Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Expert Opin Ther Targets ; : 1-9, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235181

RESUMEN

INTRODUCTION: The bone marrow microenvironment (BME) is critical for healthy hematopoiesis and is often disrupted in hematologic malignancies. Tumor-associated macrophages (TAMs) are a major cell type in the tumor microenvironment (TME) and play a significant role in tumor growth and progression. Targeting TAMs and modulating their polarization is a promising strategy for cancer therapy. AREAS COVERED: In this review, we discuss the importance of TME and different multiple possible targets to modulate immunosuppressive TAMs such as: CD123, Sphingosine 1-Phosphate Receptors, CD19/CD1d, CCR4/CCL22, CSF1R (CD115), CD24, CD40, B7 family proteins, MARCO, CD47, CD163, CD204, CD206 and folate receptors. EXPERT OPINION: Innovative approaches to combat the immunosuppressive milieu of the tumor microenvironment in hematologic malignancies are of high clinical significance and may lead to increased survival, improved quality of life, and decreased toxicity of cancer therapies. Standard procedures will likely involve a combination of CAR T/NK-cell therapies with other treatments, leading to more comprehensive cancer care.

2.
Rinsho Ketsueki ; 65(7): 668-675, 2024.
Artículo en Japonés | MEDLINE | ID: mdl-39098018

RESUMEN

Chimeric antigen receptor-transduced autologous T (CAR-T) cell therapy targeting CD19 has revolutionized the treatment of CD19-positive hematological tumors, including acute lymphoblastic leukemia and large B-cell lymphoma. However, despite the high response rate, many problems such as exceedingly high cost, complex logistics, insufficient speed, and manufacturing failures have become apparent. One solution for these problems is to use an allogeneic cell as an effector cell for genetic modification with CAR. Allogeneic, or "off-the-shelf", CAR-expressing immune-effector cells include 1) genome-edited, T-cell receptor (TCR) gene-deleted CAR-T cells generated using healthy adult donor T cells, 2) induced pluripotent stem cell-derived CAR-T cells, and 3) CAR NK cells. NK cells are notorious for their poor ex-vivo expansion and low susceptibility to genetic modification. In this article, I will review the current state and future prospects of allogeneic CAR cell therapies, with special reference to CAR NK cells.


Asunto(s)
Células Asesinas Naturales , Humanos , Células Asesinas Naturales/inmunología , Trasplante Homólogo , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos
3.
Cell Mol Immunol ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134804

RESUMEN

In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.

4.
Biomolecules ; 14(8)2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39199421

RESUMEN

The use of chimeric antigen receptor (CAR) in natural killer (NK) cells for cancer therapy is gaining momentum, marking a significant shift in cancer treatment. This review aims to explore the potential of CAR-NK cell therapy in cancer immunotherapy, providing a fresh perspective. It discusses the innovative approaches in CAR-NK cell design and engineering, particularly targeting refractory or recurrent cancers. By comparing CAR-NK cells with traditional therapies, the review highlights their unique ability to tackle tumor heterogeneity and immune system suppression. Additionally, it explains how novel cytokines and receptors can enhance CAR-NK cell efficacy, specificity, and functionality. This review underscores the advantages of CAR-NK cells, including reduced toxicity, lower cost, and broader accessibility compared to CAR-T cells, along with their potential in treating both blood cancers and solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Células Asesinas Naturales/inmunología , Neoplasias/terapia , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Animales
5.
Front Immunol ; 15: 1410519, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39192970

RESUMEN

Acute lymphoblastic leukemia (ALL) is a prevalent malignancy affecting the hematopoietic system, encompassing both B-cell ALL (B-ALL) and T-cell ALL (T-ALL). T-ALL, characterized by the proliferation of T-cell progenitors in the bone marrow, presents significant treatment challenges, with patients often experiencing high relapse rates and poor long-term survival despite advances in chemotherapy and hematopoietic stem cell transplantation (HSCT). This review explores the pathogenesis and traditional treatment strategies of T-ALL, emphasizing the promising potential of chimeric antigen receptor (CAR) technology in overcoming current therapeutic limitations. CAR therapy, leveraging genetically modified immune cells to target leukemia-specific antigens, offers a novel and precise approach to T-ALL treatment. The review critically analyzes recent developments in CAR-T and CAR-NK cell therapies, their common targets, optimization strategies, clinical outcomes, and the associated challenges, providing a comprehensive overview of their clinical prospects in T-ALL treatment.


Asunto(s)
Inmunoterapia Adoptiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/inmunología , Animales , Células Asesinas Naturales/inmunología , Linfocitos T/inmunología , Linfocitos T/trasplante , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/genética
6.
Front Immunol ; 15: 1440764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39192980

RESUMEN

Oral squamous cell carcinoma (OSCC), a major subtype of head and neck cancers, presents significant challenges due to its aggressive feature and limited therapeutic efficacy of conventional treatments. In response to these challenges, Natural Killer (NK) cells, a vital component of the innate immune system, are being explored for their therapeutic potential in OSCC due to their inherent ability to target and eliminate cancer cells without prior sensitization. This review uniquely focuses on the evolving role of NK cells specifically in OSCC, incorporating recent advancements in CAR-NK cell engineering and personalized therapy approaches that have not been comprehensively covered in previous reviews. The mechanisms through which NK cells exert cytotoxic effects on tumor cells include direct killing through the engagement of natural cytotoxic receptors and antibody-dependent cellular cytotoxicity (ADCC), making them promising agents in cancer immunotherapy. Additionally, the article explores recent advancements in engineering NK cells to enhance their antitumor activity, such as the modification with chimeric antigen receptors (CARs) to target specific tumor antigens. Clinical implications of NK cell-based therapies, including the challenges of integrating these treatments with existing protocols and the potential for personalized therapy, are examined. The review highlights the promise of NK cell therapies in improving outcomes for OSCC patients and outlines future directions for research in this dynamic field of oncological immunotherapy.


Asunto(s)
Células Asesinas Naturales , Neoplasias de la Boca , Humanos , Células Asesinas Naturales/inmunología , Neoplasias de la Boca/terapia , Neoplasias de la Boca/inmunología , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Animales , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia/métodos
7.
Front Immunol ; 15: 1412378, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114666

RESUMEN

Production of large amounts of functional NK and CAR-NK cells represents one of the bottlenecks for NK-based immunotherapy. In this study, we developed a large-scale, reliable, and practicable NK and CAR-NK production using G-Rex 100M bioreactors, which depend on a gas-permeable membrane technology. This system holds large volumes of medium with enhanced oxygen delivery, creating conditions conducive to large-scale PBNK and CAR-NK expansions for cancer therapy. Both peripheral blood NK cells (PBNKs) and CAR-NKs expanded in these bioreactors retained similar immunophenotypes and exhibited comparable cytotoxicity towards hepatocellular carcinoma (HCC) cells akin to that of NK and CAR-NK cells expanded in G-Rex 6 well bioreactors. Importantly, cryopreservation minimally affected the cytotoxicity of NK cells expanded using the G-Rex 100M bioreactors, establishing a robust platform for scaled-up NK and CAR-NK cell production. This method is promising for the development of "off-the-shelf" NK cells, supporting the future clinical implementation of NK cell immunotherapy.


Asunto(s)
Reactores Biológicos , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Células Asesinas Naturales/inmunología , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Técnicas de Cultivo de Célula/métodos , Citotoxicidad Inmunológica , Línea Celular Tumoral , Proliferación Celular , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia
8.
Cytotherapy ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970613

RESUMEN

Chimeric antigen receptor (CAR) engineering of natural killer (NK) cells has shown promising results in early-phase clinical studies. However, advancing CAR-NK cell therapeutic efficacy is imperative. In this study, we investigated the impact of a fourth-generation CD19-targeted CAR (CAR.19) coexpressing IL-27 on NK-92 cells. We observed a significant improvement in NK-92 cell proliferation and cytotoxicity activity against B-cell cancer cell lines, both in vitro and in a xenograft mouse B-cell lymphoma model. Our systematic transcriptome analysis of the activated NK-92 CAR variants further supports the potential of IL-27 in fourth-generation CARs to overcome limitations of NK cell-based targeted tumor therapies by providing essential growth and activation signals. Integrating IL-27 into CAR-NK cells emerges as a promising strategy to enhance their therapeutic potential and elicit robust responses against cancer cells. These findings contribute substantially to the mounting evidence supporting the potential of fourth-generation CAR engineering in advancing NK cell-based immunotherapies.

9.
Future Sci OA ; 10(1): 2340186, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39069888

RESUMEN

Aim: This study aimed to explore using peripheral blood mononuclear cell (PBMC)-derived chimeric antigen receptor (CAR) NK cells targeting ROBO1 as a personalized medicine approach for ovarian cancer. Methods: A two-step strategy generated ROBO1-targeted CAR NK cells from PBMCs of ovarian cancer patients. Efficacy was evaluated using xCELLigence RTCA, CCK-8 and Live/Dead fluorescence assays. Results: ROBO1-NK cells exhibited higher efficiency in eradicating primary ovarian cancer cells and lysing ovarian tumor organoids compared with primary NK cells without ROBO1-CAR modification. Conclusion: These findings highlight the potential of developing ROBO1-targeted CAR-NK cells from patients' PBMCs as a personalized treatment option for ovarian cancer.


Ovarian cancer represents a formidable clinical challenge necessitating the urgent exploration of novel therapeutic approaches. In this study, the focus was directed toward ROBO1, a molecule known to play a pivotal role in cancer angiogenesis and metastasis, while limited investigation in the context of ovarian cancer. Leveraging this knowledge, we sought to construct ROBO1-targeting chimeric antigen receptor natural killer (CAR-NK) cells utilizing peripheral blood mononuclear cells derived from the patients themselves. The overarching goal of this investigation was to harness the potential of immunotherapy using autologous resources to realize personalized treatment strategies for ovarian cancer in clinical settings.

10.
Front Immunol ; 15: 1414264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007146

RESUMEN

Chimeric antigen receptor T (CAR-T) cell therapy has revolutionized the treatment of hematological malignancies, demonstrably improving patient outcomes and prognosis. However, its application has introduced new challenges, such as safety concerns, off-target toxicities, and significant costs. Natural killer (NK) cells are crucial components of the innate immune system, capable of eliminating tumor cells without prior exposure to specific antigens or pre-activation. This inherent advantage complements the limitations of T cells, making CAR-NK cell therapy a promising avenue for hematological tumor immunotherapy. In recent years, preclinical and clinical studies have yielded preliminary evidence supporting the safety and efficacy of CAR-NK cell therapy in hematological malignancies, paving the way for future advancements in immunotherapy. This review aims to succinctly discuss the characteristics, significant therapeutic progress, and potential challenges associated with CAR-NK cell therapy.


Asunto(s)
Neoplasias Hematológicas , Inmunoterapia Adoptiva , Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Humanos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/inmunología , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Células Asesinas Naturales/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Animales
11.
Cell Stem Cell ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38986609

RESUMEN

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-ß) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-ß receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-ß receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-ß inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-ß activity. Our findings demonstrate that TGF-ß signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-ß.

12.
Cancers (Basel) ; 16(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38927974

RESUMEN

In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.

13.
Biomed Pharmacother ; 177: 117024, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941897

RESUMEN

Over the last decade, discovery of novel therapeutic method has been attention by the researchers and has changed the therapeutic perspective of hematological malignancies. Although NK cell play a pivotal role in the elimination of abnormal and cancerous cells, there are evidence that NK cell are disarm in hematological malignancy. Chimeric antigen receptor NK (CAR-NK) cell therapy, which includes the engineering of NK cells to detect tumor-specific antigens and, as a result, clear of cancerous cells, has created various clinical advantage for several human malignancies treatment. In the current review, we summarized NK cell dysfunction and CAR-NK cell based immunotherapy to treat AML patient.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Leucemia Mieloide Aguda , Receptores Quiméricos de Antígenos , Humanos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/inmunología , Células Asesinas Naturales/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Animales
14.
J Hematol Oncol ; 17(1): 40, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835055

RESUMEN

Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.


Asunto(s)
Inmunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/inmunología , Inmunoterapia/métodos , Microambiente Tumoral/inmunología , Vacunas contra el Cáncer/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales , Inmunoterapia Adoptiva/métodos
15.
Front Oncol ; 14: 1390006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863635

RESUMEN

Lung cancer remains one of the leading causes of cancer-related mortality worldwide necessitating the development of innovative therapeutic strategies. Chimeric antigen receptor (CAR) natural killer (NK) cell therapy represents a promising advancement in the field of oncology offering a novel approach to target and eliminate tumor cells with high specificity and reduced risk of immune-related adverse effects. This paper reviews the mechanism, potential targets, and recent advances in CAR-NK cell therapy for lung cancer, including the design and engineering of CAR-NK cells, preclinical studies, and the outcomes of early-phase clinical trials. We highlight the unique advantages of using NK cells, such as their innate ability to recognize and kill cancer cells and their reduced potential for inducing graft-versus-host disease (GvHD) and cytokine release syndrome (CRS) compared to CAR T-cell therapies. Results from recent studies demonstrate significant antitumor activity in lung cancer models with improved targeting and persistence of CAR-NK cells observed in vitro and in vivo. Finally, we discuss the challenges in optimizing CAR-NK cell therapies, including the potential resistance mechanisms. The paper concludes with an outlook on the future directions of CAR-NK cell research and its implications for lung cancer treatment emphasizing the importance of continued innovation and collaboration in the field.

16.
Biochemistry (Mosc) ; 89(5): 765-783, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880641

RESUMEN

Chimeric antigen receptors (CARs) are genetically engineered receptors that recognize antigens and activate signaling cascades in a cell. Signal recognition and transmission are mediated by the CAR domains derived from different proteins. T cells carrying CARs against tumor-associated antigens have been used in the development of the CAR T cell therapy, a new approach to fighting malignant neoplasms. Despite its high efficacy in the treatment of oncohematological diseases, CAR T cell therapy has a number of disadvantages that could be avoided by using other types of leukocytes as effector cells. CARs can be expressed in a wide range of cells of adaptive and innate immunity with the emergence or improvement of cytotoxic properties. This review discusses the features of CAR function in different types of immune cells, with a particular focus on the results of preclinical and clinical efficacy studies and the safety of potential CAR cell products.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Antígenos de Neoplasias/inmunología
17.
MedComm (2020) ; 5(7): e626, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38882209

RESUMEN

Natural killer (NK) cells, as innate lymphocytes, possess cytotoxic capabilities and engage target cells through a repertoire of activating and inhibitory receptors. Particularly, natural killer group 2, member D (NKG2D) receptor on NK cells recognizes stress-induced ligands-the MHC class I chain-related molecules A and B (MICA/B) presented on tumor cells and is key to trigger the cytolytic response of NK cells. However, tumors have developed sophisticated strategies to evade NK cell surveillance, which lead to failure of tumor immunotherapy. In this paper, we summarized these immune escaping strategies, including the downregulation of ligands for activating receptors, upregulation of ligands for inhibitory receptors, secretion of immunosuppressive compounds, and the development of apoptosis resistance. Then, we focus on recent advancements in NK cell immune therapies, which include engaging activating NK cell receptors, upregulating NKG2D ligand MICA/B expression, blocking inhibitory NK cell receptors, adoptive NK cell therapy, chimeric antigen receptor (CAR)-engineered NK cells (CAR-NK), and NKG2D CAR-T cells, especially several vaccines targeting MICA/B. This review will inspire the research in NK cell biology in tumor and provide significant hope for improving cancer treatment outcomes by harnessing the potent cytotoxic activity of NK cells.

18.
Int J Mol Sci ; 25(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38891957

RESUMEN

Lymphocyte collection by apheresis for CAR-T production usually does not include blood mobilized using granulocyte colony stimulating factor (G-CSF) due to the widespread knowledge that it causes a decrease in the number and functionality of lymphocytes. However, it is used for stem cell transplant, which is a common treatment for hematological malignancies. The growing demand for CAR therapies (CAR-T and NK-CAR), both in research and clinics, makes it necessary to evaluate whether mobilized PBSC products may be potential candidates for use in such therapies. This review collects recent works that experimentally verify the role and functionality of T and NK lymphocytes and the generation of CAR-T from apheresis after G-CSF mobilization. As discussed, T cells do not vary significantly in their phenotype, the ratio of CD4+ and CD8+ remains constant, and the different sub-populations remain stable. In addition, the expansion and proliferation rates are invariant regardless of mobilization with G-CSF as well as the secretion of proinflammatory cytokines and the cytotoxic ability. Therefore, cells mobilized before apheresis are postulated as a new alternative source of T cells for adoptive therapies that will serve to alleviate high demand, increase availability, and take advantage of the substantial number of existing cryopreserved products.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/metabolismo , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Movilización de Célula Madre Hematopoyética/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales
19.
Front Oncol ; 14: 1399544, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919533

RESUMEN

Recent years have seen a marked increase in research on chimeric antigen receptor T (CAR-T) cells, with specific relevance to the treatment of hematological malignancies. Here, the structural principles, iterative processes, and target selection of CAR-T cells for therapeutic applications are described in detail, as well as the challenges faced in the treatment of solid tumors and hematological malignancies. These challenges include insufficient infiltration of cells, off-target effects, cytokine release syndrome, and tumor lysis syndrome. In addition, directions in the iterative development of CAR-T cell therapy are discussed, including modifications of CAR-T cell structures, improvements in specificity using multi-targets and novel targets, the use of Boolean logic gates to minimize off-target effects and control toxicity, and the adoption of additional protection mechanisms to improve the durability of CAR-T cell treatment. This review provides ideas and strategies for the development of CAR-T cell therapy through an in-depth exploration of the underlying mechanisms of action of CAR-T cells and their potential for innovative modification.

20.
Biol Chem ; 405(7-8): 485-515, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-38766710

RESUMEN

Chimeric antigen receptor (CAR)-T cell therapy has led to remarkable clinical outcomes in the treatment of hematological malignancies. However, challenges remain, such as limited infiltration into solid tumors, inadequate persistence, systemic toxicities, and manufacturing insufficiencies. The use of alternative cell sources for CAR-based therapies, such as natural killer cells (NK), macrophages (MΦ), invariant Natural Killer T (iNKT) cells, γδT cells, neutrophils, and induced pluripotent stem cells (iPSC), has emerged as a promising avenue. By harnessing these cells' inherent cytotoxic mechanisms and incorporating CAR technology, common CAR-T cell-related limitations can be effectively mitigated. We herein present an overview of the tumoricidal mechanisms, CAR designs, and manufacturing processes of CAR-NK cells, CAR-MΦ, CAR-iNKT cells, CAR-γδT cells, CAR-neutrophils, and iPSC-derived CAR-cells, outlining the advantages, limitations, and potential solutions of these therapeutic strategies.


Asunto(s)
Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/inmunología , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/inmunología , Inmunoterapia Adoptiva , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/citología , Macrófagos/inmunología , Macrófagos/citología , Macrófagos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Animales , Neoplasias/terapia , Neoplasias/inmunología , Linfocitos T/inmunología , Linfocitos T/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...