Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Neuroscience ; 560: 20-35, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293731

RESUMEN

Binge eating disorder is the most prevalent eating disorder, affecting both sexes but more commonly found in women. Given the frequent co-occurrence of psychiatric disorders, this study aimed to establish a standardized experimental intermittent protocol to investigate overeating associated with depression. A 10-day protocol induced uncontrolled eating behavior in C57BL/6J female mice. The first experiment included the following groups: naive group (chow ad libitum), control group (chow and sucrose solution ad libitum), and fasting groups (16 and 20 h) exposed to an intermittent sucrose solution (10 %) and chow regimen. Subsequently, the feeding test, open field test, elevated plus maze test, tail suspension test, and light/dark conflict test were conducted. Furthermore, monoamine oxidase (MAO) A and B activities in brain structures and plasma corticosterone levels were assessed. Food overconsumption and depressive-like behavior were observed in both sucrose fasting groups, while risk-taking behaviors were specifically observed in the 20-hour fasting sucrose group. While both fasting sucrose groups caused reduced hippocampal MAO-A activity, only the F20 sucrose group inhibited MAO-B in the cortex and hypothalamus. Moreover, both fasting sucrose groups exhibited elevated corticosterone levels. In a separate design (Experiment 2), groups with 16 and 20 h of fasting alone (without sucrose) did not show the same behavioral results as the intermittent fasting sucrose groups, thus avoiding fasting bias. Based on these results, the 20-hour sucrose fasting group was chosen as the ideal protocol for mimicking overeating behavior associated with depression to investigate future therapeutic approaches for this comorbidity.

2.
Front Microbiol ; 15: 1441495, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39296289

RESUMEN

Introduction: The severity of Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is often dictated by a range of comorbidities. A considerable literature suggests iron deficiency and iron overload may contribute to increased infection, inflammation and disease severity, although direct causal relationships have been difficult to establish. Methods: Here we generate iron deficient and iron loaded C57BL/6 J mice by feeding standard low and high iron diets, with mice on a normal iron diet representing controls. All mice were infected with a primary SARS-CoV-2 omicron XBB isolate and lung inflammatory responses were analyzed by histology, immunohistochemistry and RNA-Seq. Results: Compared with controls, iron deficient mice showed no significant changes in lung viral loads or histopathology, whereas, iron loaded mice showed slightly, but significantly, reduced lung viral loads and histopathology. Transcriptional changes were modest, but illustrated widespread dysregulation of inflammation signatures for both iron deficient vs. controls, and iron loaded vs. controls. Some of these changes could be associated with detrimental outcomes, whereas others would be viewed as beneficial. Discussion: Diet-associated iron deficiency or overload thus induced modest modulations of inflammatory signatures, but no significant histopathologically detectable disease exacerbations.

3.
Int Immunopharmacol ; 140: 112924, 2024 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-39133958

RESUMEN

Staphylococcus aureus (SA) is a common Gram-positive bacterium that activates inflammatory cells, expressing various cytokines and inducing an inflammatory response. Recent research revealed aconitate decarboxylase 1 (ACOD1) as a regulator of the immune response through various metabolic pathways, playing a dual role in the inflammatory response. However, the mechanism by which ACOD1 participates in the regulation of SA-induced inflammatory responses in macrophages remains unknown. Therefore, this study aims to investigate the function and underlying regulatory mechanisms of ACOD1 in SA-induced inflammatory response. This study reveals that SA induced a macrophage inflammatory response and upregulated ACOD1 expression. ACOD1 knockdown significantly inhibited SA-induced macrophage inflammatory response, attenuated SA-induced nuclear envelope wrinkling, and plasma membrane rupture, and suppressed the TLR4/NF-κB signaling pathway. Furthermore, ACOD1 knockdown reduced the inflammatory response and alleviated lung tissue injury and cellular damage, leading to decreased bacterial loads in the lungs of SA-infected mice. Collectively, these findings demonstrate that SA induces an inflammatory response in macrophages and increases ACOD1 expression. ACOD1 enhances SA-induced inflammatory responses via the TLR4/NF-κB signaling pathway. Our findings highlight the significant role of ACOD1 in mediating the inflammatory response in SA-infected macrophages and elucidate its molecular mechanism in regulating the SA-induced inflammatory response.


Asunto(s)
Carboxiliasas , Macrófagos , Transducción de Señal , Infecciones Estafilocócicas , Staphylococcus aureus , Animales , Humanos , Ratones , Carboxiliasas/metabolismo , Carboxiliasas/genética , Inflamación/inmunología , Inflamación/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/microbiología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética
4.
Int Immunopharmacol ; 138: 112593, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38972210

RESUMEN

In lab settings, inbred mouse strains like BALB/c, C57BL/6J, and C57BL/6N are commonly used. Research in immunology and infectious diseases indicates that their Th1 and Th2 immune responses differ. However, the specific differences in the immune response to the vaccination still require investigation. In this study, ovalbumin (OVA) was used as an antigen and CpG-enriched recombinant plasmid (pUC18-CpG) as an adjuvant for immunisation. The level of serum-specific antibody IgG was detected by indirect ELISA. At 35dpi, serum cytokine levels were measured using MILLIPLEX®. T lymphocyte clusters from mouse spleen were examined using flow cytometry to investigate the immunological effects of the CPG-OVA vaccine on three different types of mice. The results showed that pUC18-CpG as an adjuvant could successfully enhance the immune response. BALB/c had the highest level of IgG antibody. In the OVA-only group, the CD4+/CD8+ ratio of the three types of mice was generally increased, and the BALB/c group had the highest ratio. After inoculation with CpG-OVA, the CD4+/CD8+ ratio of the three types of mice was lower than that of the OVA-only group, and C57BL/6J was the lowest. Compared with the CpG-OVA group of the three kinds of mice, the levels of Th2 cytokines IL-6 and IL-10 in BALB/c were increased compared with C57BL/6J and C57BL/6N. After OVA, the six cytokines secreted in C57BL/6J were higher than those in the C57BL/6N OVA group. Therefore, C57 is a better model for examining the function of the vaccine in cellular immunity, whereas BALB/c mice are more prone to humoral immunity. In addition to highlighting the CpG plasmid's ability to successfully activate the immune response of Th1 and Th2, as well as the expression of IgG in vivo and promote T cell immune typing, this study provides valuable insights into immunology and the selection of mouse models for infectious diseases, providing a valuable resource for designing more effective vaccines in the future.


Asunto(s)
Adyuvantes Inmunológicos , Citocinas , Inmunidad Celular , Inmunidad Humoral , Inmunoglobulina G , Animales , Femenino , Ratones , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/farmacología , Citocinas/metabolismo , Inmunidad Celular/efectos de los fármacos , Inmunidad Humoral/efectos de los fármacos , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/administración & dosificación , Oligodesoxirribonucleótidos/inmunología , Ovalbúmina , Células Th2/inmunología
5.
J Nutr ; 154(9): 2752-2762, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053605

RESUMEN

BACKGROUND: Obesity and consumption of high-fat diets (HFD) are associated with intestinal permeabilization and increased paracellular transport of endotoxins, which can promote neuroinflammation. Inflammation can affect the hypothalamic pituitary adrenal (HPA) axis, which controls responses to stress and downregulates the brain-derived neurotrophic factor (BDNF), which can promote anxiety and depression, conditions frequently found in obesity. We previously showed that consumption of anthocyanins (AC) mitigate HFD-induced insulin resistance, intestinal permeability, and inflammation. OBJECTIVES: This study investigated if a dietary supplementation with a cyanidin- and delphinidin-rich extract (CDRE) could counteract HFD/obesity-induced hippocampal inflammation in mice. METHODS: C57BL/6J male mice were fed for 14 wk on one of the following diets: 1) a control diet containing 10% total calories from fat (C), 2) a control diet supplemented with 40 mg AC/kg body weight (BW) (CAC), 3) a HFD containing 60% total calories from fat (lard) (HF), or 4) the HFD supplemented with 2, 20, or 40 mg AC/kg BW (HFA2, HFA20, and HFA40, respectively). In plasma and in the hippocampus, parameters of neuroinflammation and the underlying cause (endotoxemia) and consequences (alterations to the HPA and BDNF downregulation) were measured. RESULTS: Consumption of the HFD caused endotoxemia. Accordingly, hippocampal Tlr4 mRNA levels were 110% higher in the HF group, which were both prevented by CDRE supplementation. Consumption of the HFD also caused: 1) microgliosis and increased expression of genes involved in neuroinflammation, that is, Iba-1, Nox4, Tnfα, and Il-1ß, 2) alterations of HPA axis regulation, that is, with low expression of mineralocorticoid (MR) and glucocorticoid (GR) receptors; and 3) decreased Bdnf expression. Supplementation of HFD-fed mice with CDRE mitigated neuroinflammation, microgliosis, and MR and BDNF decreases. CONCLUSIONS: CDRE supplementation mitigates the negative effects associated with HFD consumption and obesity in mouse hippocampus, in part by decreasing inflammation, improving glucocorticoid metabolism, and upregulating BDNF.


Asunto(s)
Antocianinas , Dieta Alta en Grasa , Hipocampo , Inflamación , Ratones Endogámicos C57BL , Animales , Antocianinas/farmacología , Dieta Alta en Grasa/efectos adversos , Masculino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Ratones , Inflamación/prevención & control , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Obesidad , Suplementos Dietéticos
6.
In Vivo ; 38(4): 1758-1766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38936916

RESUMEN

BACKGROUND/AIM: The leaves of Laurus nobilis have been used for culinary purposes for many years and have recently been shown to have beneficial effects on human health by altering microbiota composition. However, the effects of L. nobilis on the diversity of microbiomes in the oral cavity and gut remain unknown. Therefore, in this study, we examined the effects of an extract of L. nobilis on the diversity of microbiomes in the oral cavity and gut in mice. MATERIALS AND METHODS: C57BL/6J mice were randomly divided into two groups and fed a standard diet (SD) and a standard diet containing 5% LAURESH®, a laurel extract (SDL). After 10 weeks, oral swabs and fecal samples were collected. The bacterial DNA extracted from the oral swabs and feces was used for microbiota analysis using 16S rRNA sequencing. The sequencing data were analyzed using the Quantitative Insights into Microbial Ecology 2 in the DADA2 pipeline and 16S rRNA database. RESULTS: The α-diversity of the oral microbiome was significantly greater in the SDL group than in the SD group. The ß-diversity of the oral microbiome was also significantly different between the groups. Moreover, the taxonomic abundance analysis showed that five bacteria in the gut were significantly different among the groups. Furthermore, the SDL diet increased the abundance of beneficial gut bacteria, such as Akkermansia sp. CONCLUSION: Increased diversity of the oral microbiome and proportion of Akkermansia sp. in the gut microbiome induced by L. nobilis consumption may benefit oral and gut health.


Asunto(s)
Microbioma Gastrointestinal , Laurus , Boca , Extractos Vegetales , Hojas de la Planta , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Hojas de la Planta/química , Ratones , Extractos Vegetales/farmacología , Laurus/química , ARN Ribosómico 16S/genética , Boca/microbiología , Biodiversidad , Heces/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/aislamiento & purificación , Masculino , Ratones Endogámicos C57BL
7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 595-602, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660872

RESUMEN

OBJECTIVE: To explore the stimulation conditions, optimal culture time and infection time of C57BL/6J mice CD3+ T cells in vitro, so as to improve the infection efficiency of CD19 chimeric antigen receptor T cells (mCD19 CAR-T). METHODS: Purified C57BL/6J mice CD3+ T cells were cultured in anti-CD3/CD28 coated, anti-CD3 coated+soluble anti-CD28 and anti-CD3 coated, respectively. The cells were stimulated in above three conditions for 12 h and 24 h, following with 24 h, 48 h and 72 h incubation and then the number of cell clones was recorded. C57BL/6J mice CD3+ T cells were stimulated for 12 h, 24 h, and 36 h under the above three conditions, then interleukin (IL)-2 (100 U/ml) was added. The number of cell clones was recorded under microscope at 24 h, 48 h, and 72 h of culture. After 24 h of stimulation, CD3+ T cells derived from C57BL/6J mice were infected with retrovirus for 48 h to establish mCD19 CAR-T cells, and the percentage of GFP+ CAR-T cells was detected by flow cytometry. RESULTS: The infection efficiency of mCD19 CAR-T cells derived from C57BL/6J mice was only 5.23% under the optimized conditions of mCD19 CAR-T cells derived from BALB/c mice. The number of clones of C57BL/6J mice CD3+ T cells was the highest in anti-CD3 coated+soluble anti-CD28 group after stimulated for 24 h and followed cultured for 48 h. After 24 hours of stimulation under the above conditions and 48 hours of culture with IL-2, the number of T cell proliferating clones in the anti-CD3 coated+soluble anti-CD28 group was significantly increased compared with the same group without IL-2, and the infection efficiency of CAR-T cells in this group reached 17.63%±4.17%. CONCLUSION: The optimal conditions for constructing CAR-T cells from C57BL/6J mice CD3+ T cells are different from those of BABL/c mice. T cells stimulated by anti-CD3 coated+soluble anti-CD28+IL-2 can obtain mCD19 CAR-T cells with the highest efficiency after retrovirus infection.


Asunto(s)
Antígenos CD19 , Ratones Endogámicos C57BL , Receptores Quiméricos de Antígenos , Linfocitos T , Animales , Ratones , Linfocitos T/inmunología , Interleucina-2 , Complejo CD3 , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Antígenos CD28 , Retroviridae
8.
Heliyon ; 10(5): e26914, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38434421

RESUMEN

Background: Previous studies have shown that the traditional Chinese medicine (TCM) called "compound healthy ear agent" (CHEA) had anti-apoptosis effects in cochlear hair cells and spiral ganglion neurons, and could protect mice hearing against presbycusis or age-related hearing loss (AHL), as well as aminoglycoside antibiotic-induced ototoxicity. Because its mechanisms of action are still unclear, we investigated the mechanism of action of CHEA against AHL in mice using proteomics techniques. Methods: Eighteen C57BL/6J mice at 1 month of age were randomly divided into three groups: (A) drinking water until 2 months of age, K2M); (B) drinking water until 7 months of age to induce AHL, K7M; (C) drinking water containing CHEA daily until 7 months of age as treatment group, Z7M. At 2 or 7 months mice were sacrificed and their cochleae were removed for proteomics analysis. Results: The numbers of proteins with a false discovery rate (FDR) < 1% were respectively 5873 for qualitative and 5492 for quantitative statistics. The numbers of proteins with differential enrichment at least 1.5-fold (p < 0.05) were respectively 351 for K7M vs K2M groups, 52 for Z7M vs K7M groups, 264 for Z7M vs K2M groups. The differentially expressed proteins in the Z7M group were involved in synaptic molecular transmission, energy metabolism, immune response, antioxidant defenses, and anti-apoptosis. Conclusion: The TCM CHEA played a protective role against AHL in mice by regulating the expression of specific proteins and genes in cochlear hair cells and spiral ganglion neurons. Besides the pathways expected to be involved (antioxidant and anti-apoptosis), proteins related to immune response is a new finding of the present study.

9.
Front Behav Neurosci ; 18: 1270159, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487348

RESUMEN

The IntelliCage (IC) permits the assessment of the behavior and learning abilities of mice in a social home cage context. To overcome water deprivation as an aversive driver of learning, we developed protocols in which spatial learning is motivated appetitively by the preference of mice for sweetened over plain water. While plain water is available at all times, only correct task responses give access to sweetened water rewards. Under these conditions, C57BL/6J mice successfully mastered a corner preference task with the reversal and also learned a more difficult time-place task with reversal. However, the rate of responding to sweetened water decreased strongly with increasing task difficulty, indicating that learning challenges and reduced success in obtaining rewards decreased the motivation of the animals to seek sweetened water. While C57BL/6J mice of both sexes showed similar initial taste preferences and learned similarly well in simple learning tasks, the rate of responding to sweetened water and performance dropped more rapidly in male than in female mice in response to increasing learning challenges. Taken together, our data indicate that male mice can have a disadvantage relative to females in mastering difficult, appetitively motivated learning tasks, likely due to sex differences in value-based decision-making.

10.
BMC Pharmacol Toxicol ; 25(1): 15, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317260

RESUMEN

BACKGROUND: Zinc Gluconate (ZG) is a safe and effective supplement for zinc. However, there is limited research on the optimal dosage for intravenous injection and the safety evaluation of animal models for ZG. This study aims to determine the safe dose range of ZG for intravenous injection in C57BL/6J mice. METHODS: A Dose titration experiment was conducted to determine the LD50 and 95% confidence interval (95%CI) of ZG in mice. Based on the LD50, four sub-lethal doses (SLD) of ZG were evaluated. Following three injections of each SLD and monitoring for seven days, serum zinc levels were measured, and pathological changes in the liver, kidney, and spleen tissues of mice were determined by histological staining. RESULTS: The dose titration experiment determined the LD50 of ZG in mice to be 39.6 mg/kg, with a 95%CI of 31.8-49.3 mg/kg. There was a statistically significant difference in the overall serum zinc levels (H = 36.912, P < 0.001) following SLD administration. Pairwise comparisons showed that the serum zinc levels of the 1/2 LD50 and 3/4 LD50 groups were significantly higher than those of the control group (P < 0.001); the serum zinc level of the 3/4 LD50 group was significantly higher than those of the 1/8 LD50 and 1/4 LD50 groups (P < 0.05). There was a positive correlation between the different SLDs of ZG and the serum zinc levels in mice (rs = 0.973, P < 0.001). H&E staining showed no significant histological abnormalities or lesions in the liver, kidney, and spleen tissues of mice in all experimental groups. CONCLUSION: The appropriate dose range of ZG for intravenous injection in C57BL/6J mice was clarified, providing a reference for future experimental research.


Asunto(s)
Gluconatos , Riñón , Zinc , Ratones , Animales , Ratones Endogámicos C57BL , Dosificación Letal Mediana , Zinc/toxicidad
11.
Microb Pathog ; 186: 106506, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128702

RESUMEN

Equid herpesvirus type 8 (EqHV-8) is known to cause abortion, respiratory signs, and viral encephalitis in equines. EqHV-8 has been reported to cause serious economic losses in large-scale donkey farms in China. However, little is known about the viral replication and immune reaction in the brains and lungs of EqHV-8-induced C57BL/6J mice. We determined the pathogenicity and immune status in a mice model. The C57BL/6J mice were infected with the EqHV-8 donkey/Shandong/10/2021 strain, and the clinical signs and body weights were evaluated every day. In addition, viremia, virus loads, and the expression of pro-inflammatory cytokines in mice brains and lungs were assessed at 1, 3, 5, and 7 days post infection (dpi). Our results demonstrated that mice in the EqHV-8 infected group displayed body weight loss, dyspnea signs, and viremia. The expression of interleukin (IL)-1ß, interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6 mRNA was increased in the brains and lungs of EqHV-8-infected mice than that in control group at 5 dpi and 7 dpi, and IL-12a expression was increased at 7 dpi. These data indicated that EqHV-8 elicited a strong cytokines response, caused neurogenic disease and respiratory signs in C57BL/6J mice, thus revealing the pathogenicity of EqHV-8.


Asunto(s)
Citocinas , Viremia , Animales , Caballos , Ratones , Citocinas/metabolismo , Ratones Endogámicos C57BL , Virulencia , Factor de Necrosis Tumoral alfa , Equidae , Interleucina-1beta
12.
Front Neurosci ; 17: 1271744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027492

RESUMEN

Brain malformations cause cognitive disability and seizures in both human and animal models. Highly laminated structures such as the neocortex and cerebellum are vulnerable to malformation, affecting lamination and neuronal connectivity as well as causing heterotopia. The objective of the present study was to determine if sporadic neocortical and/or cerebellar malformations in C57BL/6J mice are correlated with reduced seizure threshold. The inhaled chemi-convulsant flurothyl was used to induce generalized, tonic-clonic seizures in male and female C57BL/6J mice, and the time to seizure onset was recorded as a functional correlate of brain excitability changes. Following seizures, mice were euthanized, and brains were extracted for histology. Cryosections of the neocortex and cerebellar vermis were stained and examined for the presence of molecular layer heterotopia as previously described in C57BL/6J mice. Over 60% of mice had neocortical and/or cerebellar heterotopia. No sex differences were observed in the prevalence of malformations. Significantly reduced seizure onset time was observed dependent on sex and the type of malformation present. These results raise important questions regarding the presence of malformations in C57BL/6J mice used in the study of brain development, epilepsy, and many other diseases of the nervous system.

13.
Environ Toxicol Pharmacol ; 104: 104286, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37805155

RESUMEN

We evaluated whether glyphosate promotes western diet (WD)-induced non-alcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed WD and received intragastrical glyphosate (0.05, 5 or 50 mg/kg) for 6 months. Glyphosate did not promote WD-induced obesity, hypercholesterolemia, glucose intolerance, hepatic steatosis, and fibrosis. Nonetheless, the higher dose (50 mg) enhanced hepatic CD68+ macrophage density, p65, TNF-α, and IL-6 protein levels. Furthermore, this dose decreased hepatic Nrf2 levels, while enhancing lipid peroxidation in the liver and adipose tissue. Hepatic transcriptome revealed that glyphosate at 50 mg upregulated 212 genes and downregulated 731 genes. Genes associated with oxidative stress and inflammation were upregulated, while key cell cycle-related genes were downregulated. Our results indicate that glyphosate exposure - in a dose within the toxicological limits - impairs hepatic inflammation/redox dynamics in a NAFLD microenvironment.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Dieta Occidental/efectos adversos , Ratones Endogámicos C57BL , Hígado , Inflamación/metabolismo , Dieta Alta en Grasa
14.
Microbiol Spectr ; : e0204223, 2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37615438

RESUMEN

Epstein-Barr virus (EBV) DNA may influence the development of autoimmune diseases by increasing the production of proinflammatory cytokines. Such cytokines have been associated with inducing the dysbiosis of colonic microbiota, which, in turn, is a risk factor for autoimmune diseases such as rheumatoid arthritis (RA). Therefore, we investigated the role that EBV DNA may play in modulating the intestinal microbiota and consequent exacerbation of arthritis in a mouse model. Mice were treated with collagen (arthritis-inducing agent), EBV DNA and collagen, EBV DNA, or water. Fecal samples were collected from arthritic and control mice, and 16S rRNA sequencing was performed to determine the effect of EBV DNA on the composition of colonic microbiota. EBV DNA causes a change in the alpha diversity of the microbiota resulting in an increased Chao1 microbial richness and decreased Shannon diversity index in the RA mouse model. In addition, the abundance of particular genera/genus clusters was significantly altered among the various groups, with the EBV DNA-exacerbated arthritic group having the highest number of altered genera/genus cluster abundances. This group also had the highest number of cells co-expressing IL-17A, FOXP3, and IFNγ in the colons. Antimicrobial-cleared mice transplanted with fecal samples from EBV DNA-exacerbated arthritic mice showed a higher incidence and enhanced severity of RA compared to those transplanted with fecal samples from water or collagen-treated mice. IMPORTANCE Epstein-Barr virus (EBV) DNA alters the composition and diversity of the gut microbiota in a rheumatoid arthritis (RA) mouse model. These induced changes are associated with enhanced severity of symptoms. This better understanding of the various factors involved in the development of RA will possibly help in creating individualized treatments for RA patients including target mediators triggered by viral DNA. Given that a large swathe of the population harbors EBV, a significant proportion of subjects with arthritis may benefit from possible approaches that target EBV or mediators triggered by this virus.

15.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445996

RESUMEN

This study aimed to design a novel mouse model of chronic photoaging. We used three different species of mice (C57BL/6J, ICR, and KM) to create a chronic photoaging model of the skin. The irradiation time was gradually increased for 40 consecutive days. The skins of the mice were removed on day 41 and subjected to staining to observe them for morphological changes. Immunohistochemistry was used to detect tumor necrosis factor-α (TNF-α) and p53 expression; superoxide dismutase (SOD) and malondialdehyde (MDA) were measured as well. Compared with C57BL/J mice, which showed hyperpigmentation, the irradiated skin of ICR and KM mice showed more obvious skin thickening and photoaging changes of the collagen and elastic fibers. KM mice had higher levels of inflammation, oxidative stress, and senescent cells. Compared with the 5-month-old KM mice, the photoaging changes of the 9-month-old KM mice were more pronounced, the SOD values were lower, and the MDA values were higher. In summary, KM mice have higher levels of abnormal elastic fibers, inflammation, cellular senescence, and oxidative stress than ICR mice, and are more suitable for studies related to chronic skin photoaging. C57BL/6J mice were found to be suitable for studies related to skin pigmentation due to photoaging.


Asunto(s)
Envejecimiento de la Piel , Ratones , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Piel/metabolismo , Superóxido Dismutasa/metabolismo , Rayos Ultravioleta/efectos adversos
16.
Heliyon ; 9(6): e16970, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37484286

RESUMEN

Many female mammals have recurring cycles of ovulation and sexual behaviors that are regulated by reproductive hormones and confer reproductive success. In addition to sexual behaviors, circadian behavioral rhythms of locomotor activity also fluctuate across the estrous cycle in rodents. Moreover, there is a bidirectional relationship between circadian rhythms and estrous cyclicity since mice with disrupted circadian rhythms also have compromised estrous cycles resulting in fewer pregnancies. In the present study, we assessed whether extending day length, which alters circadian rhythms, normalizes estrous cyclicity in mice. We found that Period (Per) 1/2/3 triple knockout (KO) mice, that have disabled canonical molecular circadian clocks, have markedly disrupted estrous cycles. Surprisingly, extending the day length by only 2 h per day restored regular 4- or 5-day estrous cycles to Per1/2/3 KO mice. Longer days also induced consistent 4-day, rather than 5-day, estrous cycles in wild-type C57BL/6J mice. These data demonstrate that extending daytime light exposure could be used for enhancing reproductive success.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37285928

RESUMEN

Diet-induced obesity mouse models are widely utilized to investigate the underlying mechanisms of dyslipidemia, glucose intolerance, insulin resistance, hepatic steatosis, and type 2 diabetes mellitus (T2DM), as well as for screening potential drug compounds. However, there is limited knowledge regarding specific signature lipids that accurately reflect dietary disorders. In this study, we aimed to identify key lipid signatures using LC/MS-based untargeted lipidomics in the plasma, liver, adipose tissue (AT), and skeletal muscle tissues (SKM) of male C57BL/6J mice that were fed chow, LFD, or obesogenic diets (HFD, HFHF, and HFCD) for a duration of 20 weeks. Furthermore, we conducted a comprehensive lipid analysis to assess similarities and differences with human lipid profiles. The mice fed obesogenic diets exhibited weight gain, glucose intolerance, elevated BMI, glucose and insulin levels, and a fatty liver, resembling characteristics of T2DM and obesity in humans. In total, we identified approximately 368 lipids in plasma, 433 in the liver, 493 in AT, and 624 in SKM. Glycerolipids displayed distinct patterns across the tissues, differing from human findings. However, changes in sphingolipids, phospholipids, and the expression of inflammatory and fibrotic genes showed similarities to reported human findings. Significantly modulated pathways in the obesogenic diet-fed groups included ceramide de novo synthesis, sphingolipid remodeling, and the carboxylesterase pathway, while lipoprotein-mediated pathways were minimally affected. This study provides a tissue-specific comparison of lipid composition, highlighting the usefulness of DIO models in preclinical research. However, caution is warranted when extrapolating findings from these models to dyslipidemia-associated pathologies and their complications in humans.


Asunto(s)
Diabetes Mellitus Tipo 2 , Dislipidemias , Hígado Graso , Intolerancia a la Glucosa , Humanos , Masculino , Ratones , Animales , Intolerancia a la Glucosa/complicaciones , Intolerancia a la Glucosa/prevención & control , Insulina , Diabetes Mellitus Tipo 2/complicaciones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Dieta , Hígado Graso/metabolismo , Fosfolípidos/metabolismo , Esfingolípidos , Dislipidemias/complicaciones
18.
Brain Res ; 1814: 148441, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37271490

RESUMEN

40 Hz light flicker can activate multiple brain regions of wild-type mice. However, there are no systematic studies on the behavioral effects of 40 Hz light flicker on wild-type mice. Adult wild-type C57BL/6J mice were treated with 40 Hz light flicker (200 lx, 40 Hz, 1 h/day for 3 weeks) to evaluate its effects on several behaviors, including mood, locomotor activity, memory, social interaction, mechanical pain, and sense of smell. In the open field test, the elevated zero-maze test, forced swimming test, and tail suspension test, 40 Hz mice showed no anxiety and depression-like behaviors. In the rotarod test, no differences were found between the anti-fatigue ability and motor coordination ability. In memory-related tests, 40 Hz mice showed the short-term cognitive enhancement in the novel object recognition test. Interestingly, 40 Hz mice showed no enhanced the long-term memory performance in the contextual fear conditioning test, and tone-cued fear conditioning test. Besides, 40 Hz mice increased their exploration of social cues that were unfamiliar to them and differed significantly from their own experiences. In terms of sensory abilities, 40 Hz mice had unchanged pain sensitivity in the von Frey fiber test and significant enhancement in the olfactory ability in the food-seeking test. In conclusion, this 40 Hz light stimulation paradigm has high safety and can improve the specific behavioral ability, which provides a theoretical basis for the future use of 40 Hz light flicker as a disease prevention or treatment method.


Asunto(s)
Conducta Animal , Actividad Motora , Ratones , Animales , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Miedo/psicología , Aprendizaje por Laberinto/fisiología , Dolor
19.
Biomedicines ; 11(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37189686

RESUMEN

Depression is a medical and social problem. Multiple metabolites and neuroinflammation regulate it. Modifying the gut microbiota with probiotics to reduce depression through the gut-brain axis is a potential treatment strategy. In this study, three anti-depressive potentials of Lactobacillus spp. (LAB), including L. rhamnosus GMNL-74, L. acidophilus GMNL-185 and L. plantarum GMNL-141, which combined to produce low dosage LAB (1.6 × 108 CFU/mouse, LABL) and high dosage LAB (4.8 × 108 CFU/mouse, LABH), were administered to C57BL/6 mice induced depression by ampicillin (Amp). A behavioral test of depression, 16S ribosomal RNA gene amplicon sequencing, bioinformatic analysis, and short-chain fatty acid (SCFA) content measurement were executed to investigate the gut microbiota composition, activation of nutrient metabolism pathways, levels of inflammatory factors, gut-derived 5-HT biosynthesis genes, and SCFA levels in C57BL/6 mice. Results showed that after mice were induced by Amp, both LAB groups recovered from depressive behaviors, decreased the abundance of Firmicutes, and increased the abundance of Actinobacteria and Bacteroidetes in the mouse ileum. The prediction of metabolism pathways of microbes revealed the activation of arginine and proline metabolism, cyanoamino acid metabolism, and nicotinate and nicotinamide metabolism were increased, and fatty acid synthesis was decreased in both LAB groups. The LABH groups showed increased levels of acetic acid, propanoic acid, and iso-butyric acid and decreased butyric acid levels in the cecum. LABH treatment increased claudin-5 and reduced IL-6 mRNA expression. Both LAB groups also reduced monoamine oxidase, and the LABH group increased vascular endothelial growth factor mRNA expression. These results showed that the composite of three LAB exerts antidepressant effects by regulating the gut microbiota and modifying the levels of depression-related metabolites in C57BL/6J Amp-treated mice.

20.
J Toxicol Pathol ; 36(2): 123-129, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37101963

RESUMEN

Diphenylarsinic acid (DPAA), a neurotoxic organic arsenical, is present in groundwater and soil in some regions of Japan owing to illegal dumping. The present study evaluated the potential carcinogenicity of DPAA, including investigating whether bile duct hyperplasia in the liver that was observed in a chronic study on 52 week mouse, develops into a tumor when administered to mice in their drinking water for 78 weeks. DPAA was administered to 4 groups of male and female C57BL/6J mice at concentrations of 0, 6.25, 12.5, and 25 ppm in drinking water for 78 weeks. A significant decrease in the survival rate was found for females in the 25 ppm DPAA group. Body weights of males in the 25 ppm and females in the 12.5 and 25 ppm DPAA groups were significantly lower than those of the controls. Histopathological evaluation of neoplasms in all tissues showed no significant increase in tumor incidence in any organ or tissue of 6.25, 12.5, or 25 ppm DPAA-treated male or female mice. In conclusion, the present study demonstrated that DPAA is not carcinogenic to male or female C57BL/6J mice. Taken together with the fact that the toxic effect of DPAA is predominantly restricted to the central nervous system in humans, and the finding that DPAA was not carcinogenic in a previous 104-week rat carcinogenicity study, our results suggest that DPAA is unlikely to be carcinogenic in humans.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...