RESUMEN
BACKGROUND: Hemolytic uremic syndrome (HUS) is a thrombotic microangiopathy characterized by intravascular hemolysis. It can be classified as either typical, primarily caused by Shiga toxin-producing Escherichia coli (STEC) infection, or as atypical HUS (aHUS), which results from uncontrolled complement activation. METHODS: We report the case of a 9-year-old boy with aHUS due to compound heterozygous complement factor H-related genes (CFHR) 1/3 and CFHR1-CFHR4 deletions, leading to the development of anti-complement factor H (CFH) autoantibodies. The patient presented nephrological and neurological thrombotic microangiopathy with STEC positivity. Additionally, we provide an extensive literature review of aHUS cases initially classified as typical. RESULTS: A total of 11 patients were included, 73% of whom were pediatric. Kidney replacement therapy was required in 73% of patients. The recurrence rate was 55%. All cases were found positive for pathological variants of the complement system genes. The most commonly implicated gene was CFH, while the CFHR genes were involved in 36% of cases, although none exhibited anti-CFH autoantibodies. Anti-complement therapy was administered in 54% of cases, and none of the patients who received it early progressed to kidney failure. CONCLUSIONS: STEC infection does not exclude aHUS diagnosis, and early use of anti-complement therapy might be reasonable in life-threatening conditions. Genetic testing can be helpful in patients with atypical presentations and can confirm the necessity of prolonged anti-complement therapy.
RESUMEN
OBJECTIVE: To explore the relationship between rs1410996 polymorphism of CFH gene and essential hypertension (EH) in the Yunnan Han population. METHODS: rs1410996 of CFH gene was genotyped based on the collected clinical phenotypes of the EH patients (n = 520) and healthy people (n = 494). RESULTS: On the genotype model and dominance model, there was no relationship between rs1410996 of CFH gene and EH after adjustment (P > 0.05). On the dominance model of male EH patients, the pulse pressure (PP) level of CC genotype carriers was higher than that of (CT + TT) genotype carriers after adjustment (P < 0.05). CONCLUSION: rs1410996 of CFH gene has no correlation with the genetic susceptibility to EH in the Yunnan Han population, but it is related to the PP level in male patients.
Asunto(s)
Pueblo Asiatico , Factor H de Complemento , Hipertensión Esencial , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Hipertensión Esencial/genética , Persona de Mediana Edad , Femenino , China , Factor H de Complemento/genética , Polimorfismo de Nucleótido Simple/genética , Pueblo Asiatico/genética , Frecuencia de los Genes/genética , Anciano , Estudios de Casos y Controles , Adulto , Hipertensión/genética , Estudios de Asociación Genética/métodos , Alelos , Presión Sanguínea/genéticaRESUMEN
BACKGROUND: Germline mutations have been identified in a small number of hereditary cancers, but the genetic predisposition for many familial cancers remains to be elucidated. METHODS: This study identified a Chinese pedigree that presented different cancers (breast cancer, BRCA; adenocarcinoma of the esophagogastric junction, AEG; and B-cell acute lymphoblastic leukemia, B-ALL) in each of the three generations. Whole-genome sequencing and whole-exome sequencing were performed on peripheral blood or bone marrow and cancer biopsy samples. Whole-genome bisulfite sequencing was conducted on the monozygotic twin brothers, one of whom developed B-ALL. RESULTS: According to the ACMG guidelines, bioinformatic analysis of the genome sequencing revealed 20 germline mutations, particularly mutations in the DNAH11 (c.9463G > A) and CFH (c.2314G > A) genes that were documented in the COSMIC database and validated by Sanger sequencing. Forty-one common somatic mutated genes were identified in the cancer samples, displaying the same type of single nucleotide substitution Signature 5. Meanwhile, hypomethylation of PLEK2, MRAS, and RXRA as well as hypermethylation of CpG island associated with WT1 was shown in the twin with B-ALL. CONCLUSIONS: These findings reveal genomic alterations in a pedigree with multiple cancers. Mutations found in the DNAH11, CFH genes, and other genes predispose to malignancies in this family. Dysregulated methylation of WT1, PLEK2, MRAS, and RXRA in the twin with B-ALL increases cancer susceptibility. The similarity of the somatic genetic changes among the three cancers indicates a hereditary impact on the pedigree. These familial cancers with germline and somatic mutations, as well as epigenomic alterations, represent a common molecular basis for many multiple cancer pedigrees.
Asunto(s)
Metilación de ADN , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Linaje , Humanos , Masculino , Femenino , Secuenciación Completa del Genoma , Persona de Mediana Edad , Genómica/métodos , Adulto , Epigénesis Genética , Islas de CpG , Epigenómica/métodos , Dineínas Axonemales/genéticaRESUMEN
One of the major causes of vision impairment among elderly people in developed nations is age-related macular degeneration (AMD). The distinctive features of AMD are the accumulation of extracellular deposits called drusen and the gradual deterioration of photoreceptors and nearby tissues in the macula. AMD is a complex and multifaceted disease influenced by several factors such as aging, environmental risk factors, and a person's genetic susceptibility to the condition. The interaction among these factors leads to the initiation and advancement of AMD, where genetic predisposition plays a crucial role. With the advent of high-throughput genotyping technologies, many novel genetic loci associated with AMD have been identified, enhancing our knowledge of its genetic architecture. The common genetic variants linked to AMD are found on chromosome 1q32 (in the complement factor H gene) and 10q26 (age-related maculopathy susceptibility 2 and high-temperature requirement A serine peptidase 1 genes) loci, along with several other risk variants. This review summarizes the common genetic variants of complement pathways, lipid metabolism, and extracellular matrix proteins associated with AMD risk, highlighting the intricate pathways contributing to AMD pathogenesis. Knowledge of the genetic underpinnings of AMD will allow for the future development of personalized diagnostics and targeted therapeutic interventions, paving the way for more effective management of AMD and improved outcomes for affected individuals.
RESUMEN
BACKGROUND: No reports have shown histological changes before and after anti-C5 monoclonal antibody treatment in patients with atypical hemolytic uremic syndrome (aHUS). Here, we report a rare case of complement-mediated aHUS with a complement factor H (CFH) mutation and anti-CFH antibodies who underwent multiple kidney biopsies. CASE PRESENTATION: A 53-year-old woman developed aHUS with CFH gene mutation [c.3572C > T (p. Ser1191 Leu)] and anti-CFH antibodies. Her father had succumbed to acute kidney injury (AKI) in his 30 s. She exhibited AKI, thrombocytopenia, and hemolytic anemia with schistocytes. After improving the platelet count with one session of plasma exchange, a kidney biopsy was performed one month after the onset of symptoms. Blood vessel thrombosis, obvious endothelial swelling, endocapillary hypercellularity, and subendothelial exudative lesions in the glomeruli and arterioles were detected. Anti-C5 monoclonal antibody treatment with eculizumab immediately improved disease activity. A second biopsy 3 months later revealed marked improvement of endothelial injuries with residual membrane double contours and exudative lesions. A third biopsy at 17 months after gradual improvement of kidney function showed a further decrease of double contours along with alterations of the exudative lesions to fibrous intimal thickening. CONCLUSIONS: This is the first report showing the pathophysiology of aHUS in the kidneys and the efficacy of anti-C5 monoclonal antibody treatment by presenting serial kidney pathological features before and after anti-C5 monoclonal antibody treatment. Since her CFH mutation was considered the most important pathological condition, treatment centered on eculizumab was administered, resulting in a good long-term prognosis. In addition, kidney pathological resolution in aHUS occurred over 1 year after anti-C5 monoclonal antibody treatment.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Síndrome Hemolítico Urémico Atípico , Factor H de Complemento , Humanos , Síndrome Hemolítico Urémico Atípico/tratamiento farmacológico , Femenino , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/uso terapéutico , Complemento C5/antagonistas & inhibidores , Riñón/patologíaRESUMEN
The complement cascade is an ancient and highly conserved arm of the immune system. The accumulating evidence highlights elevated activity of the complement cascade in cancer microenvironment and emphasizes its effects on the immune, cancer and cancer stroma cells, pointing to a role in inflammation-mediated etiology of neoplasms. The role the cascade plays in development, progression and relapse of solid tumors is increasingly recognized, however its role in hematological malignancies, especially those of myeloid origin, has not been thoroughly assessed and remains obscure. As the role of inflammation and autoimmunity in development of myeloid malignancies is becoming recognized, in this review we focus on summarizing the links that have been identified so far for complement cascade involvement in the pathobiology of myeloid malignancies. Complement deficiencies are primary immunodeficiencies that cause an array of clinical outcomes including an increased risk of a range of infectious as well as local or systemic inflammatory and thrombotic conditions. Here, we discuss the impact that deficiencies in complement cascade initiators, mid- and terminal- components and inhibitors have on the biology of myeloid neoplasms. The emergent conclusions indicate that the links between complement cascade, inflammatory signaling and the homeostasis of hematopoietic system exist, and efforts should continue to detail the mechanistic involvement of complement cascade in the development and progression of myeloid cancers.
RESUMEN
Providing child and family health (CFH) services that meet the needs of young children and their families is important for a child's early experiences, development and lifelong health and well-being. In Australia, families living in regional and rural areas have historically had limited access to specialist CFH services. In 2019, five new specialist CFH services were established in regional areas of New South Wales, Australia. The purpose of this study is to understand the regional families' perceptions and experiences of these new CFH services. A convergent mixed-methods design involving a survey and semi-structured interviews with parents who had used the service was used for this study. Data collected include demographics, reasons for engaging with the service, perception, and experience of the service, including if the service provided was family centred. Triangulation of the quantitative and qualitative analysis uncovered three main findings: (i) The regional location of the service reduced the burden on families to access support for their needs; (ii) providing a service that is family-centred is important to achieve positive outcomes; and (iii) providing a service that is family-centred advances the local reputation of the service, enabling a greater reach into the community. Providing local specialist CFH services reduces the burden on families and has positive outcomes; however, providing services that are family-centred is key.
Asunto(s)
Servicios de Salud del Niño , Accesibilidad a los Servicios de Salud , Humanos , Niño , Nueva Gales del Sur , Preescolar , Salud de la Familia , Femenino , Masculino , Lactante , AdultoRESUMEN
OBJECTIVE: The aim of this study was to investigate the potential importance of complement system activation, with particular emphasis on the complement alternative pathway (AP), in the pathogenesis of hypertensive renal damage. METHODS: Serum complement C3, complement Factor H (CFH) and AP activation were assessed in 66 participants with established essential hypertension with renal damage (RD). Fifty-nine patients with age- and sex-matched essential hypertension without renal damage (NRD) and 58 healthy participants (normal) were selected. RESULTS: Our study revealed that C3 and AP50 continuously increased from normal to NRD to RD (p < 0.05, respectively), while CFH was significantly lower than that in NRD and healthy participants (p < 0.05, respectively). After multifactorial logistic regression analysis corrected for confounders, elevated serum C3 (p = 0.001) and decreased CFH (p < 0.001) were found to be independent risk factors for hypertension in healthy participants; elevated serum C3 (p = 0.034), elevated AP50 (p < 0.001), decreased CFH (p < 0.001), increased age (p = 0.011) and increased BMI (p = 0.013) were found to be independent risk factors for the progression of hypertension to hypertensive renal damage; elevated serum C3 (p = 0.017), elevated AP50 (p = 0.023), decreased CFH (p = 0.005) and increased age (p = 0.041) were found to be independent risk factors for the development of hypertensive renal damage in healthy participants. CONCLUSION: Abnormal activation of complement, particularly complement AP, may be a risk factor for the development and progression of hypertensive renal damage.
Asunto(s)
Complemento C3 , Factor H de Complemento , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Complemento C3/metabolismo , Complemento C3/análisis , Factores de Riesgo , Anciano , Adulto , Hipertensión/complicaciones , Hipertensión/sangre , Activación de Complemento , Hipertensión Esencial/sangre , Hipertensión Esencial/complicaciones , Hipertensión Esencial/fisiopatología , Modelos Logísticos , Vía Alternativa del Complemento , Progresión de la EnfermedadRESUMEN
INTRODUCTION: Anti-vascular endothelial growth factor (anti-VEGF) agents have a variable effect on patients with age-related macular degeneration (AMD) that has been attributed to several causes, including genetic factors. We evaluated the effects of Complement Factor H (CFH) rs1061170/Y402H polymorphism on the response to anti-VEGF therapy among AMD patients. METHODS: PubMed, Scopus, EMBASE, Web of Science, and Google Scholar were used for a literature search. Pooled odds ratios (ORs) and their 95% confidence intervals (CIs) were estimated to assess the effects of CFH Y402H polymorphism on the response to anti-VEGF therapy in AMD. I2 was used to present the amount of heterogeneity. We used STATA version 14.0 software. RESULTS: Twenty-five papers reporting data for 4,681 patients were included in this study. Better response to anti-VEGF therapy was seen in T over C (OR = 1.25, 95% CI = 1.04-1.50), TT over CC (OR = 1.60, 95% CI = 1.06-2.4), and TT + TC over CC (OR = 1.68, 95% CI = 1.23-2.28) genotypes. There was no significant difference in the three other genetic models (TT vs. TC, TT vs. TC + CC, TC vs. TT + CC). In Asians, no significant difference was observed in all six genetic models. Ranibizumab and bevacizumab had similar efficacy; however, conbercept was more effective in homozygous genotypes. The literature indicated that TT and TC genotypes and T allele were associated with a better functional response, while the CC genotype and C alleles had a better anatomical response. The combination of risk alleles in ARMS2 A69S (rs10490924), VEGF-A (rs699947), and VEGF-A (rs833069) with Y420H is a predictor of non-respondents. CONCLUSION: In patients with AMD, the CFH Y402H is a predictor of the response to anti-VEGF agents and should be considered in the treatment plan.
Asunto(s)
Inhibidores de la Angiogénesis , Factor H de Complemento , Degeneración Macular , Polimorfismo de Nucleótido Simple , Factor A de Crecimiento Endotelial Vascular , Humanos , Factor H de Complemento/genética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Inhibidores de la Angiogénesis/uso terapéutico , Degeneración Macular/genética , Degeneración Macular/tratamiento farmacológico , GenotipoRESUMEN
Background: Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology with a poor prognosis, characterized by a lack of effective diagnostic and therapeutic interventions. The role of immunity in the pathogenesis of IPF is significant, yet remains inadequately understood. This study aimed to identify potential key genes in IPF and their relationship with immune cells by integrated bioinformatics analysis and verify by in vivo and in vitro experiments. Methods: Gene microarray data were obtained from the Gene Expression Omnibus (GEO) for differential expression analysis. The differentially expressed genes (DEGs) were identified and subjected to functional enrichment analysis. By utilizing a combination of three machine learning algorithms, specific genes associated with idiopathic pulmonary fibrosis (IPF) were pinpointed. Then their diagnostic significance and potential co-regulators were elucidated. We further analyzed the correlation between key genes and immune infiltrating cells via single-sample gene set enrichment analysis (ssGSEA). Subsequently, a single-cell RNA sequencing data (scRNA-seq) was used to explore which cell types expressed key genes in IPF samples. Finally, a series of in vivo and in vitro experiments were conducted to validate the expression of candidate genes by western blot (WB), quantitative real-time PCR (qRT-PCR), and immunohistochemistry (IHC) analysis. Results: A total of 647 DEGs of IPF were identified based on two datasets, including 225 downregulated genes and 422 upregulated genes. They are closely related to biological functions such as cell migration, structural organization, immune cell chemotaxis, and extracellular matrix. CFH and FHL2 were identified as key genes with diagnostic accuracy for IPF by three machine learning algorithms. Analysis using ssGSEA revealed a significant association of both CFH and FHL2 with diverse immune cells, such as B cells and NK cells. Further scRNA-seq analysis indicated CFH and FHL2 were specifically upregulated in human IPF tissues, which was confirmed by in vitro and in vivo experiments. Conclusion: In this study, CFH and FHL2 have been identified as novel potential biomarkers for IPF, with potential diagnostic utility in future clinical applications. Subsequent investigations into the functions of these genes in IPF and their interactions with immune cells may enhance comprehension of the disease's pathogenesis and facilitate the identification of therapeutic targets.
RESUMEN
BACKGROUND: Age-related macular degeneration (AMD) is a major global health problem as it is the leading cause of irreversible loss of central vision in the aging population. Av-vascular endothelial growth factor (anti-VEGF) therapies have been shown to be effective, but they do not respond optimally to all patients. OBJECTIVE: This study investigates the genetic factors associated with susceptibility to AMD and response to treatment, focusing on key polymorphisms in the CFH (rs1061170, rs1410996) and KDR (rs2071559, rs1870377) genes and the association of CFH and KDR serum levels in patients with AMD. RESULTS: A cohort of 255 patients with early AMD, 252 patients with exudative AMD, and 349 healthy controls underwent genotyping analysis, which revealed significant associations between CFH polymorphisms and the risk of exudative AMD. The CFH rs1061170 CC genotype was associated with an increased risk of early AMD (p = 0.046). For exudative AMD, the CFH rs1061170 TC + CC genotype increased odds (p < 0.001), while the rs1410996 GA + AA genotype decreased odds (p < 0.001). Haplotypes of CFH SNPs were associated with decreased odds of AMD. In terms of response to treatment, none of the SNPs were associated with the response to anti-VEGF treatment. We also found that both early and exudative AMD patients had lower CFH serum levels compared to the control group (p = 0.038 and p = 0.006, respectively). Exudative AMD patients with the CT genotype of CFH rs1061170 had lower CFH serum levels compared to the control group (p = 0.035). Exudative AMD patients with the GG genotype of CFH rs1410996 also had lower CFH serum levels compared to the control group (p = 0.021). CONCLUSIONS: CFH polymorphisms influence susceptibility to AMD but do not correlate with a response to anti-VEGF therapy. Further research is imperative to fully evaluate the developmental significance, treatment efficacy, and predictive role in influencing susceptibility to anti-VEGF therapy for KDR and CFH.
RESUMEN
Most drugs that target the complement system are designed to inhibit the complement pathway at either the proximal or terminal levels. The use of a natural complement regulator such as factor H (FH) could provide a superior treatment option by restoring the balance of an overactive complement system while preserving its normal physiological functions. Until now, the systemic treatment of complement-associated disorders with FH has been deemed unfeasible, primarily due to high production costs, risks related to FH purified from donors' blood, and the challenging expression of recombinant FH in different host systems. We recently demonstrated that a moss-based expression system can produce high yields of properly folded, fully functional, recombinant FH. However, the half-life of the initial variant (CPV-101) was relatively short. Here we show that the same polypeptide with modified glycosylation (CPV-104) achieves a pharmacokinetic profile comparable to that of native FH derived from human serum. The treatment of FH-deficient mice with CPV-104 significantly improved important efficacy parameters such as the normalization of serum C3 levels and the rapid degradation of C3 deposits in the kidney compared to treatment with CPV-101. Furthermore, CPV-104 showed comparable functionality to serum-derived FH in vitro, as well as similar performance in ex vivo assays involving samples from patients with atypical hemolytic uremic syndrome, C3 glomerulopathy and paroxysomal nocturnal hematuria. CPV-104 - the human FH analog expressed in moss - will therefore allow the treatment of complement-associated human diseases by rebalancing instead of inhibiting the complement cascade.
Asunto(s)
Factor H de Complemento , Humanos , Factor H de Complemento/metabolismo , Factor H de Complemento/genética , Animales , Ratones , Semivida , Polisacáridos/metabolismo , Bryopsida/metabolismo , Bryopsida/genética , Glicosilación , Proteínas Recombinantes , Ratones Noqueados , Ratones Endogámicos C57BL , MasculinoRESUMEN
INTRODUCTION: Atypical haemolytic uremic syndrome (aHUS) is a rare form of thrombotic microangiopathy (TMA) associated with complement dysregulation; aHUS may be associated with other 'triggers' or 'clinical conditions'. This study aimed to characterize this patient population using data from the Global aHUS Registry, the largest collection of real-world data on patients with aHUS. METHODS: Patients enrolled in the Global aHUS Registry between April 2012 and June 2021 and with recorded aHUS-associated triggers or clinical conditions prior/up to aHUS onset were analysed. aHUS was diagnosed by the treating physician. Data were classified by age at onset of aHUS (< or ≥18 years) and additionally by the presence/absence of identified pathogenic complement genetic variant(s) and/or anti-complement factor H (CFH) antibodies. Genetically/immunologically untested patients were excluded. RESULTS: 1947 patients were enrolled in the Global aHUS Registry by June 2021, and 349 (17.9%) met inclusion criteria. 307/349 patients (88.0%) had a single associated trigger or clinical condition and were included in the primary analysis. Malignancy was most common (58/307, 18.9%), followed by pregnancy and acute infections (both 53/307, 17.3%). Patients with an associated trigger or clinical condition were generally more likely to be adults at aHUS onset. CONCLUSION: Our analysis suggests that aHUS-associated triggers or clinical conditions may be organized into clinically relevant categories, and their presence does not exclude the concurrent presence of pathogenic complement genetic variants and/or anti-CFH antibodies. Considering a diagnosis of aHUS with associated triggers or clinical conditions in patients presenting with TMA may allow faster and more appropriate treatment.
Asunto(s)
Síndrome Hemolítico Urémico Atípico , Sistema de Registros , Humanos , Síndrome Hemolítico Urémico Atípico/genética , Síndrome Hemolítico Urémico Atípico/epidemiología , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Adulto Joven , Adolescente , Embarazo , Factor H de Complemento/genética , Factor H de Complemento/inmunología , Niño , Neoplasias/epidemiología , Edad de Inicio , Preescolar , Factores de Riesgo , AncianoRESUMEN
Mutations in the complement factor H (CFH) gene are associated with complement dysregulation and the development of atypical hemolytic uremic syndrome (aHUS). Several fusion genes that result from genomic structural variation in the CFH and complement factor H-related (CFHR) gene regions have been identified in aHUS. However, one allele has both CFHR gene duplication and CFH::CFHR1 fusion gene have not been reported. An 8-month-old girl (proband) presented with aHUS and was treated with ravulizumab. Her paternal grandfather developed aHUS previously and her paternal great grandmother presented with anti-neutrophil cytoplasmic antibody-associated vasculitis and thrombotic microangiopathy (TMA). However, the proband's parents have no history of TMA. A genetic analysis revealed the presence of CFH::CFHR1 fusion gene and a CFHR3-1-4-2 gene duplication in the patient, her father, and her paternal grandfather. Although several fusion genes resulting from structural variations of the CFH-CFHR genes region have been identified, this is the first report of the combination of a CFH::CFHR1 fusion gene with CFHR gene duplication. Because the CFH-CFHR region is highly homologous, we hypothesized that CFHR gene duplication occurred. These findings indicate a novel pathogenic genomic structural variation associated with the development of aHUS.
Asunto(s)
Síndrome Hemolítico Urémico Atípico , Factor H de Complemento , Humanos , Femenino , Lactante , Factor H de Complemento/genética , Síndrome Hemolítico Urémico Atípico/diagnóstico , Síndrome Hemolítico Urémico Atípico/genética , Duplicación de Gen , Proteínas del Sistema Complemento/genética , Mutación , Proteínas Sanguíneas/genética , Proteínas Inactivadoras del Complemento C3b/genéticaRESUMEN
PURPOSE: To evaluate the genetic associations of different subtypes of central serous chorioretinopathy (CSCR), neovascular age-related macular degeneration (nAMD), and polypoidal choroidal vasculopathy (PCV). DESIGN: A case-control genetic association study. METHODS: This study enrolled 217 CSCR, 341 nAMD, 288 PCV patients, and 1380 controls. The CSCR patients were classified into those with focal or diffuse leakage, with or without pigment epithelial detachment (PED), and with or without macular neovascularization (MNV). Associations between 11 variants from 8 genes, ADAMTS9, ANGPT2, ARMS2, CFH, NR3C2, PGF, TNFRSF10A and VIPR2, and diseases/subtypes were analyzed by logistic regression analysis adjusted for age and sex, and inter-phenotype comparison by heterogeneity test. RESULTS: The CFH rs800292-A conferred a protective effect for CSCR with MNV (OR=0.44, P = 0.002) and a risk effect for CSCR without MNV (OR=1.31, P = 0.023). CSCR patients carrying rs800292-G had a 3.23-fold of increased risk towards developing secondary MNV (P = 1.45 ×10-4). CFH rs3753394, rs800292 and rs1329428 showed similar effects among CSCR with MNV, nAMD and PCV, but opposite effects on CSCR without MNV. TNFRSF10A rs13278062-T was associated with overall CSCR but not with CSCR subtypes, nAMD or PCV. Moreover, CFH and ARMS2 SNPs showed heterogeneous effects in CSCR without MNV against CSCR with MNV, nAMD and PCV. CONCLUSIONS: Genetic associations of CSCR with MNV resembled nAMD and PCV compared to CSCR without MNV, indicating differential genetic effects on neovascularization and choroidopathy. Further investigation of the functional roles of CFH, ARMS2, and TNFRSF10A in CSCR, nAMD and PCV should help elucidate the mechanisms of these maculopathies.
Asunto(s)
Coriorretinopatía Serosa Central , Neovascularización Coroidal , Degeneración Macular , Humanos , Genotipo , Coriorretinopatía Serosa Central/genética , Vasculopatía Coroidea Polipoidea , Polimorfismo de Nucleótido Simple , Degeneración Macular/genética , Neovascularización Coroidal/genética , Angiografía con FluoresceínaRESUMEN
Acute respiratory distress syndrome (ARDS) is a life-threatening event that occurs in patients suffering from bacterial, fungal, or viral sepsis. Research performed over the last five decades showed that ARDS is a consequence of severe unrestrained systemic inflammation, which leads to injury of the lung's microvasculature and alveolar epithelium. ARDS leads to acute hypoxic/hypercapnic respiratory failure and death in a significant number of patients hospitalized in intensive care units worldwide. Basic and clinical research performed during the time since ARDS was first described has been unable to construct a pharmacological agent that will combat the inflammatory fire leading to ARDS. In-depth studies of the molecular pharmacology of vitamin C indicate that it can serve as a potent anti-inflammatory agent capable of attenuating the pathobiological events that lead to acute injury of the lungs and other body organs. This analysis of vitamin C's role in the treatment of ARDS includes a focused systematic review of the literature relevant to the molecular physiology of vitamin C and to the past performance of clinical trials using the agent.
RESUMEN
INTRODUCTION: Pituitary adenomas (PA) are slow-growing, benign tumors that usually do not metastasize to other body organs. Although they are referred to as benign, tumor growth can eventually put pressure on nearby structures, spread to surrounding tissues, and cause symptoms. The exact cause of PA is unknown, and the pathogenesis is multifactorial. METHODS: Our study included PA patients and healthy volunteers. Genomic DNA was extracted using the DNA salting-out method. All participants were genotyped for the KDR rs2071559, rs1870377, CFH rs1061170, and rs1410996 polymorphisms. Serum levels of KDR and CFH were examined using the ELISA method. RESULTS: The results of the present study showed that KDR rs2071559 A allele was associated with the occurrence of PA, hormonally active PA, invasive PA, and PA without recurrence development. KDR rs1870377 increased the probability of invasive PA and PA recurrence. CFH rs1061170 C allele was associated with hormonally active PA and the T allele was associated with non-invasive PA development. CONCLUSION: KDR rs2071559, rs1870377, and CFH rs1061170 could be potential biomarkers associated with PA.
Asunto(s)
Predisposición Genética a la Enfermedad , Neoplasias Hipofisarias , Humanos , ADN , Genotipo , Polimorfismo de Nucleótido Simple , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genéticaRESUMEN
The complement system is a powerful innate immune system deployed in the immediate response to pathogens and cancer cells. Complement factor H (CFH), one of the regulators involved in the complement cascade, can interrupt the death of target cells. Certain types of cancer, such as breast cancer, can adopt an aggressive phenotype, such as breast cancer stem cells (BCSCs), through enhancement of the defense system against complement attack by amplifying various complement regulators. However, little is known about the association between CFH and BCSCs. In the present study, the roles of CFH in the CSC characteristics and radioresistance of MDA-MB-231 human breast cancer cells were investigated. CFH knockdown in MDA-MB-231 cells decreased the viability of the cells upon complement cascade activation. Notably, CFH knockdown also decreased cell survival and suppressed mammosphere formation, cell migration and cell invasion by attenuating radioresistance. Additionally, CFH knockdown further enhanced irradiation-induced apoptosis through G2/M cell cycle arrest. It was also discovered that CFH knockdown attenuated the aggressive phenotypes of cancer cells by regulating CSC-associated gene expression. Finally, by microarray analysis, it was found that the expression of erythrocyte membrane protein band 4.1-like 3 (EPB41L3) was markedly increased following CFH knockdown. EPB41L3 inhibited ERK and activated the p38 MAPK signaling pathway. Taken together, these results indicated that CFH knockdown attenuated CSC properties and radioresistance in human breast cancer cells via controlling MAPK signaling and through upregulation of the tumor suppressor, EPB41L3.
RESUMEN
Atypical hemolytic uremic syndrome (aHUS) is a rare disease caused by a genetic dysregulation of the alternative complement pathway, characterized by thrombocytopenia, hemolytic anemia, and acute kidney injury, and included in the group of thrombotic microangiopathies. With the introduction of humanized monoclonal antibodies that inhibit C5 activation, the natural history of aHUS completely changed, with a better prognosis, a quick recovery of renal function, and a significant reduction of end-stage renal disease incidence. Nowadays, there is an increasing interest in the molecular and genetic bases of this severe disease. The aim of this narrative review is to provide readers with a practical guide about different possible involved genes, elucidating the specific role of each transcribed protein in the pathogenesis of aHUS. Moreover, we analyzed the main current evidence about the relationship among genetic mutations, outcomes, and the risk of recurrence of this manifold disease.
Asunto(s)
Lesión Renal Aguda , Síndrome Hemolítico Urémico Atípico , Fallo Renal Crónico , Microangiopatías Trombóticas , Humanos , Síndrome Hemolítico Urémico Atípico/genética , Microangiopatías Trombóticas/complicaciones , Fallo Renal Crónico/complicaciones , Lesión Renal Aguda/complicaciones , MutaciónRESUMEN
Age-related macular degeneration (AMD) is a complex, progressive degenerative retinal disease. Retinal pigment epithelial (RPE) cells play an important role in the immune defense of the eye and their dysfunction leads to the progressive irreversible degeneration of photoreceptors. Genetic factors, chronic inflammation, and oxidative stress have been implicated in AMD pathogenesis. Oxidative stress causes RPE injury, resulting in a chronic inflammatory response and cell death. The Y402H polymorphism in the complement factor H (CFH) protein is an important risk factor for AMD. However, the functional significance of CFH Y402H polymorphism remains unclear. In the present study, we investigated the role of CFH in the pro-inflammatory response using an in vitro model of oxidative stress in the RPE with the at-risk CFH Y402H variant. ARPE-19 cells with the at-risk CFH Y402H variant were highly susceptible to damage caused by oxidative stress, with increased levels of inflammatory mediators and pro-apoptotic factors that lead to cell death. Pretreatment of the ARPE-19 cell cultures with exogenous CFH prior to the induction of oxidative stress prevented damage and cell death. This protective effect may be related to the negative regulation of pro-inflammatory cytokines. CFH contributes to cell homeostasis and is required to modulate the pro-inflammatory cytokine response under oxidative stress in the ARPE-19 cells with the at-risk CFH Y402H variant.