Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(32): 44608-44648, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38961021

RESUMEN

The urgent need to address global carbon emissions and promote sustainable energy solutions has led to a growing interest in carbon dioxide (CO2) conversion technologies. Among these, the transformation of CO2 into methanol (MeOH) has gained prominence as an effective mitigation strategy. This review paper provides a comprehensive exploration of recent advances and applications in the direct utilization of CO2 for the synthesis of MeOH, encompassing various aspects from catalysts to market analysis, environmental impact, and future prospects. We begin by introducing the current state of CO2 mitigation strategies, highlighting the significance of carbon recycling through MeOH production. The paper delves into the chemistry and technology behind the conversion of CO2 into MeOH, encompassing key themes such as feedstock selection, material and energy supply, and the various conversion processes, including chemical, electrochemical, photochemical, and photoelectrochemical pathways. An in-depth analysis of heterogeneous and homogeneous catalysts for MeOH synthesis is provided, shedding light on the advantages and drawbacks of each. Furthermore, we explore diverse routes for CO2 hydrogenation into MeOH, emphasizing the technological advances and production processes associated with this sustainable transformation. As MeOH holds a pivotal role in a wide range of chemical applications and emerges as a promising transportation fuel, the paper explores its various chemical uses, transportation, storage, and distribution, as well as the evolving MeOH market. The environmental and energy implications of CO2 conversion to MeOH are discussed, including a thermodynamic analysis of the process and cost and energy evaluations for large-scale catalytic hydrogenation.


Asunto(s)
Dióxido de Carbono , Metanol , Metanol/química , Catálisis
2.
Natl Sci Rev ; 11(8): nwae189, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39007000

RESUMEN

A major impediment to the development of the efficient use of artificial photosynthesis is the lack of highly selective and efficient photocatalysts toward the conversion of CO2 by sunlight energy at room temperature and ambient pressure. After many years of hard work, we finally completed the synthesis of graphdiyne-based palladium quantum dot catalysts containing high-density metal atom steps for selective artificial photosynthesis. The well-designed interface structure of the catalyst is composed of electron-donor and acceptor groups, resulting in the obvious incomplete charge-transfer phenomenon between graphdiyne and plasmonic metal nanostructures on the interface. These intrinsic characteristics are the origin of the high performance of the catalyst. Studies on its mechanism reveal that the synergism between 'hot electron' from local surface plasmon resonance and rapid photogenerated carrier separation at the ohmic contact interface accelerates the multi-electron reaction kinetics. The catalyst can selectively synthesize CH4 directly from CO2 and H2O with selectivity of near 100% at room temperature and pressure, and exhibits transformative performance, with an average CH4 yield of 26.2 µmol g-1 h-1 and remarkable long-term stability.

3.
ACS Appl Mater Interfaces ; 16(24): 31085-31097, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38837183

RESUMEN

Carbon dioxide (CO2) conversion into value-added chemicals/fuels by utilizing solar energy is a sustainable way to mitigate our dependence on fossil fuels and stimulate a carbon-neutral economy. However, the efficient and affordable conversion of CO2 is still an ongoing challenge. Here, we report an interfacially synthesized visible-light-active Ni(II)-integrated covalent organic frameworks (TaTpBpy-Ni COFs) film as a photocatalyst for efficient CO2 conversion into carboxylic acid under ambient conditions. Notably, the TaTpBpy-Ni COFs film showed excellent photocatalytic activity for the carboxylation of various arylamines with CO2 to the corresponding arylcarboxylic acid via C-N bond activation under solar-light irradiation. Moreover, this carboxylation protocol exhibits mild reaction conditions and good functional group tolerance without the necessity of using stoichiometric metallic reductants. This work shows a benchmark example of not only the interfacially synthesized COFs film used as a photocatalyst for solar-light energy utilization but also the selective solar chemical production system of arylcarboxylic acid directly from CO2.

4.
J Colloid Interface Sci ; 673: 943-957, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38917669

RESUMEN

The interest in using carbon nitrides (CN) for CO2 conversion has stimulated extensive research on CN synthesis. Herein, we report the synthesis of two novel CN materials using low-cost commercially available precursors at low temperatures in a short duration of time. Two CN materials, one derived from 5-amino tetrazole (named 4NZ-CN) and the other derived from 3, 5-diamino-1, 2, 4-triazole (named 3NZ-CN) precursors, are prepared by refluxing these precursors for 2 h at 100 °C. 4NZ-CN and 3NZ-CN catalysts show higher surface areas (55.80 and 52.00 m2 g-1) and more basic sites (10.05 and 5.65 mmol g-1) than the conventional graphitic carbon nitride (g-C3N4) derived from melamine, for which the corresponding values are 9.20 m2 g-1 and 0.62 mmol g-1, respectively. In addition, both CN exhibit a 3-fold higher catalytic activity for CO2 cycloaddition to epoxides than g-C3N4. The structure-activity relationship was ascertained using a combination of experimental and computational studies, and a catalytic mechanism was proposed. This work provides a facile strategy for the synthesis of novel CN materials at relatively low temperatures, and the developed catalysts show remarkable performance in the conversion of CO2 to value-added chemicals.

5.
Angew Chem Int Ed Engl ; : e202407638, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941107

RESUMEN

Near-infrared light-driven photocatalytic CO2 reduction (NIR-CO2PR) holds tremendous promise for the production of valuable commodity chemicals and fuels. However, designing photocatalysts capable of reducing CO2 with low energy NIR photons remains challenging. Herein, a novel NIR-driven photocatalyst comprising an anionic Ru complex intercalated between NiAl-layered double hydroxide nanosheets (NiAl-Ru-LDH) is shown to deliver efficient CO2 photoreduction (0.887 µmol h-1) with CO selectivity of 84.81% under 1200 nm illumination and excellent stability over 50 testing cycles. This remarkable performance results from the intercalated Ru complex lowering the LDH band gap (0.98 eV) via a compression-related charge redistribution phenomenon. Furthermore, transient absorption spectroscopy data verified light-induced electron transfer from the Ru complex towards the LDH sheets, increasing the availability of electrons to drive CO2PR. The presence of hydroxyl defects in the LDH sheets promotes the adsorption of CO2 molecules and lowers the energy barriers for NIR-CO2PR to CO. To our knowledge, this is one of the first reports of NIR-CO2PR at wavelengths up to 1200 nm in LDH-based photocatalyst systems.

6.
ChemSusChem ; : e202400440, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713146

RESUMEN

The cathodic reduction of pressurized CO2 (PrCO2CR) at suitable cathodes can allow to produce various chemicals, such as formic acid/formate (FA) and carbon monoxide or synthesis gas, with high faradic efficiencies (FEs) and productivities. Here, we have performed the conversion of CO2 in an undivided pressurized electrochemical reactor using silver cathode in order to determine the optimal values of CO2 pressure and current density. It was found that the plot FE vs. pressure resulted in a curve with a maximum. Similarly, an optimal value of current density can be selected for the PrCO2CR. The competition between the production of carbon monoxide and formic acid/formate is strongly affected by both the pressure and the current density. Eventually the effect of pressure and current density on the economic figures of the process was evaluated.

7.
Water Res ; 259: 121815, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820732

RESUMEN

Microbial electrosynthesis (MES) cells exploit the ability of microbes to convert CO2 into valuable chemical products such as methane and acetate, but high rates of chemical production may need to be mediated by hydrogen and thus require a catalyst for the hydrogen evolution reaction (HER). To avoid the usage of precious metal catalysts and examine the impact of the catalyst on the rate of methane generation by microbes on the electrode, we used a carbon felt cathode coated with NiMo/C and compared performance to a bare carbon felt or a Pt/C-deposited cathode. A zero-gap configuration containing a cation exchange membrane was developed to produce a low internal resistance, limit pH changes, and enhance direct transport of H2 to microorganisms on the biocathode. At a fixed cathode potential of -1 V vs Ag/AgCl, the NiMo/C biocathode enabled a current density of 23 ± 4 A/m2 and a high methane production rate of 4.7 ± 1.0 L/L-d. This performance was comparable to that using a precious metal catalyst (Pt/C, 23 ± 6 A/m2, 5.4 ± 2.8 L/L-d), and 3-5 times higher than plain carbon cathodes (8 ± 3 A/m2, 1.0 ± 0.4 L/L-d). The NiMo/C biocathode was operated for over 120 days without observable decay or severe cathode catalyst leaching, reaching an average columbic efficiency of 53 ± 9 % based on methane production under steady state conditions. Analysis of microbial community on the biocathode revealed the dominance of the hydrogenotrophic genus Methanobacterium (∼40 %), with no significant difference found for biocathodes with different materials. These results demonstrated that HER catalysts improved rates of methane generation through facilitating hydrogen gas evolution to an attached biofilm, and that the long-term enhancement of methane production in MES was feasible using a non-precious metal catalyst and a zero-gap cell design.


Asunto(s)
Fuentes de Energía Bioeléctrica , Electrodos , Metano , Metano/metabolismo , Catálisis , Hidrógeno/metabolismo
8.
Molecules ; 29(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38792168

RESUMEN

The cycloaddition of CO2 to epoxides to afford versatile and useful cyclic carbonate compounds is a highly investigated method for the nonreductive upcycling of CO2. One of the main focuses of the current research in this area is the discovery of readily available, sustainable, and inexpensive catalysts, and of catalytic methodologies that allow their seamless solvent-free recycling. Water, often regarded as an undesirable pollutant in the cycloaddition process, is progressively emerging as a helpful reaction component. On the one hand, it serves as an inexpensive hydrogen bond donor (HBD) to enhance the performance of ionic compounds; on the other hand, aqueous media allow the development of diverse catalytic protocols that can boost catalytic performance or ease the recycling of molecular catalysts. An overview of the advances in the use of aqueous and biphasic aqueous systems for the cycloaddition of CO2 to epoxides is provided in this work along with recommendations for possible future developments.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38607267

RESUMEN

The rapid population growth coupled with rising global energy demand underscores the crucial importance of advancing intermittent renewable energy technologies and low-emission vehicles, which will be pivotal toward carbon neutralization. Reversible solid oxide cells (RSOCs) hold significant promise as a technology for high-efficiency power generation, long-term chemical energy storage, and CO2 conversion. Herein, RSOCs were, for the first time, studied to power electric vehicles. Based on our experimental results, an ideal RSOC stack was established with reasonable assumptions. Subsequently, through analysis and comparison of important merits, such as power densities, energy densities, charging/refueling time, and fuel economy of RSOC-based electric vehicles (RSOCEVs), conventional internal combustor vehicles (ICEVs), and battery-based electric vehicles (BEVs), the advantages and prospects of RSOCEVs were highlighted. Our H2-H2O RSOCs exhibit high electrochemical performances in both fuel cell (peak power density = 1.6 W cm-2 at 750 °C) and electrolysis modes (current density = 2.0 A cm-2 at 1.3 V and 750 °C), along with durable reversible operation under a wide range of conditions. In CO-CO2, our RSOCs achieved excellent performance in fuel cell mode (peak power density = 0.68 cm-2 at 700 °C). Furthermore, a world record current density of 3.4 A cm-2 at 1.5 V and 750 °C was achieved in the CO2 electrolysis mode. Moreover, an assessment of the CO2 electrolysis efficiency was conducted, offering insights for establishing energy storage strategies and mitigating CO2 emissions. Therefore, the RSOC technology has the potential to assume a central role in a future energy system with abundant renewable power generation while mitigating the CO2 released from fossil fuels.

10.
Angew Chem Int Ed Engl ; 63(29): e202406007, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687057

RESUMEN

While the mild production of syngas (a mixture of H2 and CO) from CO2 and H2O is a promising alternative to the coal-based chemical engineering technologies, the inert nature of CO2 molecules, unfavorable splitting pathways of H2O and unsatisfactory catalysts lead to the challenge in the difficult integration of high CO2 conversion efficiency with produced syngas with controllable H2/CO ratios in a wide range. Herein, we report an efficient plasma-driven catalytic system for mild production of pure syngas over porous metal-organic framework (MOF) catalysts with rich confined H2O molecules, where their syngas production capacity is regulated by the in situ evolved ligand defects and the plasma-activated intermediate species of CO2 molecules. Specially, the Cu-based catalyst system achieves 61.9 % of CO2 conversion and the production of pure syngas with wide H2/CO ratios of 0.05 : 1-4.3 : 1. As revealed by the experimental and theoretical calculation results, the in situ dynamic structure evolution of Cu-containing MOF catalysts favors the generation of coordinatively unsaturated metal active sites with optimized geometric and electronic characteristics, the adsorption of reactants, and the reduced energy barriers of syngas-production potential-determining steps of the hydrogenation of CO2 to *COOH and the protonation of H2O to *H.

11.
Chemistry ; 30(31): e202304148, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38564294

RESUMEN

Solid solutions are garnering substantial attention in the realm of solar energy utilization due to their tunable electronic properties, encompassing band edge positions and charge-carrier mobilities. In this study, we designed and synthesized Co1-xZnxFe2xGa2-2xO4 (0

12.
ChemSusChem ; : e202400518, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687205

RESUMEN

A modified Metal-Organic Framework UiO-66-NH2-based photocathode in a zero-gap gas phase photoelectrolyzer was applied for CO2 reduction. Four types of porous carbon fiber layers with different wettability were employed to tailor the local environment of the cathodic surface reactions, optimizing activity and selectivity towards formate, methanol, and ethanol. Results are explained by mass transport through the different type and arrangement of carbon fiber support layers in the photocathodes and the resulting local environment at the UiO-66-NH2 catalyst. The highest energy-to-fuel conversion efficiency of 1.06 % towards hydrocarbons was achieved with the most hydrophobic carbon fiber (H23C2). The results are a step further in understanding how the design and composition of the photoelectrodes in photoelectrochemical electrolyzers can impact the CO2 reduction efficiency and selectivity.

13.
Adv Mater ; : e2312093, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683953

RESUMEN

Carbon dioxide (CO2), a member of greenhouse gases, contributes significantly to maintaining a tolerable environment for all living species. However, with the development of modern society and the utilization of fossil fuels, the concentration of atmospheric CO2 has increased to 400 ppm, resulting in a serious greenhouse effect. Thus, converting CO2 into valuable chemicals is highly desired, especially with renewable solar energy, which shows great potential with the manner of photothermal catalysis. In this review, recent advancements in photothermal CO2 conversion are discussed, including the design of catalysts, analysis of mechanisms, engineering of reactors, and the corresponding techno-economic analysis. A guideline for future investigation and the anthropogenic carbon cycle are provided.

14.
Proc Natl Acad Sci U S A ; 121(18): e2319751121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38662548

RESUMEN

Defect engineering has been widely applied in semiconductors to improve photocatalytic properties by altering the surface structures. This study is about the transformation of inactive WO3 nanosheets to a highly effective CO2-to-CH4 conversion photocatalyst by introducing surface-ordered defects in abundance. The nonstoichiometric WO3-x samples were examined by using aberration-corrected electron microscopy. Results unveil abundant surface-ordered terminations derived from the periodic {013} stacking faults with a defect density of 20.2%. The {002} surface-ordered line defects are the active sites for fixation CO2, transforming the inactive WO3 nanosheets into a highly active catalyst (CH4: O2 = 8.2: 16.7 µmol h-1). We believe that the formation of the W-O-C-W-O species is a critical step in the catalytic pathways. This work provides an atomic-level comprehension of the structural defects of catalysts for activating small molecules.

15.
ACS Appl Mater Interfaces ; 16(17): 21799-21806, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635921

RESUMEN

Because of their high theoretical energy density, metal-CO2 batteries based on Li, Na, or K have attracted increasing attention recently for meeting the growing demands of CO2 recycling and conversion into electrical energy. However, the scarcity of active anode material resources, high cost, as well as safety concerns of Li, Na, and K create obstacles for practical applications. Herein, we demonstrate for the first time a high-efficiency (η = 77.2%) rechargeable Fe-CO2 battery that is composed of iron (Fe) anode and MoS2-catalysts deposited carbon cathode. MoS2 catalysts are crucial to the successful acceleration of reaction kinetics of Fe during charge and discharge with a minimum overpotential of the cell. The Fe-CO2 cell has a higher initial specific capacity of 12,500 mA h g-1 with an average discharge potential of 0.65 V and operates reversibly with a lower overpotential than that of Li-CO2 batteries with a cutoff capacity of 500 mA h g-1. Our Fe-CO2 battery can effectively convert CO2 greenhouse gas into electrical energy by consuming 1 ton of CO2 with usage of 1.23 tons of iron.

16.
Heliyon ; 10(5): e27378, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38486780

RESUMEN

Modern industries rapid expansion has heightened energy needs and accelerated fossil fuel depletion, contributing to global warming. Additionally, organic pollutants present substantial risks to aquatic ecosystems due to their stability, insolubility, and non-biodegradability. Scientists are currently researching high-performance materials to address these issues. LaFeO3 nanosheets (LFO-NS) were synthesized in this study using a solvothermal method with polyvinylpyrrolidone (PVP) as a soft template. The LFO-NS demonstrate superior performance, large surface area and charge separation than that of LaFeO3 nanoparticles (LFO-NP). The LFO-NS performance is further upgraded by incorporating ZIF-67. Our results confirmed the ZIF-67/LFO-NS nanocomposite have superior performances than pure LFO-NP and ZIF-67. The integration of ZIF-67 has enhanced the charge separation and promote the surface area of LFO-NSwhich was confirmed by various characterization techniques including TEM, HRTEM, DRS, EDX, XRD, FS, XPS, FT-IR, BET, PL, and RAMAN. The 5ZIF-67/LFO-NS sample showed significant activities for CO2 conversion, malachite green degradation, and antibiotics (cefazolin, oxacillin, and vancomycin) degradation. Furthermore, stability tests have confirmed that our optimal sample very active and stable. Furthermore, based on scavenger experiments and the photocatalytic degradation pathways, it has been established that H+ and •O2- are vital in the decomposition of MG and antibiotics. Our research work will open new gateways to prepare MOFs-Perovskites nanocatalysts for exceptional CO2 conversion, organic pollutants and antibiotics degradation.

17.
ChemSusChem ; : e202400169, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38484131

RESUMEN

Plasma-based CO2 conversion has attracted increasing interest. However, to understand the impact of plasma operation on post-plasma processes, we studied the effect of adding N2, N2/CH4 and N2/CH4/H2O to a CO2 gliding arc plasmatron (GAP) to obtain valuable insights into their impact on exhaust stream composition and temperature, which will serve as feed gas and heat for post-plasma catalysis (PPC). Adding N2 improves the CO2 conversion from 4 % to 13 %, and CH4 addition further promotes it to 44 %, and even to 61 % at lower gas flow rate (6 L/min), allowing a higher yield of CO and hydrogen for PPC. The addition of H2O, however, reduces the CO2 conversion from 55 % to 22 %, but it also lowers the energy cost, from 5.8 to 3 kJ/L. Regarding the temperature at 4.9 cm post-plasma, N2 addition increases the temperature, while the CO2/CH4 ratio has no significant effect on temperature. We also calculated the temperature distribution with computational fluid dynamics simulations. The obtained temperature profiles (both experimental and calculated) show a decreasing trend with distance to the exhaust and provide insights in where to position a PPC bed.

18.
ChemSusChem ; 17(12): e202301927, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38337107

RESUMEN

Photocatalytic CO2 conversion towards C2+ fuels is a promising technology for simultaneously achieving carbon neutrality and alleviating the energy crisis. However, this strategy is inefficient due to the difficulty of both multi-electron transfer and C-C coupling during C2+ formation. In this work, CuInS2/MXene heterostructure with Cu vacancy is rationally designed by in situ hydrothermal synthesis. The VCu-CuInS2/MXene heterostructure has a suitable band structure and tight interface contact. Catalytic performances under different testing conditions, in situ spectroscopy, and COMSOL simulation reveal that LSPR-activated MXene promotes the formation of crucial intermediate CH2* and triggers the C-C coupling process under near-infrared light, as the key to acetate. Moreover, in situ XPS analysis, DFT calculations, and photoelectrochemical characterizations unveil that copper vacancy can promote charge transfer from CuInS2 to MXene and boost local electron aggregation on the MXene, further enhancing the photocatalytic efficiency and selectivity of C2 products. Contributing to the synergistic effect of copper vacancy and plasmonic MXene, VCu-CuInS2/MXene achieved excellent CO2RR activity with an acetate evolution rate of 250.0 µmol/h/g and a selectivity of 97.5 % under the full spectrum irradiation, which is 38.8 and 3.3 times higher than that of VCu-CuInS2 and CuInS2/MXene, respectively.

19.
Small ; 20(29): e2309707, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38386245

RESUMEN

Mismatched reaction kinetics of CO2 reduction and H2O oxidation is the main obstacle limiting the overall photocatalytic CO2 conversion. Here, a molten salt strategy is used to construct tubular triazine-based carbon nitride (TCN) with more adsorption sites and stronger activation capability. Ni(OH)2 nanosheets are then grown over the TCN to trigger a proton-coupled electron transfer for a stoichiometric overall photocatalytic CO2 conversion via "3CO2 + 2H2O = CH4 + 2CO + 3O2." TCN reduces the energy barrier of H2O dissociation to promote H2O oxidation to O2 and supply sufficient protons to Ni(OH)2, whereby the CO2 conversion is accelerated due to the enhanced proton-coupled electron transfer process enabled by the sufficient proton supply from TCN. This work highlights the importance of matching the reaction kinetics of CO2 reduction and H2O oxidation by proton-coupled electron transfer on stoichiometric overall photocatalytic CO2 conversion.

20.
Angew Chem Int Ed Engl ; 63(16): e202316080, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38385586

RESUMEN

Lead halide hybrids have shown great potentials in CO2 photoreduction, but challenging to afford C2+ reduced products, especially using H2O as the reductant. This is largely due to the trade-off problem between instability of the benchmark 3D structures and low carrier mobility of quasi-2D analogues. Herein, the lead halide dimensionality of robust coordination polymers (CP) was modulated by organic ligands differing in a single-atom change (NH vs. CH2), in which the NH groups coordinate with interlamellar [PbI2] clusters to achieve the important 2D→3D transition. This first CP based on 3D cationic lead iodide sublattice possesses both high aqueous stability and a low exciton binding energy of 25 meV that is on the level of ambient thermal energy, achieving artificial photosynthesis of C2H5OH. Photophysical studies combined with theoretical calculations suggest the bridging [PbI2] clusters in the 3D structure not only results in enhanced carrier transport, but also promotes the intrinsic charge polarization to facilitate the C-C coupling. With trace loading of Rh cocatalyst, the apparent quantum efficiency of the 3D CP reaches 1.4 % at 400 nm with a high C2H5OH selectivity of 89.4 % (product basis), which presents one of the best photocatalysts for C2 products to date.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...