application in many biomedical therapies. We optimized reverse-phase evaporation (REV) and freeze/thaw (F/T) entrapment methods, using a cationic lipid matrix to entrap expressive amounts of BTCI (∼100 µM) in stable liposomes without affecting its protease inhibition activity. The influence of various parameters (e.g. entrapment method, liposome composition, buffer type) on particle size, charge, polydispersity, and EE of liposomes was investigated to provide an insight on how to control such parameters in view of obtaining a high entrapment yield. In addition, BTCI liposome platforms obtained herein showed to be versatile vesicles, allowing surface modification with moieties/polymers of interest (e.g. PEG, transferrin). The aforementioned results are relevant to focusing on the entrapment of other promising BBIs or protein agents sharing similar structural features. These findings encourage future studies to investigate the advantages of using the liposome platforms presented herein to broaden the use of this type of DDS for BBI biomedical applications.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Vigna/metabolismo , Biocatálisis/efectos de los fármacos , Quimotripsina/metabolismo , Tamaño de la Partícula , Proteínas de Plantas/administración & dosificación , Proteínas de Plantas/química , Polietilenglicoles/química , Propiedades de Superficie , Transferrina/química , Tripsina/metabolismo
15.
Phytochemistry ; 151: 78-90, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29674106

RESUMEN

Crude proteinase inhibitors (CPIs) extracted from the seeds of Rhynchosia sublobata, a wild relative of pigeon pea showed pronounced inhibitory activity on the larval gut trypsin-like proteases of lepidopteran insect pest - Achaea janata. Consequently, a full-length cDNA of Bowman-Birk inhibitor gene (RsBBI1) was cloned from the immature seeds of R. sublobata. It contained an ORF of 360 bp encoding a 119-amino acid polypeptide (13.3 kDa) chain with an N-terminus signal sequence comprising of 22 amino acids. The amino acid sequence and phylogenetic analysis together revealed that RsBBI1 exhibited a close relation with BBIs from soybean and Phaseolus spp. A cDNA sequence corresponding to RsBBI1 mature protein (89 amino acid stretch) was expressed in E. coli. The recombinant rRsBBI1 protein with a molecular mass of 9.97 kDa was purified using trypsin affinity chromatography. The purified rRsBBI1 exhibited non-competitive mode of inhibition of both bovine trypsin (Ki of 358 ±â€¯11 nM) and chymotrypsin (Ki of 446 ±â€¯9 nM). Its inhibitory activity against these proteases was stable at high temperatures (>95 °C) and a wide pH range but sensitive to reduction with dithiothreitol (DTT), indicating the importance of disulphide bridges in exhibiting its activity. Also, rRsBBI1 showed significant inhibitory activity (IC50 = 70 ng) on A. janata larval gut trypsin-like proteases (AjGPs). Conversely, it showed <1% inhibitory activity (IC50 = 8 µg) on H. armigera larval gut trypsin-like proteases (HaGPs) than it has against AjGPs. Besides, in vivo feeding experiments clearly indicated the deleterious effects of rRsBBI1 on larval growth and development in A. janata which suggests it can be further exploited for such properties.


Asunto(s)
Fabaceae/química , Péptido Hidrolasas/metabolismo , Semillas/química , Inhibidor de la Tripsina de Soja de Bowman-Birk/metabolismo , Inhibidores de Tripsina/farmacología , Animales , Bovinos , Mariposas Nocturnas , Inhibidor de la Tripsina de Soja de Bowman-Birk/química , Inhibidor de la Tripsina de Soja de Bowman-Birk/aislamiento & purificación , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación
16.
Virology ; 513: 91-97, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040829

RESUMEN

Bowman-Birk inhibitor (BBI) is a soybean-derived protease inhibitor that has anti-inflammation and anti-HIV effect. Here, we further investigated the anti-HIV action of BBI in macrophages, focusing on its effect on viral entry. We found that BBI could significantly block HIV entry into macrophages. Investigation of the mechanism(s) of the BBI action on HIV inhibition showed that BBI down-regulated the expression of CD4 receptor (as much as 80%) and induced the production of the CC chemokines (up to 60 folds at protein level) in macrophages. This inhibitory effect of BBI on HIV entry could be blocked by the neutralization antibodies to CC chemokines. These findings indicate that BBI may have therapeutic potential as a viral entry inhibitor for the prevention and treatment of HIV infection.


Asunto(s)
Inhibidores de Fusión de VIH/metabolismo , VIH/efectos de los fármacos , VIH/fisiología , Macrófagos/virología , Inhibidor de la Tripsina de Soja de Bowman-Birk/metabolismo , Internalización del Virus/efectos de los fármacos , Antígenos CD4/biosíntesis , Células Cultivadas , Quimiocinas/biosíntesis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos
17.
J Agric Food Chem ; 65(11): 2461-2467, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28249116

RESUMEN

Soybean seeds contain three groups (A, C, and D) of Bowman-Birk inhibitors (BBIs). In this study, highly purified BBI-A (approximately 96%) was obtained from soybean whey at the 0.1 g level by the complex coacervation method. BBI-A has seven disulfide bonds (SS) and no sulfhydryl group and exhibits trypsin inhibitor activity (TIA) and chymotrypsin inhibitor activity (CIA). The X-ray structure has shown that BBI-A has five exposed SS and two buried SS. Because of steric hindrance, it was reasonable to consider that dithiothreitol first attacks the five exposed SS and then the two buried SS, which was supported by the results that SS reduction with dithiothreitol could be divided into quick and slow stages, and the critical point was close to 5/7. The effects of SS reduction on TIA and CIA could be divided into three stages: when one exposed SS was reduced, both TIA and CIA decreased to approximately 60%; with further reduction of exposed SS, CIA gradually decreased to 8% and TIA gradually decreased to 26%; with further reduction of buried SS, CIA gradually decreased to 2% and TIA slightly decreased to 24%. Far-ultraviolet (far-UV) circular dichroism (CD) spectra showed that the secondary structure of BBI-A was slightly changed, whereas near-ultraviolet (near-UV) CD spectra showed that the conformation of BBI-A was substantially changed after the five exposed SS were reduced; further reduction of buried SS affected the conformation to some extent. The results of Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis and from a C8 column showed the same trend as near-UV CD spectra. BBI-A has a structural peculiarity in that two hydrophobic patches are exposed to the exterior (in contrast to typical soluble proteins), which was attributed to the seven SS by some researchers. These results support the hypothesis that hydrophobic collapse of the exposed hydrophobic patches into a regular hydrophobic core occurred after the reduction of SS in BBI-A.


Asunto(s)
Quimotripsina/antagonistas & inhibidores , Disulfuros/química , Inhibidor de la Tripsina de Soja de Bowman-Birk/química , Secuencia de Aminoácidos , Quimotripsina/química , Dicroismo Circular , Oxidación-Reducción , Estructura Secundaria de Proteína , Glycine max/química , Tripsina/química
18.
Biopolymers ; 106(6): 818-824, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27178003

RESUMEN

We report for the first time the recombinant expression of bioactive wild-type sunflower trypsin inhibitor 1 (SFTI-1) inside E. coli cells by making use of intracellular protein trans-splicing in combination with a high efficient split-intein. SFTI-1 is a small backbone-cyclized polypeptide with a single disulfide bridge and potent trypsin inhibitory activity. Recombinantly produced SFTI-1 was fully characterized by NMR and was observed to actively inhibit trypsin. The in-cell expression of SFTI-1 was very efficient reaching intracellular concentration ≈ 40 µM. This study clearly demonstrates the possibility of generating genetically encoded SFTI-based peptide libraries in live E. coli cells, and is a critical first step for developing in-cell screening and directed evolution technologies using the cyclic peptide SFTI-1 as a molecular scaffold. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 818-824, 2016.


Asunto(s)
Expresión Génica , Helianthus , Inteínas , Péptidos Cíclicos , Empalme de Proteína , Escherichia coli , Helianthus/química , Helianthus/genética , Péptidos Cíclicos/biosíntesis , Péptidos Cíclicos/química , Péptidos Cíclicos/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
19.
Immunol Lett ; 171: 15-25, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26791957

RESUMEN

BACKGROUND: In the present study, we investigated the immuno-regulatory and therapeutic effects of Bowman-Birk inhibitor concentrate (BBIC) on experimental autoimmune neuritis (EAN), an animal model of Guillain-Barré syndrome (GBS) in human. METHODS: EAN in Lewis rats induced by inoculation with peripheral nerve myelin P0 protein peptide 180-199 (P0 peptide) was treated with BBIC at two different therapeutic regimens. RESULTS: Our data indicated that the administration of BBIC daily orally effectively inhibited and ameliorated the clinical and pathological signs of EAN. The suppression of EAN was associated with an insufficiency of autoreactive T cells, as reflected by inhibited P0 peptide-specific mononuclear cell proliferation and decreased in CD4 and CD8T cells infiltrating into the peripheral nervous system (PNS). BBIC might mediate its therapeutic effects by shifting macrophages from M1 to M2 subtype as evidenced by increasing Arg-1, CD206 and IL-10 and inhibiting IFN-γ, TNF-α, IL-12, iNOS and CD40 expressions on macrophages as well as enhancing anti-inflammatory cytokines IL-4 and IL-10 and decreasing inflammatory cytokines, IFN-γ, TNF-α and IL-17 in the PNS. CONCLUSION: Our results suggest that BBIC may have therapeutic potential in human GBS and other autoimmune diseases in the future.


Asunto(s)
Antiinflamatorios/uso terapéutico , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Síndrome de Guillain-Barré/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Neuritis Autoinmune Experimental/tratamiento farmacológico , Proteínas de Plantas/uso terapéutico , Inhibidor de la Tripsina de Soja de Bowman-Birk/uso terapéutico , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Síndrome de Guillain-Barré/inmunología , Humanos , Activación de Linfocitos/efectos de los fármacos , Macrófagos/inmunología , Masculino , Neuritis Autoinmune Experimental/inmunología , Ratas , Ratas Endogámicas Lew , Glycine max/inmunología , Balance Th1 - Th2/efectos de los fármacos
20.
Chembiochem ; 16(17): 2441-4, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26426719

RESUMEN

We report the engineering of the monocyclic sunflower trypsin inhibitor (SFTI-1[1,14]) into a potent furin inhibitor. In a rational approach, we converted the native scaffold of this trypsin-like serine protease inhibitor into a subtilisin-like one by substitutions in the canonical and, particularly, in the substrate-binding loop. Although the substrate sequence for furin is Arg-X-Arg/Lys-Arg↓, the most potent inhibitor had a lysine at position P1. C-terminally truncated versions demonstrated the strongest activity, thus suggesting a lack of interaction between this motif and the surface of furin. This observation was further supported by molecular modeling. With an inhibition constant of 0.49 nm, the engineered peptide H-KRCKKSIPPICF-NH2 is a promising compound for further development of furin inhibitors aimed at controlling the activity of this protease in vitro and in vivo.


Asunto(s)
Furina/antagonistas & inhibidores , Péptidos/química , Secuencia de Aminoácidos , Sitios de Unión , Diseño de Fármacos , Furina/metabolismo , Helianthus/metabolismo , Cinética , Simulación de Dinámica Molecular , Péptidos/síntesis química , Péptidos/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...