Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Inorg Biochem ; 260: 112673, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39094247

RESUMEN

Cytochrome c oxidase (CcO) reduces O2, pumps protons in the mitochondrial respiratory chain, and is essential for oxygen consumption in the cell. The coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2; also known as mitochondrial nuclear retrograde regulator 1 [MNRR1], Parkinson's disease 22 [PARK22] and aging-associated gene 10 protein [AAG10]) is a protein that binds to CcO from the intermembrane space and positively regulates the activity of CcO. Despite the importance of CHCHD2 in mitochondrial function, the mechanism of action of CHCHD2 and structural information regarding its binding to CcO remain unknown. Here, we utilized visible resonance Raman spectroscopy to investigate the structural changes around the hemes in CcO in the reduced and CO-bound states upon CHCHD2 binding. We found that CHCHD2 has a significant impact on the structure of CcO in the reduced state. Mapping of the heme peripheries that result in Raman spectral changes in the structure of CcO highlighted helices IX and X near the hemes as sites where CHCHD2 takes action. Part of helix IX is exposed in the intermembrane space, whereas helix X, located between both hemes, may play a key role in proton uptake to a proton-loading site in the reduced state for proton pumping. Taken together, our results suggested that CHCHD2 binds near helix IX and induces a structural change in helix X, accelerating proton uptake.


Asunto(s)
Proteínas de Unión al ADN , Complejo IV de Transporte de Electrones , Hemo , Proteínas Mitocondriales , Espectrometría Raman , Factores de Transcripción , Espectrometría Raman/métodos , Complejo IV de Transporte de Electrones/química , Complejo IV de Transporte de Electrones/metabolismo , Hemo/química , Hemo/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Humanos , Unión Proteica
2.
Front Neurol ; 15: 1404492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751879

RESUMEN

Background: Cutaneous phosphorylated alpha-synuclein (p-α-syn) deposition is an important biomarker of idiopathic Parkinson's disease (iPD). Recent studies have reported synucleinopathies in patients with common genetic forms of PD. Objective: This study aimed to detect p-α-syn deposition characteristic in rare genetic PD patients with CHCHD2 or RAB39B mutations. Moreover, this study also aimed to describe peripheral alpha-synuclein prion-like activity in genetic PD patients, and acquire whether the cutaneous synucleinopathy characteristics of genetic PD are consistent with central neuropathologies. Methods: We performed four skin biopsy samples from the distal leg (DL) and proximal neck (C7) of 161 participants, including four patients with CHCHD2 mutations, two patients with RAB39B mutations, 16 patients with PRKN mutations, 14 patients with LRRK2 mutations, five patients with GBA mutations, 100 iPD patients, and 20 healthy controls. We detected cutaneous synucleinopathies using immunofluorescence staining and a seeding amplification assay (SAA). A systematic literature review was also conducted, involving 64 skin biopsies and 205 autopsies of genetic PD patients with synucleinopathy. Results: P-α-syn was deposited in the peripheral cutaneous nerves of PD patients with CHCHD2, LRRK2, or GBA mutations but not in those with RAB39B or PRKN mutations. There were no significant differences in the location or rate of α-syn-positive deposits between genetic PD and iPD patients. Peripheral cutaneous synucleinopathy appears to well represent brain synucleinopathy of genetic PD, especially autosomal dominant PD (AD-PD). Cutaneous α-synuclein SAA analysis of iPD and LRRK2 and GBA mutation patients revealed prion-like activity. Conclusion: P-α-syn deposition in peripheral cutaneous nerves, detected using SAA and immunofluorescence staining, may serve as an accurate biomarker for genetic PD and iPD in the future.

4.
Acta Neuropathol ; 147(1): 84, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750212

RESUMEN

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Proteínas de Unión al ADN , Proteínas Mitocondriales , Factores de Transcripción , Femenino , Humanos , Masculino , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/patología , Astrocitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mitocondrias/patología , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Mol Neurobiol ; 61(10): 7968-7988, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38453793

RESUMEN

Novel CHCHD2 mutations causing C-terminal truncation and interrupted CHCHD2 protein stability in Parkinson's disease (PD) patients were previously found. However, there is limited understanding of the underlying mechanism and impact of subsequent CHCHD2 loss-of-function on PD pathogenesis. The current study further identified the crucial motif (aa125-133) responsible for diminished CHCHD2 expression and the molecular interplay within the C1QBP/CHCHD2/CHCHD10 complex to regulate mitochondrial functions. Specifically, CHCHD2 deficiency led to decreased neural cell viability and mitochondrial structural and functional impairments, paralleling the upregulation of autophagy under cellular stresses. Meanwhile, as a binding partner of CHCHD2, C1QBP was found to regulate the stability of CHCHD2 and CHCHD10 proteins to maintain the integrity of the C1QBP/CHCHD2/CHCHD10 complex. Moreover, C1QBP-silenced neural cells displayed severe cell death phenotype along with mitochondrial damage that initiated a significant mitophagy process. Taken together, the evidence obtained from our in vitro and in vivo studies emphasized the critical role of CHCHD2 in regulating mitochondria functions via coordination among CHCHD2, CHCHD10, and C1QBP, suggesting the potential mechanism by which CHCHD2 function loss takes part in the progression of neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN , Mitocondrias , Proteínas Mitocondriales , Enfermedad de Parkinson , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/genética , Animales , Factores de Transcripción/metabolismo , Mitofagia , Unión Proteica , Estabilidad Proteica , Neuronas/metabolismo , Neuronas/patología , Autofagia/fisiología , Ratones , Supervivencia Celular , Proteínas Portadoras
6.
J Biomed Sci ; 31(1): 24, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395904

RESUMEN

BACKGROUND: Mutations in CHCHD2 have been linked to Parkinson's disease, however, their exact pathophysiologic roles are unclear. The p32 protein has been suggested to interact with CHCHD2, however, the physiological functions of such interaction in the context of PD have not been clarified. METHODS: Interaction between CHCHD2 and p32 was confirmed by co-immunoprecipitation experiments. We studied the effect of p32-knockdown in the transgenic Drosophila and Hela cells expressing the wild type and the pathogenic variants of hCHCHD2. We further investigated the rescue ability of a custom generated p32-inhibitor in these models as well as in the human fibroblast derived neural precursor cells and the dopaminergic neurons harboring hCHCHD2-Arg145Gln. RESULTS: Our results showed that wildtype and mutant hCHCHD2 could bind to p32 in vitro, supported by in vivo interaction between human CHCHD2 and Drosophila p32. Knockdown of p32 reduced mutant hCHCHD2 levels in Drosophila and in vitro. In Drosophila hCHCHD2 models, inhibition of p32 through genetic knockdown and pharmacological treatment using a customized p32-inhibitor restored dopaminergic neuron numbers and improved mitochondrial morphology. These were correlated with improved locomotor function, reduced oxidative stress and decreased mortality. Consistently, Hela cells expressing mutant hCHCHD2 showed improved mitochondrial morphology and function after treatment with the p32-inhibitor. As compared to the isogenic control cells, large percentage of the mutant neural precursor cells and dopaminergic neurons harboring hCHCHD2-Arg145Gln contained fragmented mitochondria which was accompanied by lower ATP production and cell viability. The NPCs harboring hCHCHD2-Arg145Gln also had a marked increase in α-synuclein expression. The p32-inhibitor was able to ameliorate the mitochondrial fragmentation, restored ATP levels, increased cell viability and reduced α-synuclein level in these cells. CONCLUSIONS: Our study identified p32 as a modulator of CHCHD2, possibly exerting its effects by reducing the toxic mutant hCHCHD2 expression and/or mitigating the downstream effects. Inhibition of the p32 pathway can be a potential therapeutic intervention for CHCHD2-linked PD and diseases involving mitochondrial dysfunction.


Asunto(s)
Células-Madre Neurales , Enfermedad de Parkinson , Animales , Humanos , Adenosina Trifosfato/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/metabolismo , Drosophila/genética , Drosophila/metabolismo , Células HeLa , Células-Madre Neurales/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
J Matern Fetal Neonatal Med ; 37(1): 2297158, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38220225

RESUMEN

OBJECTIVE: Preeclampsia, one of the most serious obstetric complications, is a heterogenous disorder resulting from different pathologic processes. However, placental oxidative stress and an anti-angiogenic state play a crucial role. Mitochondria are a major source of cellular reactive oxygen species. Abnormalities in mitochondrial structures, proteins, and functions have been observed in the placentae of patients with preeclampsia, thus mitochondrial dysfunction has been implicated in the mechanism of the disease. Mitochondrial nuclear retrograde regulator 1 (MNRR1) is a newly characterized bi-organellar protein with pleiotropic functions. In the mitochondria, this protein regulates cytochrome c oxidase activity and reactive oxygen species production, whereas in the nucleus, it regulates the transcription of a number of genes including response to tissue hypoxia and inflammatory signals. Since MNRR1 expression changes in response to hypoxia and to an inflammatory signal, MNRR1 could be a part of mitochondrial dysfunction and involved in the pathologic process of preeclampsia. This study aimed to determine whether the plasma MNRR1 concentration of women with preeclampsia differed from that of normal pregnant women. METHODS: This retrospective case-control study included 97 women with preeclampsia, stratified by gestational age at delivery into early (<34 weeks, n = 40) and late (≥34 weeks, n = 57) preeclampsia and by the presence or absence of placental lesions consistent with maternal vascular malperfusion (MVM), the histologic counterpart of an anti-angiogenic state. Women with an uncomplicated pregnancy at various gestational ages who delivered at term served as controls (n = 80) and were further stratified into early (n = 25) and late (n = 55) controls according to gestational age at venipuncture. Maternal plasma MNRR1 concentrations were determined by an enzyme-linked immunosorbent assay. RESULTS: 1) Women with preeclampsia at the time of diagnosis (either early or late disease) had a significantly higher median (interquartile range, IQR) plasma MNRR1 concentration than the controls [early preeclampsia: 1632 (924-2926) pg/mL vs. 630 (448-4002) pg/mL, p = .026, and late preeclampsia: 1833 (1441-5534) pg/mL vs. 910 (526-6178) pg/mL, p = .021]. Among women with early preeclampsia, those with MVM lesions in the placenta had the highest median (IQR) plasma MNRR1 concentration among the three groups [with MVM: 2066 (1070-3188) pg/mL vs. without MVM: 888 (812-1781) pg/mL, p = .03; and with MVM vs. control: 630 (448-4002) pg/mL, p = .04]. There was no significant difference in the median plasma MNRR1 concentration between women with early preeclampsia without MVM lesions and those with an uncomplicated pregnancy (p = .3). By contrast, women with late preeclampsia, regardless of MVM lesions, had a significantly higher median (IQR) plasma MNRR1 concentration than women in the control group [with MVM: 1609 (1392-3135) pg/mL vs. control: 910 (526-6178), p = .045; and without MVM: 2023 (1578-8936) pg/mL vs. control, p = .01]. CONCLUSIONS: MNRR1, a mitochondrial regulator protein, is elevated in the maternal plasma of women with preeclampsia (both early and late) at the time of diagnosis. These findings may reflect some degree of mitochondrial dysfunction, intravascular inflammation, or other unknown pathologic processes that characterize this obstetrical syndrome.


Asunto(s)
Enfermedades Mitocondriales , Preeclampsia , Femenino , Humanos , Embarazo , Estudios de Casos y Controles , Hipoxia , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales , Placenta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estudios Retrospectivos
8.
Cell Mol Life Sci ; 81(1): 38, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214772

RESUMEN

During in vitro culture, human pluripotent stem cells (hPSCs) often acquire survival advantages characterized by decreased susceptibility to mitochondrial cell death, known as "culture adaptation." This adaptation is associated with genetic and epigenetic abnormalities, including TP53 mutations, copy number variations, trisomy, and methylation changes. Understanding the molecular mechanisms underlying this acquired survival advantage is crucial for safe hPSC-based cell therapies. Through transcriptome and methylome analysis, we discovered that the epigenetic repression of CHCHD2, a mitochondrial protein, is a common occurrence during in vitro culture using enzymatic dissociation. We confirmed this finding through genetic perturbation and reconstitution experiments in normal human embryonic stem cells (hESCs). Loss of CHCHD2 expression conferred resistance to single cell dissociation-induced cell death, a common stress encountered during in vitro culture. Importantly, we found that the downregulation of CHCHD2 significantly attenuates the activity of Rho-associated protein kinase (ROCK), which is responsible for inducing single cell death in hESCs. This suggests that hESCs may survive routine enzyme-based cell dissociation by downregulating CHCHD2 and thereby attenuating ROCK activity. These findings provide insights into the mechanisms by which hPSCs acquire survival advantages and adapt to in vitro culture conditions.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Humanos , Línea Celular , Represión Epigenética , Variaciones en el Número de Copia de ADN , Células Madre Embrionarias Humanas/metabolismo , Diferenciación Celular , Supervivencia Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Placenta ; 140: 66-71, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37544161

RESUMEN

Intra-amniotic inflammation leading to preterm birth is one of the leading causes of neonatal morbidity and mortality. We recently reported that the mitochondrial levels of MNRR1 (Mitochondrial Nuclear Retrograde, Regulator 1; also called CHCHD2, AAG10, or PARK22), an important bi-organellar regulator of cellular function, are reduced in the context of inflammation and that genetic and pharmacological increases in MNRR1 levels can counter the inflammatory profile. Herein, we show that nitazoxanide, a clinically approved drug, is an activator of MNRR1 and abrogates preterm birth in a well-characterized murine model caused by intra-amniotic lipopolysaccharide (LPS) injection.


Asunto(s)
Corioamnionitis , Nacimiento Prematuro , Recién Nacido , Femenino , Humanos , Animales , Ratones , Nacimiento Prematuro/prevención & control , Lipopolisacáridos , Nitrocompuestos/efectos adversos , Inflamación/inducido químicamente , Líquido Amniótico , Proteínas de Unión al ADN , Factores de Transcripción/genética
10.
EMBO Mol Med ; 15(9): e17451, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578019

RESUMEN

Parkinson's disease (PD) is a common neurodegenerative disorder that results from the loss of dopaminergic neurons. Mutations in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) gene cause a familial form of PD with α-Synuclein aggregation, and we here identified the pathogenesis of the T61I mutation, the most common disease-causing mutation of CHCHD2. In Neuro2a cells, CHCHD2 is in mitochondria, whereas the T61I mutant (CHCHD2T61I ) is mislocalized in the cytosol. CHCHD2T61l then recruits casein kinase 1 epsilon/delta (Csnk1e/d), which phosphorylates neurofilament and α-Synuclein, forming cytosolic aggresomes. In vivo, both Chchd2T61I knock-in and transgenic mice display neurodegenerative phenotypes and aggresomes containing Chchd2T61I , Csnk1e/d, phospho-α-Synuclein, and phospho-neurofilament in their dopaminergic neurons. Similar aggresomes were observed in a postmortem PD patient brain and dopaminergic neurons generated from patient-derived iPS cells. Importantly, a Csnk1e/d inhibitor substantially suppressed the phosphorylation of neurofilament and α-Synuclein. The Csnk1e/d inhibitor also suppressed the cellular damage in CHCHD2T61I -expressing Neuro2a cells and dopaminergic neurons generated from patient-derived iPS cells and improved the neurodegenerative phenotypes of Chchd2T61I mutant mice. These results indicate that Csnk1e/d is involved in the pathogenesis of PD caused by the CHCHD2T61I mutation.


Asunto(s)
Caseína Cinasa 1 épsilon , Enfermedad de Parkinson , Ratones , Animales , Factores de Transcripción/genética , Proteínas de Unión al ADN/genética , alfa-Sinucleína/genética , Enfermedad de Parkinson/genética , Caseína Cinasa 1 épsilon/genética , Mutación
11.
Cell Insight ; 2(4): 100112, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37388553

RESUMEN

R-loops are regulators of many cellular processes and are threats to genome integrity. Therefore, understanding the mechanisms underlying the regulation of R-loops is important. Inspired by the findings on RNase H1-mediated R-loop degradation or accumulation, we focused our interest on the regulation of RNase H1 expression. In the present study, we report that G9a positively regulates RNase H1 expression to boost R-loop degradation. CHCHD2 acts as a repressive transcription factor that inhibits the expression of RNase H1 to promote R-loop accumulation. Sirt1 interacts with CHCHD2 and deacetylates it, which functions as a corepressor that suppresses the expression of downstream target gene RNase H1. We also found that G9a methylated the promoter of RNase H1, inhibiting the binding of CHCHD2 and Sirt1. In contrast, when G9a was knocked down, recruitment of CHCHD2 and Sirt1 to the RNase H1 promoter increased, which co-inhibited RNase H1 transcription. Furthermore, knockdown of Sirt1 led to binding of G9a to the RNase H1 promoter. In summary, we demonstrated that G9a regulates RNase H1 expression to maintain the steady-state balance of R-loops by suppressing the recruitment of CHCHD2/Sirt1 corepressors to the target gene promoter.

12.
Endocrine ; 81(2): 357-367, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37221428

RESUMEN

PURPOSE: CHCHD2 is an antiapoptotic mitochondrial protein acting through the BCL2/BAX pathway in various cancers. However, data on the regulatory role of CHCHD2 in adrenal tumourigenesis are scarce. METHODS: We studied the expression of CHCHD2, BCL2, and BAX in human adrenocortical tissues and SW13 cells. mRNA and protein levels were analyzed through qPCR and immunoblotting, respectively, in 16 benign adrenocortical neoplasms (BANs), along with their adjacent normal adrenal tissues (controls), and 10 adrenocortical carcinomas (ACCs). BCL2/BAX mRNA expression was also analyzed in SW13 cells after CHCHD2 silencing. MTS, flow cytometry and scratch assays were performed to assess cell viability, apoptosis, and invasion, respectively. RESULTS: BCL2 and CHCHCD2 mRNA and protein expression was increased in BANs compared to normal adrenal tissues whereas BAX was decreased. BAX and CHCHD2 mRNA and protein levels were significantly downregulated and upregulated, respectively, in ACCs compared with either BANs or controls. Expression of the studied genes was not different among cortisol-secreting and nonfunctional ACAs. No significant association was found between genes' expression and other established prognostic markers of ACCs patients. In vitro analysis showed that CHCHD2 silencing resulted in reduced cell viability and invasion as well as increased SW13 cells apoptosis. CONCLUSIONS: CHCHD2 expression seems to be implicated in adrenal tumourigenesis and its absence resulted to increased apoptosis in vitro. However, the exact mechanism of action and particularly its association with the BAX/BCL2 pathway needs to be further studied and evaluate whether it could be a protentional therapeutic target.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , Humanos , Neoplasias de la Corteza Suprarrenal/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/uso terapéutico , Carcinoma Corticosuprarrenal/metabolismo , ARN Mensajero/metabolismo , Carcinogénesis/genética , Transformación Celular Neoplásica , Apoptosis/genética , Proteínas de Unión al ADN/uso terapéutico , Factores de Transcripción/metabolismo
13.
Dev Neurobiol ; 83(1-2): 54-69, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36799027

RESUMEN

Mutations in CHCHD10 and CHCHD2, encoding two paralogous mitochondrial proteins, have been identified in cases of amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and Parkinson's disease. Their role in disease is unclear, though both have been linked to mitochondrial respiration and mitochondrial stress responses. Here, we investigated the biological roles of these proteins during vertebrate development using knockout (KO) models in zebrafish. We demonstrate that loss of either or both proteins leads to motor impairment, reduced survival and compromised neuromuscular junction integrity in larval zebrafish. Compensation by Chchd10 was observed in the chchd2-/- model, but not by Chchd2 in the chchd10-/- model. The assembly of mitochondrial respiratory chain Complex I was impaired in chchd10-/- and chchd2-/- zebrafish larvae, but unexpectedly not in a double chchd10-/- and chchd2-/- model, suggesting that reduced mitochondrial Complex I cannot be solely responsible for the observed phenotypes, which are generally more severe in the double KO. We observed transcriptional activation markers of the mitochondrial integrated stress response (mt-ISR) in the double chchd10-/- and chchd2-/- KO model, suggesting that this pathway is involved in the restoration of Complex I assembly in our double KO model. The data presented here demonstrates that the Complex I assembly defect in our single KO models arises independently of the mt-ISR. Furthermore, this study provides evidence that both proteins are required for normal vertebrate development.


Asunto(s)
Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mutación , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo
14.
Brain Pathol ; 33(3): e13124, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36322611

RESUMEN

The p.Thr61Ile (p.T61I) mutation in coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) was deemed a causative factor in Parkinson's disease (PD). However, the pathomechanism of the CHCHD2 p.T61I mutation in PD remains unclear. Few existing mouse models of CHCHD2-related PD completely reproduce the features of PD, and no transgenic or knock-in (KI) mouse models of CHCHD2 mutations have been reported. In the present study, we generated a novel CHCHD2 p.T61I KI mouse model, which exhibited accelerated mortality, progressive motor deficits, and dopaminergic (DA) neurons loss with age, accompanied by the accumulation and aggregation of α-synuclein and p-α-synuclein in the brains of the mutant mice. The mitochondria of mouse brains and induced pluripotent stem cells (iPSCs)-derived DA neurons carrying the CHCHD2 p.T61I mutation exhibited aberrant morphology and impaired function. Mechanistically, proteomic and RNA sequencing analysis revealed that p.T61I mutation induced mitochondrial dysfunction in aged mice likely through repressed insulin-degrading enzyme (IDE) expression, resulting in the degeneration of the nervous system. Overall, this CHCHD2 p.T61I KI mouse model recapitulated the crucial clinical and neuropathological aspects of patients with PD and provided a novel tool for understanding the pathogenic mechanism and therapeutic interventions of CHCHD2-related PD.


Asunto(s)
Proteínas de Unión al ADN , Enfermedad de Parkinson , Factores de Transcripción , Animales , Ratones , alfa-Sinucleína/genética , Modelos Animales de Enfermedad , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Front Neurosci ; 16: 988265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061599

RESUMEN

CHCHD2 and CHCHD10 are homolog mitochondrial proteins that play key roles in the neurological, cardiovascular, and reproductive systems. They are also involved in the mitochondrial metabolic process. Although previous research has concentrated on their functions within mitochondria, their functions within apoptosis, synaptic plasticity, cell migration as well as lipid metabolism remain to be concluded. The review highlights the different roles played by CHCHD2 and/or CHCHD10 binding to various target proteins (such as OPA-1, OMA-1, PINK, and TDP43) and reveals their non-negligible effects in cognitive impairments and motor neuron diseases. This review focuses on the functions of CHCHD2 and/or CHCHD10. This review reveals protective effects and mechanisms of CHCHD2 and CHCHD10 in neurodegenerative diseases characterized by cognitive and motor deficits, such as frontotemporal dementia (FTD), Lewy body dementia (LBD), Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). However, there are numerous specific mechanisms that have yet to be elucidated, and additional research into these mechanisms is required.

16.
Eur J Neurol ; 29(11): 3218-3228, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35861376

RESUMEN

BACKGROUND AND PURPOSE: Recent genetic progress has shown many causative/risk genes linked to Parkinson's disease (PD), mainly in patients of European ancestry. The study aimed to investigate the PD-related genes and determine the mutational spectrum of early-onset PD in ethnic Chinese. METHODS: In this study, whole-exome sequencing and/or gene dosage analysis were performed in 704 early-onset PD (EOPD) patients (onset age ≤45 years) and 1866 controls. Twenty-six PD-related genes and 20 other genes linked to neurodegenerative and lysosome diseases were analysed. RESULTS: Eighty-two (11.6%, 82/704) EOPD patients carrying rare pathogenic/likely pathogenic variants in PD-related genes were identified. The mutation frequency in autosomal recessive inheritance EOPD (42.9%, 27/63) was much higher than that in autosomal dominant inheritance EOPD (0.9%, 12/110) or sporadic EOPD (8.1%, 43/531). Bi-allelic mutations in PRKN were the most frequent, accounting for 5.1% of EOPD cases. Three common pathogenic variants, p.A53V in SNCA, p.G284R in PRKN and p.P53Afs*38 in CHCHD2, occur exclusively in Asians. The putative damaging variants from GBA, PRKN, DJ1, PLA2G6 and GCH1 contributed to the collective risk for EOPD. Notably, the protein-truncating variants in CHCHD2 were enriched in EOPD, especially for p.P53Afs*38, which was also found in three patients from an independent cohort of patients with late-onset PD (n = 1300). Functional experiments confirmed that truncated CHCHD2 variants cause loss of function and are linked to mitochondrial dysfunction. CONCLUSIONS: Our study reveals that the genetic spectrum of EOPD in Chinese, which may help develop genetic scanning strategies, provided more evidence supporting CHCHD2 in PD.


Asunto(s)
Enfermedad de Parkinson , Edad de Inicio , Pueblo Asiatico/genética , China , Proteínas de Unión al ADN/genética , Humanos , Persona de Mediana Edad , Mutación , Enfermedad de Parkinson/genética , Factores de Transcripción/genética
18.
Curr Neurovasc Res ; 19(1): 19-29, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35388756

RESUMEN

BACKGROUND: Parkinson's disease (PD) is associated with coiled-coil-helix-coiled-coilhelix domain containing 2 (CHCHD2) downregulation, which has been linked to reduced cyclocytase activity and increased levels of oxygen free radicals, leading to mitochondrial fragmentation and apoptosis. Little is known about how CHCHD2 normally functions in the cell and, therefore, how its downregulation may contribute to PD. OBJECTIVE: This study aimed to identify such target genes using chromatin immunoprecipitation sequencing from SH-SY5Y human neuroblastoma cells treated with neurotoxin 1-methyl-4- phenylpyridinium (MPP+) as a PD model. METHODS: In this study, we established a MPP+ -related SH-SY5Y cell model and evaluated the effects of CHCHD2 overexpression on cell proliferation and apoptosis. At the same time, we used high-throughput chromatin immunoprecipitation sequencing to identify its downstream target gene in SH-SY5Y cells. In addition, we verified the possible downstream target genes and discussed their mechanisms. RESULTS: The expression level of α-synuclein increased in SH-SY5Y cells treated with MPP+, while the protein expression level of CHCHD2 decreased significantly, especially after 24 h of treatment. Chip-IP results showed that CHCHD2 might regulate potential target genes such as HDX, ACP1, RAVER2, C1orf229, RN7SL130, GNPTG, erythroid 2 Like 2 (NFE2L2), required for cell differentiation 1 homologue (RQCD1), solute carrier family 5 member 7 (SLA5A7), and NAcetyltransferase 8 Like (NAT8L). NFE2L2 and RQCD1 were validated as targets using PCR and western blotting of immunoprecipitates, and these two genes together with SLA5A7 and NAT8L were upregulated in SH-SY5Y cells overexpressing CHCHD2. Downregulation of CHCHD2 may contribute to PD by leading to inadequate expression of NFE2L2 and RQCD1 as well as, potentially, SLA5A7 and NAT8L. CONCLUSION: Our results suggest that CHCHD2 plays a protective role by maintaining mitochondrial homeostasis and promoting proliferation in neurons. In this study, the changes of CHCHD2 and downstream target genes such as NFE2L2/RQCD1 may have potential application prospects in the future. These findings provide leads to explore PD pathogenesis and potential treatments.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Apoptosis , Diferenciación Celular , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Humanos , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/farmacología , Neuroblastoma/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Reprod Sci ; 29(8): 2152-2164, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35157262

RESUMEN

Endometriosis is a disease that involves dysfunction of mitochondria, imbalance of proliferation, and apoptosis. Coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) is a major mitochondrial protein which could regulate the mitochondrial function and apoptosis in various tumor cells, promote migration and then lead to tumor progression. This study aimed to explore the role of CHCHD2 on endometriosis. We investigated the expression of CHCHD2 in ectopic and eutopic endometrium tissues of patients with endometriosis and normal endometrium tissues. Furthermore, CHCHD2 was downregulated to explore the corresponding change of mitochondrial function and morphology, mitochondrial-mediated apoptosis pathway, and proliferation and migration of ectopic endometrial stromal cells. Our results demonstrated that the mRNA and protein expression levels of CHCHD2 were significantly increased in eutopic and ectopic endometrium tissues compared with the normal endometrium tissues. The knockdown of CHCHD2 could cause mitochondrial dysfunction, including the opening of mitochondrial permeability transition pore, loss of mitochondrial membrane potential and the release of cytochrome c, and morphological damage. In addition, CHCHD2 down-expression could also lead to inhibition of cell proliferation, decrease of migration ability, and aggravation of mitochondrial-mediated apoptosis. Together, these findings suggest that increased expression of CHCHD2 in endometriotic tissues may contribute to the pathogenesis of endometriosis via regulating mitochondrial function and apoptosis, and CHCHD2 may be a potential target for interrupting the development of endometriosis.


Asunto(s)
Proteínas de Unión al ADN , Endometriosis , Factores de Transcripción , Apoptosis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endometriosis/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Mitocondrias/metabolismo , Células del Estroma/metabolismo , Factores de Transcripción/metabolismo
20.
Front Aging Neurosci ; 13: 660843, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967741

RESUMEN

Rare mutations in the mitochondrial protein coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) are associated with Parkinson's disease (PD) and other Lewy body disorders. CHCHD2 is a bi-organellar mediator of oxidative phosphorylation, playing crucial roles in regulating electron flow in the mitochondrial electron transport chain and acting as a nuclear transcription factor for a cytochrome c oxidase subunit (COX4I2) and itself in response to hypoxic stress. CHCHD2 also regulates cell migration and differentiation, mitochondrial cristae structure, and apoptosis. In this review, we summarize the known disease-associated mutations of CHCHD2 in Asian and Caucasian populations, the physiological functions of CHCHD2, how CHCHD2 mutations contribute to α-synuclein pathology, and current animal models of CHCHD2. Further, we discuss the necessity of continued investigation into the divergent functions of CHCHD2 and CHCHD10 to determine how mutations in these similar mitochondrial proteins contribute to different neurodegenerative diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...