Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39069248

RESUMEN

Cytochrome P450 (CYP) 2Ds are drug metabolizing enzymes found in brain and liver which metabolize numerous centrally acting drugs. Inhibition and induction of CYP2D-mediated metabolism in rodent brain alters brain drug and metabolite concentrations and resulting drug response. In female rats, brain CYP2D metabolism varies across the estrous cycle and with exogenous estrogen, changing brain drug concentrations and response. In this study harmine-induced hypothermia was lower in humanized CYP2D6 transgenic female mice during estrus compared to diestrus. Pretreatment into the cerebral ventricles with propranolol, a selective irreversible inhibitor of human CYP2D6 in brain, increased hypothermia in estrus but not in diestrus. In vivo enzyme activity was higher in brains of transgenic mice in estrus compared to diestrus and was lower after pretreatment with inhibitor in estrus, but not in diestrus. Hepatic activity and plasma harmine concentrations were unaffected by either estrous phase or inhibition of brain CYP2D6. In wild-type female mice, harmine-induced hypothermia was unaffected by either estrous phase or inhibitor pretreatment. Male mice were used as positive controls, where pretreatment with inhibitor increased harmine-induced hypothermia in transgenic but not wild-type, mice. This study provides evidence for female hormone cycle-based regulation of drug metabolism by human CYP2D6 in brain and resulting drug response. This suggests that brain CYP2D6 metabolism may vary, for example, during the menstrual cycle, pregnancy, or menopause, or while taking oral contraceptives or hormone therapy. This variation could contribute to individual differences in response to centrally acting CYP2D6-substrate drugs by altering local brain drug and/or metabolite concentrations.

2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000543

RESUMEN

Human individual differences in brain cytochrome P450 (CYP) metabolism, including induction, inhibition, and genetic variation, may influence brain sensitivity to neurotoxins and thus participate in the onset of neurodegenerative diseases. The aim of this study was to explore the modulation of CYPs in neuronal cells. The experimental approach was focused on differentiating human neuroblastoma SH-SY5Y cells into a phenotype resembling mature dopamine neurons and investigating the effects of specific CYP isoform induction. The results demonstrated that the differentiation protocols using retinoic acid followed by phorbol esters or brain-derived neurotrophic factor successfully generated SH-SY5Y cells with morphological neuronal characteristics and increased neuronal markers (NeuN, synaptophysin, ß-tubulin III, and MAO-B). qRT-PCR and Western blot analysis showed that expression of the CYP 1A1, 3A4, 2D6, and 2E1 isoforms was detectable in undifferentiated cells, with subsequent increases in CYP 2E1, 2D6, and 1A1 following differentiation. Further increases in the 1A1, 2D6, and 2E1 isoforms following ß-naphthoflavone treatment and 1A1 and 2D6 isoforms following ethanol treatment were evident. These results demonstrate that CYP isoforms can be modulated in SH-SY5Y cells and suggest their potential as an experimental model to investigate the role of CYPs in neuronal processes involved in the development of neurodegenerative diseases.


Asunto(s)
Diferenciación Celular , Sistema Enzimático del Citocromo P-450 , Enfermedades Neurodegenerativas , Humanos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Línea Celular Tumoral , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Neuroblastoma/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas/metabolismo
3.
Drug Metab Rev ; 50(4): 415-429, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30501426

RESUMEN

The current state of knowledge indicates that the cerebral cytochrome P450 (CYP) plays an important role in the endogenous metabolism in the brain. Different CYP isoenzymes mediate metabolism of many endogenous substrates such as monoaminergic neurotransmitters, neurosteroids, cholesterol, vitamins and arachidonic acid. Therefore, these enzymes may affect brain development, susceptibility to mental and neurodegenerative diseases and may contribute to their pathophysiology. In addition, they can modify the therapeutic effects of psychoactive drugs at the place of their target action in the brain, where the drugs can act by affecting the metabolism of endogenous substrates. The article focuses on the role of cerebral CYP isoforms in the metabolism of neurotransmitters, neurosteroids, and cholesterol, and their possible involvement in animal behavior, as well as in stress, depression, schizophrenia, cognitive processes, learning, and memory. CYP-mediated alternative pathways of dopamine and serotonin synthesis may have a significant role in the local production of these neurotransmitters in the brain regions where the disturbances of these neurotransmitter systems are observed in depression and schizophrenia. The local alternative synthesis of neurotransmitters may be of great importance in the brain, since dopamine and serotonin do not pass the blood-brain barrier and cannot be supplied from the periphery. In vitro studies indicate that human CYP2D6 catalyzing dopamine and serotonin synthesis is more efficient in these reactions than the rat CYP2D isoforms. It suggests that these alternative pathways may have much greater significance in the human brain but confirmation of these assumptions requires further studies.


Asunto(s)
Ácido Araquidónico/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Trastornos Mentales/metabolismo , Neurotransmisores/metabolismo , Vitaminas/metabolismo , Animales , Encéfalo/enzimología , Humanos , Psicofarmacología
4.
Toxicol In Vitro ; 28(7): 1206-14, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24929095

RESUMEN

Increasing evidence suggests that brain cytochrome P450 (CYP) can contribute to the in situ metabolism of xenobiotics. In the liver, some xenobiotics can be metabolized by CYPs into more reactive products that can damage hepatocytes and induce cell death. In addition, normal CYP activity may produce reactive oxygen species (ROS) that contribute to cell damage through oxidative mechanisms. CYP2E1 is a CYP isoform that can generate ROS leading to cytotoxicity in multiple tissue types. The aim of this study was to determine whether CYP2E1 induction may lead to significant brain cell impairment. Immunological analysis revealed that exposure of primary cerebellar granule neuronal cultures to the CYP inducer isoniazid, increased CYP2E1 expression. In the presence of buthionine sulfoximine, an agent that reduces glutathione levels, isoniazid treatment also resulted in reactive oxygen species (ROS) production, DNA oxidation and cell death. These effects were attenuated by simultaneous exposure to diallyl sulfide, a CYP2E1 inhibitor, or to a mimetic of superoxide dismutase/catalase, (Euka). These results suggest that in cases of reduced antioxidant levels, the induction of brain CYP2E1 could represent a risk of in situ neuronal damage.


Asunto(s)
Inductores del Citocromo P-450 CYP2E1/farmacología , Citocromo P-450 CYP2E1/metabolismo , Glutatión/metabolismo , Isoniazida/farmacología , Neuronas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cerebelo/citología , ADN/metabolismo , Neuronas/metabolismo , Oxidación-Reducción , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...