Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 558
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(10): 114775, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39305483

RESUMEN

Targeting the distinct metabolic needs of tumor cells has recently emerged as a promising strategy for cancer therapy. The heterogeneous, context-dependent nature of cancer cell metabolism, however, poses challenges to identifying effective therapeutic interventions. Here, we utilize various unsupervised and supervised multivariate modeling approaches to systematically pinpoint recurrent metabolic states within hundreds of cancer cell lines, elucidate their association with tumor lineage and growth environments, and uncover vulnerabilities linked to their metabolic states across diverse genetic and tissue contexts. We validate key findings via analysis of data from patient-derived tumors and pharmacological screens and by performing genetic and pharmacological experiments. Our analysis uncovers synthetically lethal associations between the tumor metabolic state (e.g., oxidative phosphorylation), driver mutations (e.g., loss of tumor suppressor PTEN), and actionable biological targets (e.g., mitochondrial electron transport chain). Investigating the mechanisms underlying these relationships can inform the development of more precise and context-specific, metabolism-targeted cancer therapies.

2.
Cell Rep ; 43(9): 114652, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39217612

RESUMEN

Cancer cells with mitochondrial dysfunction can be rescued by cells in the tumor microenvironment. Using human adenoid cystic carcinoma cell lines and fibroblasts, we find that mitochondrial transfer occurs not only between human cells but also between human and mouse cells both in vitro and in vivo. Intriguingly, spontaneous cell fusion between cancer cells and fibroblasts could also emerge; specific chromosome loss might be essential for nucleus reorganization and the post-hybrid selection process. Both mitochondrial transfer through tunneling nanotubes (TNTs) and cell fusion "selectively" revive cancer cells, with mitochondrial dysfunction as a key motivator. Beyond mitochondrial transfer, cell fusion significantly enhances cancer malignancy and promotes epithelial-mesenchymal transition. Mechanistically, mitochondrial dysfunction in cancer cells causes L-lactate secretion to attract fibroblasts to extend TNTs and TMEM16F-mediated phosphatidylserine externalization, facilitating TNT formation and cell-membrane fusion. Our findings offer insights into mitochondrial transfer and cell fusion, highlighting potential cancer therapy targets.


Asunto(s)
Carcinoma Adenoide Quístico , Fusión Celular , Mitocondrias , Humanos , Carcinoma Adenoide Quístico/metabolismo , Carcinoma Adenoide Quístico/patología , Mitocondrias/metabolismo , Animales , Ratones , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Fibroblastos/metabolismo , Microambiente Tumoral
3.
Cell Rep ; 43(9): 114697, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39217611

RESUMEN

Physical activity reduces cancer-associated mortality through multiple mechanisms, including tumor immune microenvironment (TIME) reprogramming. However, whether and how physiological interventions promote anti-tumor immunity remain elusive. Here, we report that clinically relevant voluntary exercise promotes muscle-derived extracellular vesicle (EV)-associated miR-29a-3p for tumor extracellular matrix (ECM) inhibition in patients and mouse models, thereby permitting immune cell infiltration and immunotherapy. Mechanistically, an unbiased screening identifies EV-associated miR-29a-3p in response to leisure-time physical activity or voluntary exercise. MiR-29a-3p-containing EVs accumulate in tumors and downregulate collagen composition by targeting COL1A1. Gain- and loss-of-function experiments and cytometry by time of flight (CyTOF) demonstrate that myocyte-secreted miR-29a-3p promotes anti-tumor immunity. Combining immunotherapy with voluntary exercise or miR-29a-3p further enhances anti-tumor efficacy. Clinically, miR-29a-3p correlates with reduced ECM, increased T cell infiltration, and response to immunotherapy. Our work reveals the predictive value of miR-29a-3p for immunotherapy, provides mechanistic insights into exercise-induced anti-cancer immunity, and highlights the potential of voluntary exercise in sensitizing immunotherapy.


Asunto(s)
Inmunoterapia , MicroARNs , Microambiente Tumoral , Microambiente Tumoral/inmunología , Animales , Inmunoterapia/métodos , Ratones , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Ratones Endogámicos C57BL , Colágeno/metabolismo , Ejercicio Físico , Vesículas Extracelulares/metabolismo , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Línea Celular Tumoral , Masculino , Inflamación/patología , Inflamación/inmunología , Matriz Extracelular/metabolismo , Femenino , Condicionamiento Físico Animal
4.
Cell Rep ; 43(9): 114676, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39217614

RESUMEN

Obesity and fatty liver diseases-metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH)-affect over one-third of the global population and are exacerbated in individuals with reduced functional aldehyde dehydrogenase 2 (ALDH2), observed in approximately 560 million people. Current treatment to prevent disease progression to cancer remains inadequate, requiring innovative approaches. We observe that Aldh2-/- and Aldh2-/-Sptbn1+/- mice develop phenotypes of human metabolic syndrome (MetS) and MASH with accumulation of endogenous aldehydes such as 4-hydroxynonenal (4-HNE). Mechanistic studies demonstrate aberrant transforming growth factor ß (TGF-ß) signaling through 4-HNE modification of the SMAD3 adaptor SPTBN1 (ß2-spectrin) to pro-fibrotic and pro-oncogenic phenotypes, which is restored to normal SMAD3 signaling by targeting SPTBN1 with small interfering RNA (siRNA). Significantly, therapeutic inhibition of SPTBN1 blocks MASH and fibrosis in a human model and, additionally, improves glucose handling in Aldh2-/- and Aldh2-/-Sptbn1+/- mice. This study identifies SPTBN1 as a critical regulator of the functional phenotype of toxic aldehyde-induced MASH and a potential therapeutic target.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial , Aldehídos , Neoplasias , Obesidad , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta , Animales , Humanos , Factor de Crecimiento Transformador beta/metabolismo , Aldehídos/metabolismo , Obesidad/metabolismo , Obesidad/patología , Ratones , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Proteína smad3/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Espectrina/metabolismo , Espectrina/genética , Ratones Endogámicos C57BL , Masculino , Ratones Noqueados , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/genética
5.
Cell Rep ; 43(10): 114756, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39325621

RESUMEN

Upon infection with herpes simplex virus 1 (HSV-1), the virus deploys multiple strategies to evade the host's innate immune response. However, the mechanisms governing this phenomenon remain elusive. Here, we find that HSV-1 leads to a decrease in overall m6A levels by selectively reducing METTL14 protein during early infection in glioma cells. Specifically, the HSV-1-encoded immediate-early protein ICP0 interacts with METTL14 within ND10 bodies and serves as an E3 ubiquitin protein ligase, targeting and ubiquitinating METTL14 at the lysine 156 and 162 sites. Subsequently, METTL14 undergoes proteasomal degradation. Furthermore, METTL14 stabilizes ISG15 mRNA mediated by IGF2BP3 to promote antiviral effects. Notably, METTL14 suppression significantly enhances the anti-tumor effect of oncolytic HSV-1 (oHSV-1) in mice bearing glioma xenografts. Collectively, these findings establish that ICP0-guided m6A modification controls the antiviral immune response and suggest that targeting METTL14/ISG15 represents a potential strategy to enhance the oncolytic activity of oHSV-1 in glioma treatment.

6.
Cell Rep ; 43(10): 114773, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39325623

RESUMEN

Tumor-associated macrophages (TAMs), often adopting an immunosuppressive M2-like phenotype, correlate with unfavorable cancer outcomes. Our investigation unveiled elevated expression of the butyrophilin (BTN)2A1 in M2-like TAMs across diverse cancer types. We developed anti-BTN2A1 monoclonal antibodies (mAbs), and notably, one clone demonstrated a robust inhibitory effect on M2-like macrophage differentiation, inducing a shift toward an M1-like phenotype both in vitro and ex vivo in TAMs from patients with cancer. Macrophages treated with this anti-BTN2A1 mAb exhibited enhanced support for T cell proliferation and interferon-gamma (IFNγ) secretion. Mechanistically, BTN2A1 engagement induced spleen tyrosine kinase (SYK) recruitment, leading to sequential SYK and extracellular signal-regulated kinase (ERK) phosphorylation. Inhibition of SYK or ERK phosphorylation abolished M2 reprogramming upon BTN2A1 engagement. Our findings, derived from an analysis of macrophages from healthy donors and human tumors, underscore the pivotal role of BTN2A1 in immunosuppressive macrophage differentiation and function, offering potential applications in cancer immunotherapy.

7.
Cell Rep ; 43(9): 114710, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39240715

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) presents significant challenges for targeted clinical interventions due to prevalent KRAS mutations, rendering PDAC resistant to RAF and MEK inhibitors (RAFi and MEKi). In addition, responses to targeted therapies vary between patients. Here, we explored the differential sensitivities of PDAC cell lines to RAFi and MEKi and developed an isogenic pair comprising the most sensitive and resistant PDAC cells. To simulate patient- or tumor-specific variations, we constructed cell-line-specific mechanistic models based on protein expression profiling and differential properties of KRAS mutants. These models predicted synergy between two RAFi with different conformation specificity (type I½ and type II RAFi) in inhibiting phospho-ERK (ppERK) and reducing PDAC cell viability. This synergy was experimentally validated across all four studied PDAC cell lines. Our findings underscore the need for combination approaches to inhibit the ERK pathway in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Sistema de Señalización de MAP Quinasas , Neoplasias Pancreáticas , Inhibidores de Proteínas Quinasas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Sinergismo Farmacológico , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinasas raf/metabolismo , Quinasas raf/antagonistas & inhibidores
8.
Cell Rep ; 43(9): 114721, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39255061

RESUMEN

Advancing age is a negative prognostic factor for cutaneous melanoma. However, the role of extracellular vesicles (EVs) within the melanoma tumor microenvironment (TME) has remained unexplored in the context of aging. While the size and morphology of the EVs isolated from young vs. aged fibroblasts remained unaltered, the contents of the protein cargo were changed. Aging reduced the expression of the tetraspanin CD9 in both the dermal fibroblasts and released EVs. CD9 is a crucial regulator of EV cargo sorting. Modulating the CD9 expression in fibroblasts was sufficient to alter its levels in EVs. Mass spectrometry analysis of EVs released by CD9 knockdown (KD) vs. control cells revealed a significant increase in angiopoietin-like protein 2 (ANGPTL2), an angiogenesis promoter. Analysis of primary endothelial cells confirmed increased sprouting under CD9 KD conditions. Together, our data indicate that aged EVs play an important role in promoting a tumor-permissive microenvironment.


Asunto(s)
Vesículas Extracelulares , Fibroblastos , Melanoma , Neovascularización Patológica , Tetraspanina 29 , Vesículas Extracelulares/metabolismo , Melanoma/metabolismo , Melanoma/patología , Humanos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Animales , Angiogénesis
9.
Cell Rep ; 43(9): 114711, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39255063

RESUMEN

Neuroblastoma exhibits significant inter- and intra-tumor genetic heterogeneity and varying clinical outcomes. Extrachromosomal DNAs (ecDNAs) may drive this heterogeneity by independently segregating during cell division, leading to rapid oncogene amplification. While ecDNA-mediated oncogene amplification is linked to poor prognosis in various cancers, the effects of ecDNA copy-number heterogeneity on intermediate phenotypes are poorly understood. Here, we leverage DNA and RNA sequencing from the same single cells in cell lines and neuroblastoma patients to investigate these effects. By analyzing ecDNA amplicon structures, we reveal extensive intercellular ecDNA copy-number heterogeneity. We also provide direct evidence of how this heterogeneity influences the expression of cargo genes, including MYCN and its downstream targets, and the overall transcriptional state of neuroblastoma cells. Our findings highlight the role of ecDNA copy number in promoting rapid adaptability of cellular states within tumors, underscoring the need for ecDNA-specific treatment strategies to address tumor formation and adaptation.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neuroblastoma , Neuroblastoma/genética , Neuroblastoma/patología , Humanos , Variaciones en el Número de Copia de ADN/genética , Línea Celular Tumoral , Amplificación de Genes , Proteína Proto-Oncogénica N-Myc/genética , Proteína Proto-Oncogénica N-Myc/metabolismo , Heterogeneidad Genética , Regulación Neoplásica de la Expresión Génica
10.
Cell Rep ; 43(9): 114751, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39276346

RESUMEN

Triple negative breast cancer (TNBC) is an aggressive type of breast cancer. While most TNBCs are initially sensitive to chemotherapy, a substantial fraction acquires resistance to treatments and progresses to more advanced stages. Here, we identify the spliceosome U2 small nuclear ribonucleoprotein particle (snRNP) complex as a modulator of chemotherapy efficacy in TNBC. Transient U2 snRNP inhibition induces persistent DNA damage in TNBC cells and organoids, regardless of their homologous recombination proficiency. U2 snRNP inhibition pervasively deregulates genes involved in the DNA damage response (DDR), an effect relying on their genomic structure characterized by a high number of small exons. Furthermore, a pulse of splicing inhibition elicits long-lasting repression of DDR proteins and enhances the cytotoxic effect of platinum-based drugs and poly(ADP-ribose) polymerase inhibitors (PARPis) in multiple TNBC models. These findings identify the U2 snRNP as an actionable target that can be exploited to enhance chemotherapy efficacy in TNBCs.


Asunto(s)
Daño del ADN , Empalme del ARN , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , Empalme del ARN/efectos de los fármacos , Empalme del ARN/genética , Línea Celular Tumoral , Animales , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones , Empalmosomas/metabolismo , Empalmosomas/efectos de los fármacos
11.
Cell Rep ; 43(9): 114764, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39276353

RESUMEN

Large-scale sequencing efforts have been undertaken to understand the mutational landscape of the coding genome. However, the vast majority of variants occur within non-coding genomic regions. We designed an integrative computational and experimental framework to identify recurrently mutated non-coding regulatory regions that drive tumor progression. Applying this framework to sequencing data from a large prostate cancer patient cohort revealed a large set of candidate drivers. We used (1) in silico analyses, (2) massively parallel reporter assays, and (3) in vivo CRISPR interference screens to systematically validate metastatic castration-resistant prostate cancer (mCRPC) drivers. One identified enhancer region, GH22I030351, acts on a bidirectional promoter to simultaneously modulate expression of the U2-associated splicing factor SF3A1 and chromosomal protein CCDC157. SF3A1 and CCDC157 promote tumor growth in vivo. We nominated a number of transcription factors, notably SOX6, to regulate expression of SF3A1 and CCDC157. Our integrative approach enables the systematic detection of non-coding regulatory regions that drive human cancers.


Asunto(s)
Factores de Empalme de ARN , Masculino , Humanos , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Línea Celular Tumoral , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Animales , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Ratones , Elementos de Facilitación Genéticos/genética , Mutación/genética
12.
Cell Rep ; 43(9): 114753, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39329340

RESUMEN

Panagiotis Mistriotis spoke with Luca Gasparoli about his scientific journey and inspiration to become a scientist and his focus on investigating the mechanisms underlying mechanical regulation of cell migration, stem cell fate decisions, and smooth muscle cell function; in particular, he discussed his lab's recent publication in Cell Reports exploring how spatial confinement influences migrating cells' response to fluid flow.


Asunto(s)
Movimiento Celular , Humanos , Animales , Historia del Siglo XXI , Historia del Siglo XX , Células Madre/citología , Miocitos del Músculo Liso/metabolismo
13.
Cell Rep Methods ; 4(9): 100857, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39260365

RESUMEN

We present a TALEN-based workflow to generate and maintain dual-edited (IL-15+/+/TGFßR2-/-) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs. Furthermore, given that it is known that knockout (KO) of TGFßR2 in immune cells can enhance resistance to the suppressive TGF-ß signaling in the tumor microenvironment, we develop a customized medium containing Nodal that can maintain the pluripotency of iPSCs with TGFßR2 KO, enabling banking of these iPSC clones. Ultimately, we show that the dual-edited IL-15+/+/TGFßR2-/- iPSCs can be efficiently differentiated into NK cells that show enhanced autonomous growth and are resistant to the suppressive TGF-ß signaling.


Asunto(s)
Células Madre Pluripotentes Inducidas , Interleucina-15 , Células Asesinas Naturales , Receptor Tipo II de Factor de Crecimiento Transformador beta , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Humanos , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Diferenciación Celular , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Edición Génica/métodos
14.
Cell Rep ; 43(8): 114587, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39116208

RESUMEN

Cancer cachexia is a prevalent and often fatal wasting condition that cannot be fully reversed with nutritional interventions. Muscle atrophy is a central component of the syndrome, but the mechanisms whereby cancer leads to skeletal muscle atrophy are not well understood. We performed single-nucleus multi-omics on skeletal muscles from a mouse model of cancer cachexia and profiled the molecular changes in cachexic muscle. Our results revealed the activation of a denervation-dependent gene program that upregulates the transcription factor myogenin. Further studies showed that a myogenin-myostatin pathway promotes muscle atrophy in response to cancer cachexia. Short hairpin RNA inhibition of myogenin or inhibition of myostatin through overexpression of its endogenous inhibitor follistatin prevented cancer cachexia-induced muscle atrophy in mice. Our findings uncover a molecular basis of muscle atrophy associated with cancer cachexia and highlight potential therapeutic targets for this disorder.


Asunto(s)
Caquexia , Atrofia Muscular , Miogenina , Miostatina , Caquexia/patología , Caquexia/metabolismo , Caquexia/etiología , Animales , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Ratones , Miostatina/metabolismo , Miostatina/genética , Miogenina/metabolismo , Miogenina/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Neoplasias/complicaciones , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos C57BL , Masculino , Transducción de Señal , Folistatina/metabolismo , Humanos
15.
Cell Rep ; 43(9): 114686, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39216002

RESUMEN

Histone lysine lactylation (Kla) is a post-translational modification, and its role in tumor immune escape remains unclear. Here, we find that increased histone lactylation is associated with poor response to immunotherapy in head and neck squamous cell carcinoma (HNSCC). H3K9la is identified as a specific modification site in HNSCC. Using cleavage under targets and tagmentation analyses, interleukin-11 (IL-11) is identified as a downstream regulatory gene of H3K9la. IL-11 transcriptionally activates immune checkpoint genes through JAK2/STAT3 signaling in CD8+ T cells. Additionally, IL-11 overexpression promotes tumor progression and CD8+ T cell dysfunction in vivo. Moreover, IL11 knockdown reverses lactate-induced CD8+ T cell exhaustion, and cholesterol-modified siIL11 restores CD8+ T cell killing activity and enhances immunotherapy efficacy. Clinically, H3K9la positively correlates with IL-11 expression and unfavorable immunotherapy responses in patients. This study reveals the crucial role of histone lactylation in immune escape, providing insights into immunotherapy strategies for HNSCC.


Asunto(s)
Linfocitos T CD8-positivos , Histonas , Inmunoterapia , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Histonas/metabolismo , Inmunoterapia/métodos , Animales , Línea Celular Tumoral , Ratones , Interleucina-11/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Lisina/metabolismo , Factor de Transcripción STAT3/metabolismo , Femenino , Transducción de Señal , Janus Quinasa 2/metabolismo , Masculino , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/terapia , Ratones Endogámicos C57BL
16.
Cell Rep ; 43(9): 114667, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39178114

RESUMEN

Loss-of-function mutations in the C terminus of TPL2 kinase promote oncogenesis by impeding its proteasomal degradation, leading to sustained protein expression. However, the degradation mechanism for TPL2 has remained elusive. Through proximity-dependent biotin identification (BioID), we uncovered tripartite motif-containing 4 (TRIM4) as the E3 ligase that binds and degrades TPL2 by polyubiquitination of lysines 415 and 439. The naturally occurring TPL2 mutants R442H and E188K exhibit impaired TRIM4 binding, enhancing their stability. We further discovered that TRIM4 itself is stabilized by another E3 ligase, TRIM21, which in turn is regulated by KRAS. Mutant KRAS recruits RNF185 to degrade TRIM21 and subsequently TRIM4, thereby stabilizing TPL2. In the presence of mutant KRAS, TPL2 phosphorylates and degrades GSK3ß, resulting in ß-catenin stabilization and activation of the Wnt pathway. These findings elucidate the physiological mechanisms regulating TPL2 and its exploitation by mutant KRAS, underscoring the need to develop TPL2 inhibitors for KRAS-mutant cancers.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Ubiquitina-Proteína Ligasas , Ubiquitinación , Humanos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células HEK293 , Proteolisis , Mutación/genética , Fosforilación , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Línea Celular Tumoral , Unión Proteica , Vía de Señalización Wnt , Animales , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Ribonucleoproteínas
17.
Cell Rep ; 43(8): 114605, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39128003

RESUMEN

Immune cells express an incredible variety of proteins; by measuring combinations of these, cell types influencing disease can be precisely identified. We developed terraFlow, a platform that defines cell subsets exhaustively by combinatorial protein expression. Using high-parameter checkpoint-focused and function-focused panels, we studied classical Hodgkin's lymphoma (cHL), where systemic T cells have not been investigated in detail. terraFlow revealed immune perturbations in patients, including elevated activated, exhausted, and interleukin (IL)-17+ phenotypes, along with diminished early, interferon (IFN)γ+, and tumor necrosis factor (TNF)+ T cells before treatment; many perturbations remained after treatment. terraFlow identified more disease-associated differences than other tools, often with better predictive power, and included a non-gating approach, eliminating time-consuming and subjective manual thresholds. It also reports a method to identify the smallest set of markers distinguishing study groups. Our results provide mechanistic support for past reports of immune deficiency in cHL and demonstrate the value of terraFlow in immunotherapy and biomarker studies.


Asunto(s)
Citocinas , Enfermedad de Hodgkin , Enfermedad de Hodgkin/inmunología , Enfermedad de Hodgkin/patología , Enfermedad de Hodgkin/metabolismo , Humanos , Citocinas/metabolismo , Masculino , Linfocitos T/inmunología , Linfocitos T/metabolismo , Femenino , Adulto , Persona de Mediana Edad , Interferón gamma/metabolismo , Agotamiento de Células T
18.
Cell Rep Methods ; 4(8): 100839, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39127042

RESUMEN

The availability of data from profiling of cancer patients with multiomics is rapidly increasing. However, integrative analysis of such data for personalized target identification is not trivial. Multiomics2Targets is a platform that enables users to upload transcriptomics, proteomics, and phosphoproteomics data matrices collected from the same cohort of cancer patients. After uploading the data, Multiomics2Targets produces a report that resembles a research publication. The uploaded matrices are processed, analyzed, and visualized using the tools Enrichr, KEA3, ChEA3, Expression2Kinases, and TargetRanger to identify and prioritize proteins, genes, and transcripts as potential targets. Figures and tables, as well as descriptions of the methods and results, are automatically generated. Reports include an abstract, introduction, methods, results, discussion, conclusions, and references and are exportable as citable PDFs and Jupyter Notebooks. Multiomics2Targets is applied to analyze version 3 of the Clinical Proteomic Tumor Analysis Consortium (CPTAC3) pan-cancer cohort, identifying potential targets for each CPTAC3 cancer subtype. Multiomics2Targets is available from https://multiomics2targets.maayanlab.cloud/.


Asunto(s)
Neoplasias , Fosfoproteínas , Proteómica , Transcriptoma , Humanos , Proteómica/métodos , Neoplasias/genética , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Estudios de Cohortes , Perfilación de la Expresión Génica/métodos , Programas Informáticos , Biología Computacional/métodos
19.
Cell Rep ; 43(8): 114622, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146182

RESUMEN

Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas Ribosómicas , Humanos , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Línea Celular Tumoral , Empalme Alternativo/genética , Proliferación Celular/genética , Animales , Exones/genética , Ratones , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regulación Neoplásica de la Expresión Génica , Piperazinas/farmacología , Imidazoles/farmacología
20.
Cell Rep ; 43(8): 114604, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39146185

RESUMEN

Exo70, a key exocyst complex component, is crucial for cell motility and extracellular matrix (ECM) remodeling in cancer metastasis. Despite its potential as a drug target, Exo70's post-translational modifications (PTMs) are poorly characterized. Here, we report that Exo70 is transamidated on Gln5 with Lys56 of cystatin A by transglutaminases TGM1 and TGM3, promoting tumor metastasis. This modification enhances Exo70's association with other exocyst subunits, essential for secreting matrix metalloproteinases, forming invadopodia, and delivering integrins to the leading edge. Tumor suppressor liver kinase B1 (LKB1), whose inactivation accelerates metastasis, phosphorylates TGM1 and TGM3 at Thr386 and Thr282, respectively, to inhibit their interaction with Exo70 and the following transamidation. Cantharidin, a US Food and Drug Administration (FDA)-approved drug, inhibits Exo70 transamidation to restrain tumor cell migration and invasion. Together, our findings highlight Exo70 transamidation as a key molecular mechanism and target and propose cantharidin as a therapeutic strategy with direct clinical translational value for metastatic cancers, especially those with LKB1 loss.


Asunto(s)
Movimiento Celular , Metástasis de la Neoplasia , Proteínas Serina-Treonina Quinasas , Transglutaminasas , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Transglutaminasas/metabolismo , Animales , Línea Celular Tumoral , Ratones , Movimiento Celular/efectos de los fármacos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Quinasas de la Proteína-Quinasa Activada por el AMP , Ratones Desnudos , Fosforilación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...