Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.911
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410474, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087314

RESUMEN

Product selectivity of solar-driven CO2 reduction and H2O oxidation reactions has been successfully controlled by tuning the spatial distance between Pt/Au bimetallic active sites on different crystal facets of CeO2 catalysts. The replacement depth of Ce atoms by monatomic Pt determines the distance between bimetallic sites, while Au clusters are deposited on the surface. This space configuration creates a favourable microenvironment for the migration of active hydrogen species (*H). The *H is generated via the activation of H2O on monatomic Pt sites and migrate towards Au clusters with a strong capacity for CO2 adsorption. Under concentrated solar irradiation, selectivity of the (100) facet towards CO is 100%, and the selectivity of the (110) and (111) facets towards CH4 is 33.5% and 97.6%, respectively. Notably, the CH4 yield on the (111) facet is as high as 369.4 µmol/g/h, and the solar-to-chemical energy efficiency of 0.23% is 33.8 times higher than that under non-concentrated solar irradiation. The impacts of high-density flux photon and thermal effects on carriers and *H migration at the microscale are comprehensively discussed. This study provides a new avenue for tuning the spatial distance between active sites to achieve optimal product selectivity.

2.
Chem Asian J ; : e202400822, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087368

RESUMEN

Highly efficient photocatalysts can be fabricated using favorable charge transfer nanocomposite channel structures. This study adopted pulsed laser ablation in liquid (PLAL) to obtain rGO-bridged TiO2/g-C3N4 (rGO-TiO2/g-C3N4) photocatalytic Z-scheme without the need for noble metals. In addition to evaluating the resulting nanocomposite's (comprising rGO nanosheets, TiO2 nanotubes, and g-C3N4 nanosheets) CO2 reduction effectiveness, its chemical, morphological, structural, and optical characteristics were examined using various analytical techniques. The findings revealed a synergistic interaction between g-C3N4 and TiO2, suggesting the presence of unique interfacial bonding, as well as enhanced visible light absorption. Notably, the ternary rGO-TiO2/g-C3N4 Z-scheme exhibits an excellent photocatalytic performance by photocatalytically converting CO2 into CO and CH4, with 81% selectivity towards the CO and 1.91% apparent quantum efficiency at 420 nm. Thus, the findings can pave the way for various Z-scheme systems in wide photocatalytic applications.

3.
Angew Chem Int Ed Engl ; : e202412410, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39087982

RESUMEN

The electrochemical conversion of CO2 into valuable chemicals using renewable electricity shows significant promise for achieving carbon neutrality and providing alternative energy storage solutions. However, its practical application still faces significant challenges, including high energy consumption, poor selectivity, and limited stability. Here, we propose a hybrid acid/alkali electrolyzer that couples the acidic CO2 reduction reaction (CO2RR) at the cathode with alkaline methanol oxidation reaction (MOR) at the anode. This dual electro-synthesis cell is implemented by developing Bi nanosheets as cathode catalysts and oxide-decorated Cu2Se nanoflowers as anode catalysts, enabling high-efficiency electron utilization for formate production with over 180% coulombic efficiency and more than 90% selectivity for both CO2RR and MOR conversion. The hybrid acid/alkali CO2RR-MOR cell also demonstrates long-term stability exceeding 100 hours of continuous operation, delivers a formate partial current density of 130 mA cm-2 at a voltage of only 2.1 V, and significantly reduces electricity consumption compared to the traditional CO2 electrolysis system. This study illuminates an innovative electron-efficiency and energy-saving techniques for CO2 electrolysis, as well as the development of highly efficient electrocatalysts.

4.
Chemistry ; : e202402477, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115935

RESUMEN

The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e.g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.

5.
Adv Sci (Weinh) ; : e2406329, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120492

RESUMEN

CO2 reduction photocatalysts are favorable for obtaining renewable energy. Enriched active sites and effective photogenerated-carriers separation are keys for improving CO2 photo-reduction. A thulium (Tm) single atom tailoring strategy introducing carbon vacancies in porous tubular graphitic carbon nitride (g-C3N4) surpassing the ever-reported g-C3N4 based photocatalysts, with 199.47 µmol g-1 h-1 CO yield, 96.8% CO selectivity, 0.84% apparent quantum efficiency and excellent photocatalytic stability, is implemented in this work. Results revealed that in-plane Tm sites and interlayer-bridged Tm-N charge transfer channels significantly enhanced the aggregation/transfer of photogenerated electrons thus promoting CO2 adsorption/activation and contributing to *COOH intermediates formation. Meanwhile, Tm atoms and carbon vacancies both benefit for rich active sites and enhanced photogenerated-charge separation, thus optimizing reaction pathway and leading to excellent CO2 photo-reduction. This work not only provides guidelines for CO2 photo-reduction catalysts design but also offers mechanistic insights into single-atom based photocatalysts for solar fuel production.

6.
Angew Chem Int Ed Engl ; : e202412777, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113321

RESUMEN

Unlike many studies that regulate transport and separation behaviour of photogenerated charge carriers through controlling the chemical composite, our work demonstrates this goal can be achieved through simply tuning the molecular π-π packing from short-range to long-range within hydrogen-bonded organic frameworks (HOFs) without altering the building blocks or network topology. Further investigations reveal that the long-range π-π stacking significantly promotes electron delocalization and enhances electron density, thereby effectively suppressing electron-hole recombination and augmenting the charge transfer rate. Simultaneously, acting as a porous substrate, it boosts electron density of Pd nanoparticle loaded on its surfaces, resulting in remarkable CO2 photoreduction catalytic activity (CO generation rate: 48.1 µmol/g/h) without the need for hole scavengers. Our study provide insight into regulating the charge carrier behaviours in molecular assemblies based on hydrogen bonds, offering a new clue for efficient photocatalyst design.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39115165

RESUMEN

Cooperative CO2 photoreduction with tailored organic synthesis offers a potent avenue for harnessing concurrently generated electrons and holes, facilitating the creation of both solar fuels and specialized chemical compounds. However, controlling the crystallization and morphologies of metal-free molecular nanostructures with exceptional photocatalytic activities toward CO2 reduction remains a significant challenge. These hurdles encompass insufficient CO2 activation potential, sluggish multielectron processes, delayed charge-separation kinetics, inadequate storage of long-lived photoexcitons, unfavorable thermodynamic conditions, and the precise control of product selectivity. Here, melem oligomer 2D nanosheets (MNSs) synthesized through pyrolysis are transformed into 1D nanorods (MNRs) at room temperature with the simultaneous engineering of vacancies and morphology. Transient absorption spectral analysis reveals that vacancies in MNRs trap charges, extending charge carrier lifetimes. Additionally, carbon vacancies enhance CO2 adsorption by increasing amine functional centers. The photocatalytic performance of MNRs for CO2 reduction coupled with benzyl alcohol oxidation is approximately ten times higher (CH3OH and aromatic aldehyde production rate 27 ± 0.5 and 93 ± 0.5 mmol g-1 h-1, respectively) than for the MNSs (CH3OH and aromatic aldehyde production rate 2.9 ± 0.5 and 9 ± 0.5 mmol g-1 h-1, respectively). The CO2 reduction pathway involved the carbon-coordinated formyl pathway through the formation of *COOH and *CHO intermediates, as mapped by in situ Fourier-transform infrared spectroscopy. The superior performance of MNRs is attributed to favorable energy-level alignment, enriched amine surfaces, and unique morphology, enhancing solar-to-chemical conversion.

8.
Angew Chem Int Ed Engl ; : e202411543, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115459

RESUMEN

Dual-atom catalysts (DACs) are promising for applications in electrochemical CO2 reduction due to the enhanced flexibility of the catalytic sites and the synergistic effect between dual atoms. However, precisely controlling the atomic distance and identifying the dual-atom configuration of DACs to optimize the catalytic performance remains a challenge. Here, the Ni and Fe atomic pairs were constructed on nitrogen-doped carbon support in three different configurations: NiFe-isolate, NiFe-N bridge, and NiFe bonding. It was found that the NiFe-N bridge catalyst with NiN4 and FeN4 sharing two N atoms exhibited superior CO2 reduction activity and promising stability when compared to the NiFe-isolate and NiFe-bonding catalysts. A series of characterizations and density functional theory calculations suggested that the N-bridged NiFe sites with an appropriate distance between Ni and Fe atoms can exert a more pronounced synergy. It not only regulated the suitable adsorption strength for the *COOH intermediate but also promoted the desorption of *CO, thus accelerating the CO2 electroreduction to CO. This work provides an important implication for the enhancement of catalysis by the tailoring of the coordination structure of DACs, with the identification of distance effect between neighboring dual atoms.

9.
Adv Sci (Weinh) ; : e2407063, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39099335

RESUMEN

Transition metal-nitrogen-carbon (M-N-C) catalysts have emerged as promising candidates for electrocatalytic CO2 reduction reaction (CO2RR) due to their uniform active sites and high atomic utilization rate. However, poor efficiency at low overpotentials and unclear reaction mechanisms limit the application of M-N-C catalysts. In this study, Fe-N-C catalysts are developed by incorporating S atoms onto ordered hierarchical porous carbon substrates with a molecular iron thiophenoporphyrin. The well-prepared FeSNC catalyst exhibits superior CO2RR activity and stability, attributes to an optimized electronic environment, and enhances the adsorption of reaction intermediates. It displays the highest CO selectivity of 94.0% at -0.58 V (versus the reversible hydrogen electrode (RHE)) and achieves the highest partial current density of 13.64 mA cm-2 at -0.88 V. Furthermore, when employed as the cathode in a Zn-CO2 battery, FeSNC achieves a high-power density of 1.19 mW cm-2 and stable charge-discharge cycles. Density functional theory calculations demonstrate that the incorporation of S atoms into the hierarchical porous carbon substrate led to the iron center becoming more electron-rich, consequently improving the adsorption of the crucial reaction intermediate *COOH. This study underscores the significance of hierarchical porous structures and heteroatom doping for advancing electrocatalytic CO2RR and energy storage technologies.

10.
Angew Chem Int Ed Engl ; : e202412785, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39105415

RESUMEN

Electrocatalytic reduction of CO2 into C2 products of high economic value provides a promising strategy to realize resourceful CO2 utilization. Rational design and construct dual sites to realize the CO protonation and C-C coupling to unravel their structure-performance correlation is of great significance in catalysing electrochemical CO2 reduction reactions. Herein, Cu-Cu dual sites with different site distance coordinated by halogen at the first-shell are constructed and shows a higher intramolecular electron redispersion and coordination symmetry configurations. The long-range Cu-Cu (Cu-I-Cu) dual sites show an enhanced Faraday efficiency of C2 products, up to 74.1%, and excellent stability. In addition, the linear relationships that the long-range Cu-Cu dual site is accelerated to C2H4 generation and short-range Cu-Cu (Cu-Cl-Cu) dual site is beneficial for C2H5OH formation are disclosed. In situ electrochemical attenuated total reflection surface enhanced infrared absorption spectroscopy, in situ Raman and theoretical calculations manifest that long-range Cu-Cu dual sites can weaken reaction energy barriers of CO hydrogenation and C-C coupling, as well as accelerating deoxygenation of *CH2CHO. This study uncovers the exploitation of site-distance-dependent electrochemical property to steer the CO2 reduction pathway, as well as a potential generic tactic to target C2 synthesis by constructing the desired Cu-Cu dual sites.

11.
Angew Chem Int Ed Engl ; : e202412553, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133133

RESUMEN

Efficient photocatalytic CO2 reduction coupled with the photosynthesis of pure H2O2 is a challenging and significant task. Herein, using classical CO2 photoreduction site iron porphyrinate as the linker, Ag(I) clusters were spatially separated and evenly distributed within a new metal-organic framework (MOF), namely Ag27TPyP-Fe. With water as electron donors, Ag27TPyP-Fe exhibited remarkable performances in artificial photosynthetic overall reaction with CO yield of 36.5 µmol g-1 h-1 and ca. 100% selectivity, as well as H2O2 evolution rate of 35.9 µmol g-1 h-1. Since H2O2 in the liquid phase can be more readily separated from the gaseous products of CO2 photoreduction, high-purity H2O2 with a concentration up to 0.1 mM was obtained. Confirmed by theoretical calculations and the established energy level diagram, the reductive iron(II) porphyrinates and oxidative Ag(I) clusters within an integrated framework functioned synergistically to achieve artificial photosynthesis. Furthermore, photoluminescence spectroscopy and photoelectrochemical measurements revealed that the robust connection of Ag(I) clusters and iron porphyrinate ligands facilitated efficient charge separation and rapid electron transfer, thereby enhancing the photocatalytic activity.

12.
Angew Chem Int Ed Engl ; : e202408873, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113072

RESUMEN

The acidic electrocatalytic conversion of CO2 to multi-carbon (C2+) oxygenates is of great importance in view of enhancing carbon utilization efficiency and generating products with high energy densities, but suffering from low selectivity and activity. Herein, we synthesized Ag-Cu alloy catalyst with highly rough surface, by which the selectivity to C2+ oxygenates can be greatly improved. In a strongly acidic condition (pH=0.75), the maximum C2+ products Faradaic efficiency (FE) and C2+ oxygenates FE reach 80.4% and 56.5% at -1.9 V versus reversible hydrogen electrode, respectively, with a ratio of FEC2+ oxygenates to FEethylene up to 2.36. At this condition, the C2+ oxygenates partial current density is as high as 480 mA cm-2. The in situ Raman measurements and control experiments indicate that the high generation of C2+ oxygenates over the catalyst originates from its large surface roughness and Ag alloying.

13.
J Colloid Interface Sci ; 677(Pt A): 820-830, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39121666

RESUMEN

Controlling interfacial charge transfer behavior of heterojunction is an arduous issue to efficiently drive separation of photogenerated carriers for improving the photocatalytic activity. Herein, the interface charge transfer behavior is effectively controlled by fabricating an unparalleled VO-NiWO4/PCN heterojunction that is prepared by encapsulating NiWO4 nanoparticles rich in surface oxygen vacancies (VO-NiWO4) in the mesoporous polymeric carbon nitride (PCN) nanosheets. Experimental and theoretical investigations show that, differing with the traditional p-n junction, the direction of built-in electric field between p-type NiWO4 and n-type PCN is reversed interestingly. The strongly codirectional built-in electric field is also produced between the surface defect region and inside of VO-NiWO4 besides in the space charge region, the dual drive effect of which forcefully propels interface charge transfer through triggering Z-Scheme mechanism, thus significantly improving the separation efficiency of photogenerated carriers. Moreover, the unique mesoporous encapsulation structure of VO-NiWO4/PCN heterostructure can not only afford the confinement effect to improve the reaction kinetics and specificity in the CO2 reduction to CO, but also significantly reduce mass transfer resistance of molecular diffusion towards the reaction sites. Therefore, the VO-NiWO4/PCN heterostructure demonstrates the preeminent activity, stability and reusability for photocatalytic CO2 reduction to CO reaction. The average evolution rate of CO over the optimal 10 %-VO-NiWO4/PCN composite reaches around 2.5 and 1.8 times higher than that of individual PCN and VO-NiWO4, respectively. This work contributes a fresh design approach of interface structure in the heterojunction to control charge transfer behaviors and thus improve the photocatalytic performance.

14.
Trends Biotechnol ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39122591

RESUMEN

Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher productivities and energy efficiencies are needed to reach a viability that can make the technology transformative. Here, we show how a biofilm-based microbial porous cathode in a directed flow-through electrochemical system can continuously reduce CO2 to even-chain C2-C6 carboxylic acids over 248 days. We demonstrate a threefold higher biofilm concentration, volumetric current density, and productivity compared with the state of the art. Most notably, the volumetric productivity (VP) resembles those achieved in laboratory-scale and industrial syngas (CO-H2-CO2) fermentation and chain elongation fermentation. This work highlights key design parameters for efficient electricity-driven microbial CO2 reduction. There is need and room to improve the rates of electrode colonization and microbe-specific kinetics to scale up the technology.

15.
J Colloid Interface Sci ; 677(Pt A): 909-917, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39126809

RESUMEN

Since the intensification of global environmental pollution and energy shortages, photocatalytic CO2 reduction reaction (CO2RR) has emerged as a promising strategy to convert solar energy into clean chemical energy. Herein, we construct a robust and efficient heterojunction construction photocatalyst for CO2RR, composed of the highly reactive CeNi quantum dots (CeNi QDs) and nickel metal-organic layer (Ni-MOL) ultrathin nanosheets. This design facilitates the rapid separation of photogenerated charge carriers, as confirmed by X-ray photoelectron spectroscopy (XPS), photoluminescence spectroscopy (PL) and other characterizations. Mechanistic studies with in situ diffuse reflectance Fourier transform infrared spectroscopy (in situ DRIFTS) and the d-band center calculation indicate that the propensity of photocatalyst for CO2 absorption and CO desorption, leading to high performance and selectivity. The optimized loading amount of CeNi quantum dots and modified structure result in a CO yield of 30.53 mmol·g-1 within 6 h under irradiation. This work not only paves a new and convenient way for developing high-activity quantum dot materials for CO2RR but also exploits novel avenues to fabricate more heterojunction composites for solar energy conversion.

16.
ChemSusChem ; : e202401333, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121168

RESUMEN

The traditional industrial synthesis of urea relies on the energy-intensive and polluting process, namely the Haber-Bosch method for ammonia production, followed by the Bosch-Meiser process for urea synthesis. In contrast, electrocatalytic C-N coupling from carbon dioxide (CO2) and nitrogenous species presents a promising alternative for direct urea synthesis under ambient conditions, bypassing the need for ammonia production. This review provides an overview of recent progress in the electrocatalytic coupling of CO2 and nitrogen sources for urea synthesis. It focuses on the role of intermediate species and active site structures in promoting urea synthesis, drawing from insights into reactants' adsorption behavior and interactions with catalysts tailored for CO2 reduction, nitrogen reduction, and nitrate reduction. Advanced electrocatalyst design strategies for urea synthesis from CO2 and nitrogenous species under ambient conditions are explored, providing insights for efficient catalyst design. Key challenges and prospective directions are presented in the conclusion. Mechanistic studies elucidating the C-N coupling reaction and future development directions are discussed. The review aims to inspire further research and development in electrocatalysts for electrochemical urea synthesis.

17.
Adv Sci (Weinh) ; : e2405154, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159072

RESUMEN

Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.

18.
Adv Sci (Weinh) ; : e2407599, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159306

RESUMEN

Interfacial electron transfer between electroactive microorganisms (EAMs) and electrodes underlies a wide range of bio-electrochemical systems with diverse applications. However, the electron transfer rate at the biotic-electrode interface remains low due to high transmembrane and cell-electrode interfacial electron transfer resistance. Herein, a modular engineering strategy is adopted to construct a Shewanella oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel-electropolymerized anthraquinone to boost cell-electrode interfacial electron transfer. First, a heterologous riboflavin synthesis and secretion pathway is constructed to increase flavin-mediated transmembrane electron transfer. Second, outer membrane c-Cyts OmcF is screened and optimized via protein engineering strategy to accelerate contacted-based transmembrane electron transfer. Third, a S. oneidensis-carbon felt biohybrid electrode decorated with bacterial cellulose aerogel and electropolymerized anthraquinone is constructed to boost the interfacial electron transfer. As a result, the internal resistance decreased to 42 Ω, 480.8-fold lower than that of the wild-type (WT) S. oneidensis MR-1. The maximum power density reached 4286.6 ± 202.1 mW m-2, 72.8-fold higher than that of WT. Lastly, the engineered biohybrid electrode exhibited superior abilities for bioelectricity harvest, Cr6+ reduction, and CO2 reduction. This study showed that enhancing transmembrane and cell-electrode interfacial electron transfer is a promising way to increase the extracellular electron transfer of EAMs.

19.
ACS Nano ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159432

RESUMEN

Perovskite nanocrystals (PCNs) exhibit a significant quantum confinement effect that enhances multiexciton generation, making them promising for photocatalytic CO2 reduction. However, their conversion efficiency is hindered by poor exciton dissociation. To address this, we synthesized ferrocene-methanol-functionalized CsPbBr3 (CPB/FcMeOH) using a ligand engineering approach. By manipulating the electronic coupling between ligands and the PCN surface, facilitated by the increased dipole moment from hydrogen bonding in FcMeOH molecules, we effectively controlled exciton dissociation and interfacial charge transfer. Under 5 h of irradiation, the CO yield of CPB/FcMeOH reached 772.79 µmol g-1, 4.95 times higher than pristine CPB. This high activity is due to the formation of hydrogen-bonded FcMeOH clusters on the CPB surface. The nonpolar disruption and strong dipole moment of FcMeOH molecules enhance electronic coupling between the FcMeOH ligands and the CPB surface, reducing the surface barrier energy. Consequently, exciton dissociation and interfacial charge transfer are promoted, efficiently utilizing multiple excitons in quantum-confined domains. Transient absorption spectroscopy confirms that CPB/FcMeOH exhibits optimized exciton behavior with fast internal relaxation, trapping, and a short recombination time, allowing photogenerated charges to more rapidly participate in CO2 reduction.

20.
J Colloid Interface Sci ; 677(Pt B): 111-119, 2024 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-39137560

RESUMEN

Electrochemical carbon dioxide reduction reaction (CO2RR) is a promising technology to establish an artificial carbon cycle. Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) with high electrical conductivity have great potential as catalysts. Herein, we designed a range of 2D c-MOFs with different transition metal atoms and organic ligands, TMNxO4-x-HDQ (TM = Cr∼Cu, Mo, Ru∼Ag, W∼Au; x  = 0, 2, 4; HDQ = hexadipyrazinoquinoxaline), and systematically studied their catalytic performance using density functional theory (DFT). Calculation results indicated that all of TMNxO4-x-HDQ structures possess good thermodynamic and electrochemical stability. Notably, among the examined 37 MOFs, 6 catalysts outperformed the Cu(211) surface in terms of catalytic activity and product selectivity. Specifically, NiN4-HDQ emerged as an exceptional electrocatalyst for CO production in CO2RR, yielding a remarkable low limiting potential (UL) of -0.04 V. CuN4-HDQ, NiN2O2-HDQ, and PtN2O2-HDQ also exhibited high activity for HCOOH production, with UL values of -0.27, -0.29, and -0.27 V, respectively, while MnN4-HDQ, and NiO4-HDQ mainly produced CH4 with UL values of -0.58 and -0.24 V, respectively. Furthermore, these 6 catalysts efficiently suppressed the competitive hydrogen evolution reaction. Machine learning (ML) analysis revealed that the key intrinsic factors influencing CO2RR performance of these 2D c-MOFs include electron affinity (EA), electronegativity (χ), the first ionization energy (Ie), p-band center of the coordinated N/O atom (εp), the radius of metal atom (r), and d-band center (εd). Our findings may provide valuable insights for the exploration of highly active and selective CO2RR electrocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...