Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39205153

RESUMEN

Filoviruses are negative-sense single-stranded RNA viruses often associated with severe and highly lethal hemorrhagic fever in humans and nonhuman primates, with case fatality rates as high as 90%. Of the known filoviruses, Ebola virus (EBOV), the prototype of the genus Orthoebolavirus, has been a major public health concern as it frequently causes outbreaks and was associated with an unprecedented outbreak in several Western African countries in 2013-2016, affecting 28,610 people, 11,308 of whom died. Thereafter, filovirus research mostly focused on EBOV, paying less attention to other equally deadly orthoebolaviruses (Sudan, Bundibugyo, and Taï Forest viruses) and orthomarburgviruses (Marburg and Ravn viruses). Some of these filoviruses have emerged in nonendemic areas, as exemplified by four Marburg disease outbreaks recorded in Guinea, Ghana, Tanzania, and Equatorial Guinea between 2021 and 2023. Similarly, the Sudan virus has reemerged in Uganda 10 years after the last recorded outbreak. Moreover, several novel bat-derived filoviruses have been discovered in the last 15 years (Lloviu virus, Bombali virus, Menglà virus, and Dehong virus), most of which are poorly characterized but may display a wide host range. These novel viruses have the potential to cause outbreaks in humans. Several gaps are yet to be addressed regarding known and emerging filoviruses. These gaps include the virus ecology and pathogenicity, mechanisms of zoonotic transmission, host range and susceptibility, and the development of specific medical countermeasures. In this review, we summarize the current knowledge on non-Ebola filoviruses (Bombali virus, Bundibugyo virus, Reston virus, Sudan virus, Tai Forest virus, Marburg virus, Ravn virus, Lloviu virus, Menglà virus, and Dehong virus) and suggest some strategies to accelerate specific countermeasure development.


Asunto(s)
Brotes de Enfermedades , Infecciones por Filoviridae , Filoviridae , Salud Global , Humanos , Animales , Filoviridae/patogenicidad , Infecciones por Filoviridae/epidemiología , Infecciones por Filoviridae/virología , Ebolavirus/fisiología , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/transmisión , Zoonosis/epidemiología , Zoonosis/virología
2.
J Infect Dis ; 228(Suppl 7): S712-S720, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290053

RESUMEN

BACKGROUND: The filovirus Bundibugyo virus (BDBV) causes severe disease with a mortality rate of approximately 20%-51%. The only licensed filovirus vaccine in the United States, Ervebo, consists of a recombinant vesicular stomatitis virus (rVSV) vector that expresses Ebola virus (EBOV) glycoprotein (GP). Ervebo was shown to rapidly protect against fatal Ebola disease in clinical trials; however, the vaccine is only indicated against EBOV. Recent outbreaks of other filoviruses underscore the need for additional vaccine candidates, particularly for BDBV infections. METHODS: To examine whether the rVSV vaccine candidate rVSVΔG/BDBV-GP could provide therapeutic protection against BDBV, we inoculated seven cynomolgus macaques with 1000 plaque-forming units of BDBV, administering rVSVΔG/BDBV-GP vaccine to 6 of them 20-23 minutes after infection. RESULTS: Five of the treated animals survived infection (83%) compared to an expected natural survival rate of 21% in this macaque model. All treated animals showed an early circulating immune response, while the untreated animal did not. Surviving animals showed evidence of both GP-specific IgM and IgG production, while animals that succumbed did not produce significant IgG. CONCLUSIONS: This small, proof-of-concept study demonstrated early treatment with rVSVΔG/BDBV-GP provides a survival benefit in this nonhuman primate model of BDBV infection, perhaps through earlier initiation of adaptive immunity.


Asunto(s)
Vacunas contra el Virus del Ébola , Ebolavirus , Fiebre Hemorrágica Ebola , Estomatitis Vesicular , Vacunas Virales , Animales , Estomatitis Vesicular/prevención & control , Anticuerpos Antivirales , Vesiculovirus/genética , Glicoproteínas/genética , Macaca fascicularis , Inmunoglobulina G
3.
Cell ; 185(6): 995-1007.e18, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35303429

RESUMEN

Several ebolaviruses cause outbreaks of severe disease. Vaccines and monoclonal antibody cocktails are available to treat Ebola virus (EBOV) infections, but not Sudan virus (SUDV) or other ebolaviruses. Current cocktails contain antibodies that cross-react with the secreted soluble glycoprotein (sGP) that absorbs virus-neutralizing antibodies. By sorting memory B cells from EBOV infection survivors, we isolated two broadly reactive anti-GP monoclonal antibodies, 1C3 and 1C11, that potently neutralize, protect rodents from disease, and lack sGP cross-reactivity. Both antibodies recognize quaternary epitopes in trimeric ebolavirus GP. 1C11 bridges adjacent protomers via the fusion loop. 1C3 has a tripartite epitope in the center of the trimer apex. One 1C3 antigen-binding fragment anchors simultaneously to the three receptor-binding sites in the GP trimer, and separate 1C3 paratope regions interact differently with identical residues on the three protomers. A cocktail of both antibodies completely protected nonhuman primates from EBOV and SUDV infections, indicating their potential clinical value.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ebolavirus , Fiebre Hemorrágica Ebola , Animales , Epítopos , Glicoproteínas/química , Subunidades de Proteína
4.
Cell Rep Med ; 2(8): 100351, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34467242

RESUMEN

Bundibugyo virus (BDBV) is one of four ebolaviruses known to cause disease in humans. Bundibugyo virus disease (BVD) outbreaks occurred in 2007-2008 in Bundibugyo District, Uganda, and in 2012 in Isiro, Province Orientale, Democratic Republic of the Congo. The 2012 BVD outbreak resulted in 38 laboratory-confirmed cases of human infection, 13 of whom died. However, only 4 BDBV specimens from the 2012 outbreak have been sequenced. Here, we provide BDBV sequences from seven additional patients. Analysis of the molecular epidemiology and evolutionary dynamics of the 2012 outbreak with these additional isolates challenges the current hypothesis that the outbreak was the result of a single spillover event. In addition, one patient record indicates that BDBV's initial emergence in Isiro occurred 50 days earlier than previously accepted. Collectively, this work demonstrates how retrospective sequencing can be used to elucidate outbreak origins and provide epidemiological contexts to a medically relevant pathogen.


Asunto(s)
Brotes de Enfermedades , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/genética , Adolescente , Adulto , Anciano , Animales , Teorema de Bayes , Preescolar , Chlorocebus aethiops , Ebolavirus/genética , Femenino , Genoma Viral , Haplotipos/genética , Fiebre Hemorrágica Ebola/transmisión , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Polimorfismo de Nucleótido Simple/genética , Células Vero
5.
Virulence ; 12(1): 885-901, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33734027

RESUMEN

Ebola virus (EBOV), belonging to the species Zaire ebolavirus in the genus Ebolavirus, causes a severe febrile illness in humans with case fatality rates (CFRs) up to 90%. While there have been six virus species classified, which each have a single type virus in the genus Ebolavirus, CFRs of ebolavirus infections vary among viruses belonging to each distinct species. In this review, we aim to define the ebolavirus species-specific virulence on the basis of currently available laboratory and experimental findings. In addition, this review will also cover the variant-specific virulence of EBOV by referring to the unique biological and pathogenic characteristics of EBOV variant Makona, a new EBOV variant isolated from the 2013-2016 EBOV disease outbreak in West Africa. A better definition of species-specific and variant-specific virulence of ebolaviruses will facilitate our comprehensive knowledge on genus Ebolavirus biology, leading to the development of therapeutics against well-focused pathogenic mechanisms of each Ebola disease.


Asunto(s)
Ebolavirus/genética , Ebolavirus/patogenicidad , Variación Genética , Fiebre Hemorrágica Ebola/virología , Animales , Anticuerpos Antivirales , Brotes de Enfermedades , Ebolavirus/clasificación , Ebolavirus/inmunología , Genoma Viral , Fiebre Hemorrágica Ebola/mortalidad , Humanos , Ratones , Virulencia
6.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32075939

RESUMEN

The 2013-2016 Ebola outbreak in West Africa led to accelerated efforts to develop vaccines against these highly virulent viruses. A live, recombinant vesicular stomatitis virus-based vaccine has been deployed in outbreak settings and appears highly effective. Vaccines based on replication-deficient adenovirus vectors either alone or in combination with a multivalent modified vaccinia Ankara (MVA) Ebola vaccine also appear promising and are progressing in clinical evaluation. However, the ability of current live vector-based approaches to protect against multiple pathogenic species of Ebola is not yet established, and eliciting durable responses may require additional booster vaccinations. Here, we report the development of a bivalent, spherical Ebola virus-like particle (VLP) vaccine that incorporates glycoproteins (GPs) from Zaire Ebola virus (EBOV) and Sudan Ebola virus (SUDV) and is designed to extend the breadth of immunity beyond EBOV. Immunization of rabbits with bivalent Ebola VLPs produced antibodies that neutralized all four pathogenic species of Ebola viruses and elicited antibody-dependent cell-mediated cytotoxicity (ADCC) responses against EBOV and SUDV. Vaccination of rhesus macaques with bivalent VLPs generated strong humoral immune responses, including high titers of binding, as well as neutralizing antibodies and ADCC responses. VLP vaccination led to a significant increase in the frequency of Ebola GP-specific CD4 and CD8 T cell responses. These results demonstrate that a novel bivalent Ebola VLP vaccine elicits strong humoral and cellular immune responses against pathogenic Ebola viruses and support further evaluation of this approach as a potential addition to Ebola vaccine development efforts.IMPORTANCE Ebola outbreaks result in significant morbidity and mortality in affected countries. Although several leading candidate Ebola vaccines have been developed and advanced in clinical testing, additional vaccine candidates may be needed to provide protection against different Ebola species and to extend the durability of protection. A novel approach demonstrated here is to express two genetically diverse glycoproteins on a spherical core, generating a vaccine that can broaden immune responses against known pathogenic Ebola viruses. This approach provides a new method to broaden and potentially extend protective immune responses against Ebola viruses.


Asunto(s)
Vacunas contra el Virus del Ébola/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , África Occidental , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Modelos Animales de Enfermedad , Femenino , Glicoproteínas/inmunología , Inmunización , Macaca mulatta , Masculino , Vacunación , Vacunas Atenuadas , Vacunas de Partículas Similares a Virus/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/inmunología
7.
Cell Rep ; 24(10): 2723-2732.e4, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30184505

RESUMEN

Monoclonal antibodies (mAbs) with pan-ebolavirus cross-reactivity are highly desirable, but development of such mAbs is limited by a lack of a molecular understanding of cross-reactive epitopes. The antibody ADI-15878 was previously identified from a human survivor of Ebola virus Makona variant (EBOV/Mak) infection. This mAb demonstrated potent neutralizing activity against all known ebolaviruses and provided protection in rodent and ferret models against three ebolavirus species. Here, we describe the unliganded crystal structure of ADI-15878 as well as the cryo-EM structures of ADI-15878 in complex with the EBOV/Mak and Bundibugyo virus (BDBV) glycoproteins (GPs). ADI-15878 binds through an induced-fit mechanism by targeting highly conserved residues in the internal fusion loop (IFL), bridging across GP protomers via the heptad repeat 1 (HR1) region. Our structures provide a more complete description of the ebolavirus immunogenic landscape, as well as a molecular basis for how rare but potent antibodies target conserved filoviral fusion machinery.


Asunto(s)
Anticuerpos Neutralizantes/metabolismo , Ebolavirus/metabolismo , Filoviridae/metabolismo , Glicoproteínas/inmunología , Glicoproteínas/metabolismo , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Microscopía por Crioelectrón , Cristalografía , Ebolavirus/genética , Filoviridae/genética , Glicoproteínas/genética , Regiones Promotoras Genéticas/genética , Estructura Secundaria de Proteína
8.
mBio ; 9(5)2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206174

RESUMEN

Only one naturally occurring human antibody has been described thus far that is capable of potently neutralizing all five ebolaviruses. Here we present two crystal structures of this rare, pan-ebolavirus neutralizing human antibody in complex with Ebola virus and Bundibugyo virus glycoproteins (GPs), respectively. The structures delineate the key protein and glycan contacts for binding that are conserved across the ebolaviruses, explain the antibody's unique broad specificity and neutralization activity, and reveal the likely mechanism behind a known escape mutation in the fusion loop region of GP2. We found that the epitope of this antibody, ADI-15878, extends along the hydrophobic paddle of the fusion loop and then dips down into a highly conserved pocket beneath the N-terminal tail of GP2, a mode of recognition unlike any other antibody elicited against Ebola virus, and likely critical for its broad activity. The fold of Bundibugyo virus glycoprotein, not previously visualized, is similar to the fold of Ebola virus GP, and ADI-15878 binds to each virus's GP with a similar strategy and angle of attack. These findings will be useful in deployment of this antibody as a broad-spectrum therapeutic and in the design of immunogens that elicit the desired broadly neutralizing immune response against all members of the ebolavirus genus and filovirus family.IMPORTANCE There are five different members of the Ebolavirus genus. Provision of vaccines and treatments able to protect against any of the five ebolaviruses is an important goal of public health. Antibodies are a desired result of vaccines and can be delivered directly as therapeutics. Most antibodies, however, are effective against only one or two, not all, of these pathogens. Only one human antibody has been thus far described to neutralize all five ebolaviruses, antibody ADI-15878. Here we describe the molecular structure of ADI-15878 bound to the relevant target proteins of Ebola virus and Bundibugyo virus. We explain how it achieves its rare breadth of activity and propose strategies to design improved vaccines capable of eliciting more antibodies like ADI-15878.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Epítopos/inmunología , Humanos , Conformación Proteica , Proteínas del Envoltorio Viral/inmunología
9.
Acta Pharm Sin B ; 8(2): 200-208, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29719780

RESUMEN

Filoviruses cause severe and fatal viral hemorrhagic fever in humans. Filovirus research has been extensive since the 2014 Ebola outbreak. Due to their high pathogenicity and mortality, live filoviruses require Biosafety Level-4 (BSL-4) facilities, which have restricted the development of anti-filovirus vaccines and drugs. An HIV-based pseudovirus cell infection assay is widely used for viral entry studies in BSL-2 conditions. Here, we successfully constructed nine in vitro pseudo-filovirus models covering all filovirus genera and three in vivo pseudo-filovirus-infection mouse models using Ebola virus, Marburg virus, and Lloviu virus as representative viruses. The pseudo-filovirus-infected mice showed visualizing bioluminescence in a dose-dependent manner. A bioluminescence peak in mice was reached on day 5 post-infection for Ebola virus and Marburg virus and on day 4 post-infection for Lloviu virus. Two known filovirus entry inhibitors, clomiphene and toremiphene, were used to validate the model. Collectively, our study shows that all genera of filoviruses can be well-pseudotyped and are infectious in vitro. The pseudo-filovirus-infection mouse models can be used for in vivo activity evaluation of anti-filovirus drugs. This sequential in vitro and in vivo evaluation system of filovirus entry inhibitors provides a secure and efficient platform for screening and assessing anti-filovirus agents in BSL-2 facilities.

10.
Emerg Infect Dis ; 24(1): 114-117, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29260678

RESUMEN

To determine whether fruit bats in Singapore have been exposed to filoviruses, we screened 409 serum samples from bats of 3 species by using a multiplex assay that detects antibodies against filoviruses. Positive samples reacted with glycoproteins from Bundibugyo, Ebola, and Sudan viruses, indicating filovirus circulation among bats in Southeast Asia.


Asunto(s)
Quirópteros/sangre , Quirópteros/virología , Ebolavirus , Marburgvirus , Proteínas del Envoltorio Viral/sangre , Animales , Glicoproteínas/sangre , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Estudios Seroepidemiológicos , Singapur/epidemiología
11.
J Infect Dis ; 215(1): 64-69, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27226206

RESUMEN

Here we describe clinicopathologic features of Ebola virus disease in pregnancy. One woman infected with Sudan virus in Gulu, Uganda, in 2000 had a stillbirth and survived, and another woman infected with Bundibugyo virus had a live birth with maternal and infant death in Isiro, the Democratic Republic of the Congo in 2012. Ebolavirus antigen was seen in the syncytiotrophoblast and placental maternal mononuclear cells by immunohistochemical analysis, and no antigen was seen in fetal placental stromal cells or fetal organs. In the Gulu case, ebolavirus antigen localized to malarial parasite pigment-laden macrophages. These data suggest that trophoblast infection may be a mechanism of transplacental ebolavirus transmission.


Asunto(s)
Ebolavirus/aislamiento & purificación , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Complicaciones Infecciosas del Embarazo/patología , Complicaciones Infecciosas del Embarazo/virología , Adulto , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Antígenos Virales/aislamiento & purificación , República Democrática del Congo , Ebolavirus/química , Ebolavirus/genética , Ebolavirus/inmunología , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/transmisión , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Inmunohistoquímica , Macrófagos/parasitología , Macrófagos/ultraestructura , Macrófagos/virología , Malaria/complicaciones , Malaria/inmunología , Malaria/virología , Microscopía Electrónica de Transmisión , Placenta/ultraestructura , Placenta/virología , Reacción en Cadena de la Polimerasa , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/parasitología , Mortinato , Células del Estroma/ultraestructura , Células del Estroma/virología , Trofoblastos/parasitología , Trofoblastos/ultraestructura , Trofoblastos/virología
12.
Virology ; 502: 39-47, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27984785

RESUMEN

Ebolaviruses are emerging pathogens that cause severe and often fatal viral hemorrhagic fevers. Four distinct ebolaviruses are known to cause Ebola virus disease in humans. The ebolavirus envelope glycoprotein (GP1,2) is heavily glycosylated, but the precise glycosylation patterns of ebolaviruses are largely unknown. Here we demonstrate that approximately 50 different N-glycan structures are present in GP1,2 derived from the four pathogenic ebolaviruses, including high mannose, hybrid, and bi-, tri-, and tetra-antennary complex glycans with and without fucose and sialic acid. The overall N-glycan composition is similar between the different ebolavirus GP1,2s. In contrast, the amount and type of O-glycan structures varies widely between ebolavirus GP1,2s. Notably, this O-glycan dissimilarity is also present between two variants of Ebola virus, the original Yambuku variant and the Makona variant responsible for the most recent Western African epidemic. The data presented here should serve as the foundation for future ebolaviral entry and immunogenicity studies.


Asunto(s)
Ebolavirus/metabolismo , Fiebre Hemorrágica Ebola/virología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismo , Secuencias de Aminoácidos , Ebolavirus/química , Ebolavirus/clasificación , Ebolavirus/genética , Glicosilación , Humanos , Polisacáridos/metabolismo , Proteínas del Envoltorio Viral/genética
13.
Virus Res ; 176(1-2): 83-90, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23702199

RESUMEN

Filoviruses (viruses in the genus Ebolavirus and Marburgvirus in the family Filoviridae) cause severe haemorrhagic fever in humans and nonhuman primates. Rapid, highly sensitive, and reliable filovirus-specific assays are required for diagnostics and outbreak control. Characterisation of antigenic sites in viral proteins can aid in the development of viral antigen detection assays such immunochromatography-based rapid diagnosis. We generated a panel of mouse monoclonal antibodies (mAbs) to the nucleoprotein (NP) of Ebola virus belonging to the species Zaire ebolavirus. The mAbs were divided into seven groups based on the profiles of their specificity and cross-reactivity to other species in the Ebolavirus genus. Using synthetic peptides corresponding to the Ebola virus NP sequence, the mAb binding sites were mapped to seven antigenic regions in the C-terminal half of the NP, including two highly conserved regions among all five Ebolavirus species currently known. Furthermore, we successfully produced species-specific rabbit antisera to synthetic peptides predicted to represent unique filovirus B-cell epitopes. Our data provide useful information for the development of Ebola virus antigen detection assays.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Epítopos/inmunología , Nucleoproteínas/inmunología , Proteínas del Núcleo Viral/inmunología , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Secuencia Conservada , Reacciones Cruzadas , Ebolavirus/genética , Mapeo Epitopo , Epítopos/genética , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside , Nucleoproteínas/genética , Conejos , Proteínas del Núcleo Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...