Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 261: 122036, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38981350

RESUMEN

Nitrogen and phosphorus are universally recognized as limiting elements in the eutrophication processes affecting the majority of the world's lakes, reservoirs, and coastal ecosystems. However, despite extensive research spanning several decades, critical questions in eutrophication science remain unanswered. For example, there is still much to understand about the interactions between carbon limitation and ecosystem stability, and the availability of carbon components adds significant complexity to aquatic resource management. Mounting evidence suggests that aqueous CO2 could be a limiting factor, influencing the structure and succession of aquatic plant communities, especially in karstic lake and reservoir ecosystems. Moreover, the fertilization effect of aqueous CO2 has the potential to enhance carbon sequestration and phosphorus removal. Therefore, it is important to address these uncertainties to achieve multiple positive outcomes, including improved water quality and increased carbon sinks in karst lakes and reservoirs.


Asunto(s)
Carbono , Lagos , Eutrofización , Fósforo , Ecosistema , Fertilizantes , Dióxido de Carbono , Secuestro de Carbono , Nitrógeno
2.
Water Res ; 222: 118912, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35932705

RESUMEN

In marine investigations, the maximum chlorophyll-a (Chla) concentration is often reported to occur at a specific depth below the ocean surface, a phenomenon known as subsurface Chla maxima (SCM). However, SCM has long been overlooked in artificial reservoirs, which may lead to a serious underestimation of the primary productivity level and trophic status of reservoirs. To better understand the temporal and spatial variability of SCM and the mechanisms leading to SCM development, this study conducted a detailed survey in a large subtropical reservoir (Xinanjiang Reservoir, XAJR) from September 2020 to August 2021. The seasonal thermal stratification, in situ variables (WT, pH, DO and Chla), nutrient concentrations (DSi, NO3-, DIP and DCO2), Chla maxima depth and magnitude of the riverine region (S1), transition region (S2) and the central part of the XAJR (S3 and S4) were all thoroughly investigated. Thermal stratification and SCM in XAJR exhibited significant seasonal and spatial heterogeneity. Phytoplankton biomass in the epilimnion was limited by dissolved CO2 from June to October in the warm seasons, while it was primarily limited by phosphorus in the other seasons, according to the nutrient limitation analysis. Along the water column, dissolved CO2 limitation occurred mainly above the SCM layer, and the water column below the SCM layer gradually transitioned from dissolved CO2 limitation to phosphorus limitation. Furthermore, as the thermal stratification developed, the upstream water mass moves along the middle of the water column as density flow toward the reservoir, providing nutrients for the development of the SCM. This research contributes to a better understanding of the temporal and spatial variation of SCM and nutrient supply in deep and large stratified reservoirs.


Asunto(s)
Dióxido de Carbono , Fósforo , China , Clorofila/análisis , Monitoreo del Ambiente , Eutrofización , Fósforo/análisis , Fitoplancton , Estaciones del Año , Agua/análisis
3.
BMC Microbiol ; 20(1): 149, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32513108

RESUMEN

BACKGROUND: Bio-based succinic acid holds promise as a sustainable platform chemical. Its production through microbial fermentation concurs with the fixation of CO2, through the carboxylation of phosphoenolpyruvate. Here, we studied the effect of the available CO2 on the metabolism of Pseudoclostridium thermosuccinogenes, the only known succinate producing thermophile. Batch cultivations in bioreactors sparged with 1 and 20% CO2 were conducted that allowed us to carefully study the effect of CO2 limitation. RESULTS: Formate yield was greatly reduced at low CO2 concentrations, signifying a switch from pyruvate formate lyase (PFL) to pyruvate:ferredoxin oxidoreductase (PFOR) for acetyl-CoA formation. The corresponding increase in endogenous CO2 production (by PFOR) enabled succinic acid production to be largely maintained as its yield was reduced by only 26%, thus also maintaining the concomitant NADH re-oxidation, essential for regenerating NAD+ for glycolysis. Acetate yield was slightly reduced as well, while that of lactate was slightly increased. CO2 limitation also prompted the formation of significant amounts of ethanol, which is only marginally produced during CO2 excess. Altogether, the changes in fermentation product yields result in increased ferredoxin and NAD+ reduction, and increased NADPH oxidation during CO2 limitation, which must be linked to reshuffled (trans) hydrogenation mechanisms of those cofactors, in order to keep them balanced. RNA sequencing, to investigate transcriptional effects of CO2 limitation, yielded only ambiguous results regarding the known (trans) hydrogenation mechanisms. CONCLUSIONS: The results hinted at a decreased NAD+/NADH ratio, which could ultimately be responsible for the stress observed during CO2 limitation. Clear overexpression of an alcohol dehydrogenase (adhE) was observed, which may explain the increased ethanol production, while no changes were seen for PFL and PFOR expression that could explain the anticipated switch based on the fermentation results.


Asunto(s)
Acetilcoenzima A/metabolismo , Dióxido de Carbono/metabolismo , Clostridiales/crecimiento & desarrollo , Ácido Succínico/metabolismo , Acetiltransferasas/metabolismo , Técnicas de Cultivo Celular por Lotes , Reactores Biológicos/microbiología , Clostridiales/metabolismo , Fermentación , Glucólisis , Piruvato-Sintasa/metabolismo , Análisis de Secuencia de ARN
4.
Open Life Sci ; 15(1): 923-938, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33817279

RESUMEN

Variation in atmospheric carbon dioxide (CO2) concentration can dictate plant growth and development and shape plant evolution. For paired populations of 31 Arabidopsis accessions, respectively, grown under 100 or 380 ppm CO2, we compared phenotypic traits related to vegetative growth and flowering time. Four accessions showed the least variation in measured growth traits between 100 ppm CO2 and 380 ppm CO2 conditions, though all accessions exhibited a dwarf stature with reduced biomass under low CO2. Our comparison of accessions also incorporated the altitude (indicated in meters) above sea level at which they were originally collected. Notably, An-1 (50 m), Est (50 m), Ws-0 (150 m), and Ler-0 (600 m) showed the least differences (lower decrease or increase) between treatments in flowering time, rosette leaf number, specific leaf weight, stomatal density, and less negative δ13C values. When variations for all traits and seedset were considered together, Ws-0 exhibited the least change between treatments. Our results showed that physiological and phenotypic responses to low CO2 varied among these accessions and did not correlate linearly with altitude, thus suggesting that slower growth or smaller stature under ambient CO2 may potentially belie a fitness advantage for sustainable growth under low CO2 availability.

5.
Bioresour Technol ; 287: 121422, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31085427

RESUMEN

Hydrogen produced from periodic excess of electrical energy may be added to biogas reactors where it is converted to CH4 that can be utilized in the existing energy grid. The major challenge with this technology is gas-to-liquid mass transfer limitation. The microbial conversions in reactors designed for hydrogenotrophic methanogenesis were studied with microsensors for H2, pH, and CO2. The H2 consumption potential was dependent on the CO2 concentration, but could partially recover after CO2 depletion. Reactors with 3-dimensional biofilm carrier material and a large gas headspace allowed for a methanogenic biofilm in direct contact with the gas phase. A high density of Methanoculleus sp. in the biofilm mediated a high rate of CH4 production, and it was calculated that a reactor filled with 75% carrier material could mediate a biogas upgrading from 50 to 95% CH4 within 24 h when an equivalent amount of H2 was added.


Asunto(s)
Biocombustibles , Euryarchaeota , Biopelículas , Reactores Biológicos , Dióxido de Carbono , Metano
6.
Mar Drugs ; 15(12)2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29244744

RESUMEN

A limitation in carbon dioxide (CO2), which occurs as a result of natural environmental variation, suppresses photosynthesis and has the potential to cause photo-oxidative damage to photosynthetic cells. Oxygenic phototrophs have strategies to alleviate photo-oxidative damage to allow life in present atmospheric CO2 conditions. However, the mechanisms for CO2 limitation acclimation are diverse among the various oxygenic phototrophs, and many mechanisms remain to be discovered. In this study, we found that the gene encoding a CO2 limitation-inducible protein, ColA, is required for the cyanobacterium Synechococcus sp. PCC 7002 (S. 7002) to acclimate to limited CO2 conditions. An S. 7002 mutant deficient in ColA (ΔcolA) showed lower chlorophyll content, based on the amount of nitrogen, than that in S. 7002 wild-type (WT) under ambient air but not high CO2 conditions. Both thermoluminescence and protein carbonylation detected in the ambient air grown cells indicated that the lack of ColA promotes oxidative stress in S. 7002. Alterations in the photosynthetic O2 evolution rate and relative electron transport rate in the short-term response, within an hour, to CO2 limitation were the same between the WT and ΔcolA. Conversely, these photosynthetic parameters were mostly lower in the long-term response of a few days in ΔcolA than in the WT. These data suggest that ColA is required to sustain photosynthetic activity for living under ambient air in S. 7002. The unique phylogeny of ColA revealed diverse strategies to acclimate to CO2 limitation among cyanobacteria.


Asunto(s)
Organismos Acuáticos/fisiología , Proteínas Bacterianas/metabolismo , Dióxido de Carbono/metabolismo , Fotosíntesis/fisiología , Synechococcus/fisiología , Proteínas Bacterianas/genética , Clorofila/metabolismo , Técnicas de Inactivación de Genes , Estrés Oxidativo
7.
J Plant Physiol ; 217: 49-56, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28705662

RESUMEN

Cyanidioschyzon merolae (C. merolae) is an acidophilic red alga growing in a naturally low carbon dioxide (CO2) environment. Although it uses a ribulose 1,5-bisphosphate carboxylase/oxygenase with high affinity for CO2, the survival of C. merolae relies on functional photorespiratory metabolism. In this study, we quantified the transcriptomic response of C. merolae to changes in CO2 conditions. We found distinct changes upon shifts between CO2 conditions, such as a concerted up-regulation of photorespiratory genes and responses to carbon starvation. We used the transcriptome data set to explore a hypothetical CO2 concentrating mechanism in C. merolae, based on the assumption that photorespiratory genes and possible candidate genes involved in a CO2 concentrating mechanism are co-expressed. A putative bicarbonate transport protein and two α-carbonic anhydrases were identified, which showed enhanced transcript levels under reduced CO2 conditions. Genes encoding enzymes of a PEPCK-type C4 pathway were co-regulated with the photorespiratory gene cluster. We propose a model of a hypothetical low CO2 compensation mechanism in C. merolae integrating these low CO2-inducible components.


Asunto(s)
Dióxido de Carbono/farmacología , Extremófilos/metabolismo , Rhodophyta/metabolismo , Transcripción Genética/efectos de los fármacos , Dióxido de Carbono/metabolismo , Relación Dosis-Respuesta a Droga , Extremófilos/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Rhodophyta/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
8.
Oecologia ; 81(3): 364-368, 1989 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28311190

RESUMEN

Fourteen temperate, submerged macrophytes were cultivated in the laboratory at high DIC levels (3.3-3.8 mM), 10.4-14.4 mol photons (PAR) m-2 d-1 and 15°C. Photosynthesis at photosaturation ranged between 0.59 and 17.98 mg O2 g-1 DW h-1 at ambient pH (8.3) and were markedly higher between 1.76 and 47.11 mg O2 g-1 DW h-1 at pH 6.5 under elevated CO2 concentrations. Photosynthetic rates were significantly related to both the relative surface area and the chlorophyll content of the leaves. Consequently, the photosynthetic rate was much less variable among the species when expressed per surface area and chlorophyll content instead of dry mass. The chlorophyll content was probably a main predictor of photosynthesis of submerged leaves because of the direct relationship of chlorophyll to the light harvesting capacity and/or a coupling to the capacity for photosynthetic electron transport and carboxylation. A comparison with terrestrial leaves characterized the submerged leaves by their low chlorophyll concentrations and low photosynthetic rates per surface area due to the thin leaves. Photosynthetic rates per chlorophyll content in submerged leaves at CO2 saturation, however, were at the same level as photosynthesis in terrestrial leaves measured at ambient CO2 when appropriate corrections were made for differences in incubation temperature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...