Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Orthop Translat ; 38: 241-255, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36514714

RESUMEN

Objective: Knee osteoarthritis (KOA) is a highly prevalent musculoskeletal disorder characterized by degeneration of cartilage and abnormal remodeling of subchondral bone (SCB). Teriparatide (PTH (1-34)) is an effective anabolic drug for osteoporosis (OP) and regulates osteoprotegerin (OPG)/receptor activator of nuclear factor ligand (RANKL)/RANK signaling, which also has a therapeutic effect on KOA by ameliorating cartilage degradation and inhibiting aberrant remodeling of SCB. However, the mechanisms of PTH (1-34) in treating KOA are still uncertain and remain to be explored. Therefore, we compared the effect of PTH (1-34) on the post-traumatic KOA mouse model to explore the potential therapeutic effect and mechanisms. Methods: In vivo study, eight-week-old male mice including wild-type (WT) (n â€‹= â€‹54) and OPG-/- (n â€‹= â€‹54) were investigated and compared. Post-traumatic KOA model was created by destabilization of medial meniscus (DMM). WT mice were randomly assigned into three groups: the sham group (WT-sham; n â€‹= â€‹18), the DMM group (WT-DMM; n â€‹= â€‹18), and the PTH (1-34)-treated group (WT-DMM â€‹+ â€‹PTH (1-34); n â€‹= â€‹18). Similarly, the OPG-/- mice were randomly allocated into three groups as well. The designed mice were executed at the 4th, 8th, and 12th weeks to evaluate KOA progression. To further explore the chondro-protective of PTH (1-34), the ATDC5 chondrocytes were stimulated with different concentrations of PTH (1-34) in vitro. Results: Compared with the WT-sham mice, significant wear of cartilage in terms of reduced cartilage thickness and glycosaminoglycan (GAG) loss was detected in the WT-DMM mice. PTH (1-34) exhibited cartilage-protective by alleviating wear, retaining the thickness and GAG contents. Moreover, the deterioration of the SCB was alleviated and the expression of PTH1R/OPG/RANKL/RANK were found to increase after PTH (1-34) treatment. Among the OPG-/- mice, the cartilage of the DMM mice displayed typical KOA change with higher OARSI score and thinner cartilage. The damage of the cartilage was alleviated but the abnormal remodeling of SCB didn't show any response to the PTH (1-34) treatment. Compared with the WT-DMM mice, the OPG-/--DMM mice caught more aggressive KOA with thinner cartilage, sever cartilage damage, and more abnormal remodeling of SCB. Moreover, both the damaged cartilage from the WT-DMM mice and the OPG-/--DMM mice were alleviated but only the deterioration of SCB in WT-DMM mice was alleviated after the administration of PTH (1-34). In vitro study, PTH (1-34) could promote the viability of chondrocytes, enhance the synthesis of extracellular matrix (ECM) (AGC, COLII, and SOX9) at the mRNA and protein level, but inhibit the secretion of inflammatory cytokines (TNF-α and IL-6). Conclusion: Both wear of the cartilage was alleviated and aberrant remodeling of the SCB was inhibited in the WT mice, but only the cartilage-protective effect was observed in the OPG-/- mice. PTH (1-34) exhibited chondro-protective effect by decelerating cartilage degeneration in vivo as well as by promoting the proliferation and enhancing ECM synthesis of chondrocytes in vitro. The current investigation implied that the rescue of the disturbed SCB is dependent on the regulation of OPG while the chondro-protective effect is independent of modulation of OPG, which provides proof for the treatment of KOA. The translational potential of this article: Systemic administration of PTH (1-34) could exert a therapeutic effect on both cartilage and SCB in different mechanisms to alleviate KOA progression, which might be a novel therapy for KOA.

2.
Mater Today Bio ; 15: 100316, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35721281

RESUMEN

Although as a mainstay modal for cancer treatment, the clinical effect of radiotherapy (RT) does not yet meet the need of cancer patients. Developing tumour-preferential radiosensitizers or combining RT with other treatments has been acknowledged highly necessary to enhance the efficacy of RT. The present study reported a multifunctional bioactive small-molecule (designated as IR-83) simultaneously exhibiting tumour-preferential accumulation, near-infrared imaging and radio/photodynamic/photothermal therapeutic effects. IR-83 was designed and synthesized by introducing 2-nitroimidazole as a radiosensitizer into the framework of heptamethine cyanine dyes inherently with tumour-targeting and photosensitizing effects. As results, IR-83 preferentially accumulated in tumours, suppressed tumour growth and metastasis by integrating radio/photodynamic/photothermal multimodal therapies. Mechanism studies showed that IR-83 accumulated in cancer cell mitochondria, induced excessive reactive oxygen species (ROS), and generated high heat after laser irradiation. On one hand, these phenomena led to mitochondrial dysfunction and a sharp decline in oxidative phosphorylation to lessen tissue oxygen consumption. On the other hand, excessive ROS in mitochondria destroyed the balance of antioxidants and oxidative stress balance by down-regulating the intracellular antioxidant system, and subsequently sensitized ionizing radiation-generated irreversible DNA double-strand breaks. Therefore, this study presented a promising radiosensitizer and a new alternative strategy to enhance RT efficacy via mitochondria-targeting multimodal synergistic treatment.

3.
Bioact Mater ; 16: 134-148, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35386313

RESUMEN

Orthopedic implants account for 99% of orthopedic surgeries, however, orthopedic implant-related infection is one of the most serious complications owing to the potential for limb-threatening sequelae and mortality. Current antibiotic treatments still lack the capacity to target bone infection sites, thereby resulting in unsatisfactory therapeutic effects. Here, the bone infection site targeting efficacy of D6 and UBI29-41 peptides was investigated, and bone-and-bacteria dual-targeted nanoparticles (NPs) with D6 and UBI29-41 peptides were first fabricated to target bone infection site and control the release of vancomycin in bone infection site. The results of this study demonstrated that the bone-and-bacteria dual-targeted mesoporous silica NPs exhibit excellent bone and bacteria targeting efficacy, excellent biocompatibility and effective antibacterial properties in vitro. Furthermore, in a rat model of orthopedic implant-related infection with methicillin-resistant Staphylococcus aureus, the growth of bacteria was evidently inhibited without cytotoxicity, thus realizing the early treatment of implant-related infection. Hence, the bone-and-bacteria dual-targeted molecule-modified NPs may target bacteria-infected bone sites and act as ideal candidates for the therapy of orthopedic implant-related infections.

4.
Acta Pharm Sin B ; 12(1): 451-466, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127398

RESUMEN

The combination of chemotherapy and immunotherapy motivates a potent immune system by triggering immunogenic cell death (ICD), showing great potential in inhibiting tumor growth and improving the immunosuppressive tumor microenvironment (ITM). However, the therapeutic effectiveness has been restricted by inferior drug bioavailability. Herein, we reported a universal bioresponsive doxorubicin (DOX)-based nanogel to achieve tumor-specific co-delivery of drugs. DOX-based mannose nanogels (DM NGs) was designed and choosed as an example to elucidate the mechanism of combined chemo-immunotherapy. As expected, the DM NGs exhibited prominent micellar stability, selective drug release and prolonged survival time, benefited from the enhanced tumor permeability and prolonged blood circulation. We discovered that the DOX delivered by DM NGs could induce powerful anti-tumor immune response facilitated by promoting ICD. Meanwhile, the released mannose from DM NGs was proved as a powerful and synergetic treatment for breast cancer in vitro and in vivo, via damaging the glucose metabolism in glycolysis and the tricarboxylic acid cycle. Overall, the regulation of tumor microenvironment with DOX-based nanogel is expected to be an effectual candidate strategy to overcome the current limitations of ICD-based immunotherapy, offering a paradigm for the exploitation of immunomodulatory nanomedicines.

5.
Mater Today Bio ; 12: 100154, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34778741

RESUMEN

Ferroptosis has received ever-increasing attention due to its unparalleled mechanism in eliminating resistant tumor cells. Nevertheless, the accumulation of toxic lipid peroxides (LPOs) at the tumor site is limited by the level of lipid oxidation. Herein, by leveraging versatile sodium alginate (ALG) hydrogel, a localized ferroptosis trigger consisting of gambogic acid (GA), 2,2'-azobis [2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH), and Ink (a photothermal agent), was constructed via simple intratumor injection. Upon 1064 â€‹nm laser irradiation, the stored AIPH rapidly decomposed into alkyl radicals (R•), which aggravated LPOs in tumor cells. Meanwhile, GA could inhibit heat shock protein 90 (HSP90) to reduce the heat resistance of tumor cells, and forcefully consume glutathione (GSH) to weaken the antioxidant capacity of cells. Systematic in vitro and in vivo experiments have demonstrated that synchronous consumption of GSH and increased reactive oxygen species (ROS) facilitated reduced expression of glutathione peroxidase 4 (GPX4), which further contributed to disruption of intracellular redox homeostasis and ultimately boosted ferroptosis. This all-in-one strategy has a highly effective tumor suppression effect by depleting and generating fatal active compounds at tumor sites, which would pave a new route for the controllable, accurate, and coordinated tumor treatments.

6.
Acta Pharm Sin B ; 11(10): 3244-3261, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34729313

RESUMEN

Major challenges for cancer treatment are how to effectively eliminate primary tumor and sufficiently induce immunogenic cell death (ICD) to provoke a robust immune response for metastasis control. Here, a self-assembled cascade bioreactor was developed to improve cancer treatment with enhanced tumor penetration and synergistic therapy of starvation, chemodynamic (CDT) and photothermal therapy. Ultrasmall FeS-GOx nanodots were synthesized with glucose oxidase (GOx) as template and induced by paclitaxel (PTX) to form self-assembling FeS-GOx@PTX (FGP) via hydrophobic interaction. After accumulated at tumor sites, FGP disassembles to smaller FeS-GOx for enhanced deep tumor penetration. GOx maintains high enzymatic activity to catalyze glucose with assistant of oxygen to generate hydrogen peroxide (H2O2) as starvation therapy. Fenton reaction involving the regenerated H2O2 in turn produced more hydroxyl radicals for enhanced CDT. Following near-infrared laser at 808 nm, FGPs displayed pronounced tumor inhibition in vitro and in vivo by the combination therapy. The consequent increased exposure to calreticulin amplified ICD and promoted dendritic cells maturation. In combination with anti-CTLA4 checkpoint blockade, FGP can absolutely eliminate primary tumor and avidly inhibit distant tumors due to the enhanced intratumoral infiltration of cytotoxic T lymphocytes. Our work presents a promising strategy for primary tumor and metastasis inhibition.

7.
Acta Pharm Sin B ; 11(8): 2585-2604, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34522599

RESUMEN

Invasive fungal infections (IFIs) represent a growing public concern for clinicians to manage in many medical settings, with substantial associated morbidities and mortalities. Among many current therapeutic options for the treatment of IFIs, amphotericin B (AmB) is the most frequently used drug. AmB is considered as a first-line drug in the clinic that has strong antifungal activity and less resistance. In this review, we summarized the most promising research efforts on nanocarriers for AmB delivery and highlighted their efficacy and safety for treating IFIs. We have also discussed the mechanism of actions of AmB, rationale for treating IFIs, and recent advances in formulating AmB for clinical use. Finally, this review discusses some practical considerations and provides recommendations for future studies in applying AmB for combating IFIs.

8.
Acta Pharm Sin B ; 11(4): 1047-1055, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33996416

RESUMEN

Psoriasis is an autoimmune inflammatory disease, where dendritic cells (DCs) play an important role in its pathogenesis. In our previous work, we have demonstrated that topical delivery of curcumin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) could treat Imiquimod (IMQ)-induced psoriasis-like mice. The objective of this study is to further elucidate biofate of PLGA NPs after intradermal delivery including DCs uptake, and their further trafficking in psoriasis-like mice model by using fluorescence probes. Two-sized DiO/DiI-loaded PLGA NPs of 50 ± 4.9 nm (S-NPs) and 226 ± 7.8 nm (L-NPs) were fabricated, respectively. In vitro cellular uptake results showed that NPs could be internalized into DCs with intact form, and DCs preferred to uptake larger NPs. Consistently, in vivo study showed that L-NPs were more captured by DCs and NPs were firstly transported to skin-draining lymph nodes (SDLN), then to spleens after 8 h injection, whereas more S-NPs were transported into SDLN and spleens. Moreover, FRET imaging showed more structurally intact L-NPs distributed in skins and lymph nodes. In conclusion, particle size can affect the uptake and trafficking of NPs by DCs in skin and lymphoid system, which needs to be considered in NPs tailing to treat inflammatory skin disease like psoriasis.

9.
Acta Pharm Sin B ; 11(2): 505-519, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643827

RESUMEN

Psoriatic arthritis (PsA) is a complicated psoriasis comorbidity with manifestations of psoriatic skin and arthritic joints, and tailoring specific treatment strategies for simultaneously delivering different drugs to different action sites in PsA remains challenging. We developed a need-based layered dissolving microneedle (MN) system loading immunosuppressant tacrolimus (TAC) and anti-inflammatory diclofenac (DIC) in different layers of MNs, i.e., TD-MN, which aims to specifically deliver TAC and DIC to skin and articular cavity, achieving simultaneous alleviation of psoriatic skin and arthritic joint lesions in PsA. In vitro and in vivo skin permeation demonstrated that the inter-layer retained TAC within the skin of ∼100 µm, while the tip-layer delivered DIC up to ∼300 µm into the articular cavity. TD-MN not only efficiently decreased the psoriasis area and severity index scores and recovered the thickened epidermis of imiquimod-induced psoriasis but also alleviated carrageenan/kaolin-induced arthritis even better than DIC injection through reducing joint swelling, muscle atrophy, and cartilage destruction. Importantly, TD-MN significantly inhibited the serum TNF-α and IL-17A in psoriatic and arthritic rats. The results support that this approach represents a promising alternative to multi-administration of different drugs for comorbidity, providing a convenient and effective strategy for meeting the requirements of PsA treatment.

10.
Bioact Mater ; 6(1): 64-74, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32817914

RESUMEN

Soft tissue sealing around implants acts as a barrier between the alveolar bone and oral environment, protecting implants from the invasion of bacteria or external stimuli. In this work, magnesium (Mg) and zinc (Zn) are introduced into titanium by plasma immersed ion implantation technology, and their effects on the behaviors of human gingival fibroblasts (HGFs) as well as the underlying mechanisms are investigated. Surface characterization confirms Mg and Zn exist on the surface in metallic and oxidized states. Contact angle test suggests that surface wettability of titanium changes after ion implantation and thus influences protein adsorption of surfaces. In vitro studies disclose that HGFs on Mg ion-implanted samples exhibit better adhesion and migration while cells on Zn ion-implanted samples have higher proliferation rate and amounts. The results of immunofluorescence staining and real-time reverse-transcriptase polymerase chain reaction (RT-PCR) suggest that Mg mainly regulates the motility and adhesion of HGFs through activating the MAPK signal pathway whereas Zn influences HGFs proliferation by triggering the TGF-ß signal pathway. The synergistic effect of Mg and Zn ions ensure that HGFs cultured on co-implanted samples possessed both high proliferation rate and motility, which are critical to soft tissue sealing of implants.

11.
Acta Pharm Sin B ; 9(2): 397-409, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30972285

RESUMEN

Hyaluronic acid (HA) is a natural ligand of tumor-targeted drug delivery systems (DDS) due to the relevant CD44 receptor overexpressed on tumor cell membranes. However, other HA receptors (HARE and LYVE-1) are also overexpressing in the reticuloendothelial system (RES). Therefore, polyethylene glycol (PEG) modification of HA-based DDS is necessary to reduce RES capture. Unfortunately, pegylation remarkably inhibits tumor cellular uptake and endosomal escapement, significantly compromising the in vivo antitumor efficacy. Herein, we developed a Dox-loaded HA-based transformable supramolecular nanoplatform (Dox/HCVBP) to overcome this dilemma. Dox/HCVBP contains a tumor extracellular acidity-sensitive detachable PEG shell achieved by a benzoic imine linkage. The in vitro and in vivo investigations further demonstrated that Dox/HCVBP could be in a "stealth" state at blood stream for a long circulation time due to the buried HA ligands and the minimized nonspecific interaction by PEG shell. However, it could transform into a "recognition" state under the tumor acidic microenvironment for efficient tumor cellular uptake due to the direct exposure of active targeting ligand HA following PEG shell detachment. Such a transformative concept provides a promising strategy to resolve the dilemma of natural ligand-based DDS with conflicting two processes of tumor cellular uptake and in vivo nonspecific biodistribution.

12.
MethodsX ; 2: 24-32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26150968

RESUMEN

Protoplasts have been widely used for genetic transformation, cell fusion, and somatic mutation due to the absence of a cell wall. However, without the protection of a cell wall, protoplasts are easy to rupture and aggregate during washing, collecting, and gene transfection. In this work, we propose a simple and effective silica/alginate two-step method to immobilize protoplasts with advantages in experimental manipulation and microscopic imaging, as well as in potentially studying cell biological processes such as secretion and metabolism. The proposed two-step immobilization method adopts Transwell with clear tissue culture-treated membrane to support protoplasts in the form of uniform thin layer, which has three unique properties. •The tissue culture-treated membrane has a good affinity for the plant cell; thus, protoplasts can spread evenly and form a very thin layer.•There are more choices for membrane pore size, depending on the application.•It is very convenient to change or collect the solution without mechanically disturbing the protoplasts. This simple and effective silica sol-gel/alginate two-step immobilization of protoplasts in Transwell has great potential for applications in genetic transformation, metabolite production, and migration assays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...