Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Funct Integr Genomics ; 24(5): 164, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292321

RESUMEN

Cancer, a complex and multifaceted group of diseases, continues to challenge the boundaries of medical science and healthcare. Its relentless impact on global health, both in terms of prevalence and mortality, underscores the urgent need for a comprehensive understanding of its underlying mechanisms and innovative therapeutic approaches. In recent years, significant progress has been achieved in identifying the genetic and epigenetic mechanisms that cause cancer development and treatment resistance. Researchers are currently investigating the possibility of epigenetic editing such as CRISPR-dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats/deactivated CRISPR-associated protein 9) technologies, for targeting and modifying cancer related epigenetic alterations. A revolutionary form of precision cancer treatment called CRISPR-dCas9 is derived from the bacterial CRISPR-Cas (CRISPR-associated nuclease) system. CRISPR-dCas9 can be combined with epigenetic effectors (EE) to alter malignant epigenetic characteristics associated with cancer. The purpose of this review article is to provide a thorough analysis of recent advancements in utilizing CRISPR-dCas9 technology to target and modify epigenetic changes associated with cancer. This review aims to summarize the latest research developments, evaluate the effectiveness and limitations of CRISPR-dCas9 applications in cancer therapy, identify key challenges such as delivery methods and explore future directions for improving and expanding these technologies. Here, we address the various obstacles that may arise in clinical applications while showcasing the latest advancements and potential future uses of CRISPR-Cas9 in cancer therapy.


Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Edición Génica , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Edición Génica/métodos , Animales
2.
Theranostics ; 14(12): 4773-4786, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39239521

RESUMEN

Gene therapy using a protein-based CRISPR system in the brain has practical limitations due to current delivery systems, especially in the presence of arterial occlusion. To overcome these obstacles and improve stability, we designed a system for intranasal administration of gene therapy for the treatment of ischemic stroke. Methods: Nanoparticles containing the protein-based CRISPR/dCas9 system targeting Sirt1 were delivered intranasally to the brain in a mouse model of ischemic stroke. The CRISPR/dCas9 system was encapsulated with calcium phosphate (CaP) nanoparticles to prevent them from being degraded. They were then conjugated with ß-hydroxybutyrates (bHb) to target monocarboxylic acid transporter 1 (MCT1) in nasal epithelial cells to facilitate their transfer into the brain. Results: Human nasal epithelial cells were shown to uptake and transfer nanoparticles to human brain endothelial cells with high efficiency in vitro. The intranasal administration of the dCas9/CaP/PEI-PEG-bHb nanoparticles in mice effectively upregulated the target gene, Sirt1, in the brain, decreased cerebral edema and increased survival after permanent middle cerebral artery occlusion. Additionally, we observed no significant in vivo toxicity associated with intranasal administration of the nanoparticles, highlighting the safety of this approach. Conclusion: This study demonstrates that the proposed protein-based CRISPR-dCas9 system targeting neuroprotective genes in general, and SIRT1 in particular, can be a potential novel therapy for acute ischemic stroke.


Asunto(s)
Administración Intranasal , Encéfalo , Modelos Animales de Enfermedad , Terapia Genética , Accidente Cerebrovascular Isquémico , Nanopartículas , Sirtuina 1 , Animales , Ratones , Humanos , Accidente Cerebrovascular Isquémico/terapia , Accidente Cerebrovascular Isquémico/genética , Nanopartículas/administración & dosificación , Terapia Genética/métodos , Sirtuina 1/genética , Sirtuina 1/metabolismo , Encéfalo/metabolismo , Masculino , Fosfatos de Calcio , Sistemas CRISPR-Cas , Ratones Endogámicos C57BL , Células Endoteliales/metabolismo , Isquemia Encefálica/terapia , Isquemia Encefálica/genética , Infarto de la Arteria Cerebral Media/terapia , Infarto de la Arteria Cerebral Media/genética , Células Epiteliales/metabolismo
3.
Eng Life Sci ; 24(8): e2400005, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39113812

RESUMEN

The utilization of Streptomyces as a microbial chassis for developing innovative drugs and medicinal compounds showcases its capability to produce bioactive natural substances. Recent focus on the clustered regularly interspaced short palindromic repeat (CRISPR) technology highlights its potential in genome editing. However, applying CRISPR technology in certain microbial strains, particularly Streptomyces, encounters specific challenges. These challenges include achieving efficient gene expression and maintaining genetic stability, which are critical for successful genome editing. To overcome these obstacles, an innovative approach has been developed that combines several key elements: activation-induced cytidine deaminase (AID), nuclease-deficient cas9 variants (dCas9), and Petromyzon marinus cytidine deaminase 1 (PmCDA1). In this study, this novel strategy was employed to engineer a Streptomyces coelicolor strain. The target gene was actVA-ORF4 (SCO5079), which is involved in actinorhodin production. The engineering process involved introducing a specific construct [pGM1190-dcas9-pmCDA-UGI-AAV-actVA-ORF4 (SCO5079)] to create a CrA10 mutant strain. The resulting CrA10 mutant strain did not produce actinorhodin. This outcome highlights the potential of this combined approach in the genetic manipulation of Streptomyces. The failure of the CrA10 mutant to produce actinorhodin conclusively demonstrates the success of gene editing at the targeted site, affirming the effectiveness of this method for precise genetic modifications in Streptomyces.

4.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39062879

RESUMEN

DNA methylation is a key epigenetic mechanism orchestrating gene expression networks in many biological processes. Nonetheless, studying the role of specific gene methylation events in fish faces challenges. In this study, we validate the regulation of DNA methylation on empty spiracles homeobox 2 (emx2) expression with decitabine treatment in Chinese tongue sole testis cells. We used the emx2 gene as the target gene and developed a new DNA methylation editing system by fusing dnmt3a with catalytic dead Cas9 (dCas9) and demonstrated its ability for sequence-specific DNA methylation editing. Results revealed that utilizing dCas9-dnmt3a to target emx2 promoter region led to increased DNA methylation levels and decreased emx2 expression in Chinese tongue sole testis cells. More importantly, the DNA methylation editing significantly suppressed the expression of MYC proto-oncogene, bHLH transcription factor (myc), one target gene of emx2. Furthermore, we assessed the off-target effects of dCas9-dnmt3a and confirmed no significant impact on the predicted off-target gene expression. Taken together, we developed the first DNA methylation editing system in marine species and demonstrated its effective editing ability in Chinese tongue sole cells. This provides a new strategy for both epigenetic research and molecular breeding of marine species.


Asunto(s)
Metilación de ADN , Edición Génica , Proteínas de Homeodominio , Testículo , Animales , Masculino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Testículo/metabolismo , Edición Génica/métodos , Sistemas CRISPR-Cas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Peces Planos/genética , Regiones Promotoras Genéticas/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , ADN Metiltransferasa 3A
5.
Methods Mol Biol ; 2842: 167-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012595

RESUMEN

In this chapter, we present an experimental protocol to conduct DNA methylation editing experiments, that is, to induce loss or gain of DNA methylation, targeting Dlk1-Dio3 imprinted domain, a well-studied imprinted locus, in ES cells. In this protocol, plasmid vectors expressing the DNA methylation editing tools, combining the CRISPR/dCas9 system and the SunTag system coupled to a DNA methyltransferase or a TET enzyme, are introduced into cells for transient expression. By employing this strategy, researchers can effectively investigate a distinct DNA methylation signature that has an impact on the imprinting status, including gene expression and histone modifications, across the entire domain. We also describe strategies for allele-specific quantitative analyses of DNA methylation, gene expression, and histone modifications and binding protein levels for assessing the imprinting state of the locus.


Asunto(s)
Sistemas CRISPR-Cas , Metilación de ADN , Edición Génica , Impresión Genómica , Edición Génica/métodos , Animales , Ratones , Sitios Genéticos , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Yoduro Peroxidasa/genética , Alelos , Humanos
6.
Methods Mol Biol ; 2842: 179-192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012596

RESUMEN

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.


Asunto(s)
Alelos , Sistemas CRISPR-Cas , Metilación de ADN , Epigenoma , Edición Génica , Humanos , Edición Génica/métodos , Células HEK293 , ARN Guía de Sistemas CRISPR-Cas/genética , Epigenómica/métodos , Epigénesis Genética
7.
Methods Mol Biol ; 2842: 267-287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012601

RESUMEN

Genome editing tools, particularly the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) systems (e.g., CRISPR/Cas9), and their repurposing into epigenetic editing platforms, offer enormous potential as safe and customizable therapies for cancer. Specifically, various transcriptional abnormalities in human malignancies, such as silencing of tumor suppressors and ectopic re-expression of oncogenes, have been successfully targeted with virtually no off-target effects using CRISPR activation and repression systems. In these systems, the nuclease-deactivated Cas9 protein (dCas9) is fused to one or more domains inducing selective activation or repression of the targeted genes. Despite these advances, the efficient in vivo delivery of these molecules into the target cancer cells represents a critical barrier to accomplishing translation into a clinical therapy setting for cancer. Major obstacles include the large size of dCas9 fusion proteins, the necessity of multimodal delivery of protein and gRNAs, and the potential of these formulations to elicit detrimental immune responses.In this context, viral methods for delivering CRISPR face several limitations, such as the packaging capacity of the viral genome, the potential for integration of the nucleic acids into the host cells genome, and immunogenicity of viral proteins, posing serious safety concerns. The rapid development of mRNA vaccines in response to the COVID-19 pandemic has rekindled interest in mRNA-based approaches for CRISPR/dCas9 delivery. Simultaneously, due to their high loading capacity, scalability, customizable surface modification for cell targeting, and low immunogenicity, lipid nanoparticles (LNPs) have been widely explored as nonviral vectors. In this chapter, we first describe the design of optimized dCas9-effector mRNAs and gRNAs for epigenetic editing. We outline formulations of LNPs suitable for dCas9 mRNA delivery. Additionally, we provide a protocol for the co-encapsulation of the dCas9-effector mRNAs and gRNA into these LNPs, along with detailed methods for delivering these formulations to both cell lines (in vitro) and mouse models of breast cancer (in vivo).


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Nanopartículas , Neoplasias , Edición Génica/métodos , Humanos , Nanopartículas/química , Animales , Neoplasias/genética , Neoplasias/terapia , Epigénesis Genética , Ratones , ARN Guía de Sistemas CRISPR-Cas/genética , Liposomas/química , Línea Celular Tumoral , Lípidos/química , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Terapia Genética/métodos , Técnicas de Transferencia de Gen
8.
Methods Mol Biol ; 2842: 289-307, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012602

RESUMEN

Epigenetic modifications play a crucial role in regulating gene expression patterns. Through epigenetic editing approaches, the chromatin structure is modified and the activity of the targeted gene can be reprogrammed without altering the DNA sequence. By using the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic repeats) platform with nuclease-deactivated dCas9 proteins to direct epigenetic effector domains (EDs) to genomic regulatory regions, the expression of the targeted gene can be modulated. However, the long-term stability of these effects, although demonstrated, remains unpredictable. The versatility and flexibility of (co-)targeting different genes with multiple epigenetic effectors has made the CRISPR/dCas9 platform the most widely used gene modulating technology currently available. Efficient delivery of large dCas9-ED fusion constructs into target cells, however, is challenging. An approach to overcome this limitation is to generate cells that stably express sgRNA(s) or dCas9-ED constructs. The sgRNA(s) or dCas9-ED stable cell lines can be used to study the mechanisms underlying sustained gene expression reprogramming by transiently expressing the other of the two constructs. Here, we describe a detailed protocol for the engineering of cells that stably express CRISPR/dCas9 or sgRNA. Creating a system where one component of the CRISPR/dCas9 is stably expressed while the other is transiently expressed offers a versatile platform for investigating the dynamics of epigenetic reprogramming.


Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Edición Génica/métodos , Humanos , ARN Guía de Sistemas CRISPR-Cas/genética , Línea Celular , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , Células HEK293
9.
Methods Mol Biol ; 2842: 255-265, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012600

RESUMEN

To fully exploit the potentials of reprogramming the epigenome through CRISPR/dCas9 systems for epigenetic editing, there is a growing need for improved transfection methods. With the utilization of constructs often with large sizes and the wide array of cell types used to read out the effect of epigenetic editing in different biological applications, it is evident that ongoing optimalization of transfection protocols tailored to each specific experimental setup is essential. Whether the goal is the production of viral particles using human embryonic kidney (HEK) cells or the direct examination of epigenomic modifications in the target cell type, continuous refinement of transfection methods is crucial. In the hereafter outlined protocol, we focus on optimization of transfection protocols by comparing different reagents and methods, creating a streamlined setup for transfection efficiency optimization in cultured mammalian cells. Our protocol provides a comprehensive overview of flow cytometry analysis following transfection not just to improve transfection efficiency but also to assess the expression level of the utilized construct. We showcase our transfection protocol optimization using HEK293T Lenti-X™ and breast cancer MCF-7 cell lines, using a single-guide RNA-containing plasmid. Specifically, we incorporate heat shock treatment for increased transfection efficiency of the MCF-7 cell line. Our detailed optimization protocol for efficient plasmid delivery and measurement of single-cell plasmid expression provides a comprehensive instruction for assessing both transient and sustained effects of epigenetic reprogramming.


Asunto(s)
Sistemas CRISPR-Cas , Epigénesis Genética , Edición Génica , Plásmidos , Análisis de la Célula Individual , Transfección , Humanos , Plásmidos/genética , Edición Génica/métodos , Células HEK293 , Transfección/métodos , Análisis de la Célula Individual/métodos , Epigenómica/métodos , Citometría de Flujo
10.
Methods Mol Biol ; 2842: 57-77, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39012590

RESUMEN

Epigenome editing has emerged as a powerful technique for targeted manipulation of the chromatin and transcriptional landscape, employing designer DNA binding domains fused with effector domains, known as epi-editors. However, the constitutive expression of dCas9-based epi-editors presents challenges, including off-target activity and lack of temporal resolution. Recent advancements of dCas9-based epi-editors have addressed these limitations by introducing innovative switch systems that enable temporal control of their activity. These systems allow precise modulation of gene expression over time and offer a means to deactivate epi-editors, thereby reducing off-target effects associated with prolonged expression. The development of novel dCas9 effectors regulated by exogenous chemical signals has revolutionized temporal control in epigenome editing, significantly expanding the researcher's toolbox. Here, we provide a comprehensive review of the current state of these cutting-edge systems and specifically discuss their advantages and limitations, offering context to better understand their capabilities.


Asunto(s)
Epigénesis Genética , Edición Génica , Edición Génica/métodos , Humanos , Epigénesis Genética/efectos de los fármacos , Epigenoma , Sistemas CRISPR-Cas , Cromatina/genética , Cromatina/metabolismo , Epigenómica/métodos , Animales
11.
Mol Ther Nucleic Acids ; 35(3): 102247, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39035791

RESUMEN

Duchenne muscular dystrophy (DMD) is a genetic neuromuscular disease. Although it leads to muscle weakness, affected individuals predominantly die from cardiomyopathy, which remains uncurable. Accumulating evidence suggests that an overexpression of utrophin may counteract some of the pathophysiological outcomes of DMD. The aim of this study was to investigate the role of utrophin in dystrophin-deficient human cardiomyocytes (CMs) and to test whether an overexpression of utrophin, implemented via the CRISPR-deadCas9-VP64 system, can improve their phenotype. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) lacking either dystrophin (DMD) or both dystrophin and utrophin (DMD KO/UTRN(+/-)). We carried out proteome analysis, which revealed considerable differences in the proteins related to muscle contraction, cell-cell adhesion, and extracellular matrix organization. Furthermore, we evaluated the role of utrophin in maintaining the physiological properties of DMD hiPSC-CMs using atomic force microscopy, patch-clamp, and Ca2+ oscillation analysis. Our results showed higher values of afterhyperpolarization and altered patterns of cytosolic Ca2+ oscillations in DMD; the latter was further disturbed in DMD KO/UTRN(+/-) hiPSC-CMs. Utrophin upregulation improved both parameters. Our findings demonstrate for the first time that utrophin maintains the physiological functions of DMD hiPSC-CMs, and that its upregulation can compensate for the loss of dystrophin.

12.
mBio ; 15(7): e0079524, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38874417

RESUMEN

Epstein-Barr virus (EBV) is a ubiquitous human tumor virus that establishes lifelong, persistent infections in B cells. The presence of EBV in cancer cells presents an opportunity to target these cells by reactivating the virus from latency. In this study, we developed a novel approach for EBV reactivation termed clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated EBV reactivation (CMER) strategy. Using modified CRISPR-associated protein 9 (dCas9) fused with VP64, we designed 10 single guide RNAs (sgRNAs) to target and activate the EBV immediate-early gene promoter. In Akata Burkitt lymphoma cells, 9 out of 10 CMER sgRNAs effectively reactivated EBV. Among these, CMER sgRNA-5 triggered robust reactivation across various cell types, including lymphoma, gastric cancer, and nasopharyngeal carcinoma cells. Importantly, the combination of CMER and ganciclovir selectively eliminated EBV-positive cells, regardless of their cell origin. These findings indicate that targeted virus reactivation by CMER, combined with nucleoside analog therapy, holds promise for EBV-associated cancer treatment. IMPORTANCE: This study explores a novel strategy called clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated Epstein-Barr virus (EBV) reactivation (CMER) to reactivate the Epstein-Barr virus in cancer cells. EBV is associated with various cancers, and reactivating EBV from latency offers a potential therapeutic strategy. We utilized an enzymatically inactive CRISPR-associated protein 9 (dCas9) fused with VP64 and designed 10 single guide RNAs to target the EBV immediate-early gene promoter. Nine of these sgRNAs effectively reactivated EBV in Burkitt lymphoma cells, with CMER sgRNA-5 demonstrating strong reactivation across different cancer cell types. Combining CMER with ganciclovir selectively eliminated EBV-positive cells, showing promise for EBV-associated cancer treatment.


Asunto(s)
Sistemas CRISPR-Cas , Infecciones por Virus de Epstein-Barr , Ganciclovir , Herpesvirus Humano 4 , Activación Viral , Humanos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/efectos de los fármacos , Herpesvirus Humano 4/fisiología , Activación Viral/efectos de los fármacos , Activación Viral/genética , Infecciones por Virus de Epstein-Barr/virología , Infecciones por Virus de Epstein-Barr/genética , Línea Celular Tumoral , Ganciclovir/farmacología , Latencia del Virus/genética , Latencia del Virus/efectos de los fármacos , Antivirales/farmacología , Linfoma de Burkitt/genética , Linfoma de Burkitt/virología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína 9 Asociada a CRISPR/genética
13.
Cell Rep ; 43(7): 114367, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38900639

RESUMEN

Cancer cells experiencing hypoxic stress employ epithelial-mesenchymal transition (EMT) to undergo metastasis through rewiring of the chromatin landscape, epigenetics, and importantly, gene expression. Here, we showed that hypoxia modulates the epigenetic landscape on CTCF promoter and upregulates its expression. Hypoxia-driven epigenetic regulation, specifically DNA demethylation mediated by TET2, is a prerequisite for CTCF induction. Mechanistically, in hypoxic conditions, Hypoxia-inducible factor 1-alpha (HIF1α) binds to the unmethylated CTCF promoter, causing transcriptional upregulation. Further, we uncover the pivotal role of CTCF in promoting EMT as loss of CTCF abrogated invasiveness of hypoxic breast cancer cells. These findings highlight the functional contribution of HIF1α-CTCF axis in promoting EMT in hypoxic breast cancer cells. Lastly, CTCF expression is alleviated and the potential for EMT is diminished when the HIF1α binding is particularly disrupted through the dCas9-DNMT3A system-mediated maintenance of DNA methylation on the CTCF promoter. This axis may offer a unique therapeutic target in breast cancer.


Asunto(s)
Neoplasias de la Mama , Factor de Unión a CCCTC , Hipoxia de la Célula , Metilación de ADN , Transición Epitelial-Mesenquimal , Subunidad alfa del Factor 1 Inducible por Hipoxia , Regiones Promotoras Genéticas , Humanos , Factor de Unión a CCCTC/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Regiones Promotoras Genéticas/genética , Metilación de ADN/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Dioxigenasas , Epigénesis Genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , ADN Metiltransferasa 3A/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética
14.
Mol Ther ; 32(8): 2549-2562, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38879753

RESUMEN

Osteoarthritis (OA) is a painful and debilitating disease affecting over 500 million people worldwide. Intraarticular injection of mesenchymal stromal cells (MSCs) shows promise for the clinical treatment of OA, but the lack of consistency in MSC preparation and application makes it difficult to further optimize MSC therapy and to properly evaluate the clinical outcomes. In this study, we used Sox9 activation and RelA inhibition, both mediated by the CRISPR-dCas9 technology simultaneously, to engineer MSCs with enhanced chondrogenic potential and downregulated inflammatory responses. We found that both Sox9 and RelA could be fine-tuned to the desired levels, which enhances the chondrogenic and immunomodulatory potentials of the cells. Intraarticular injection of modified cells significantly attenuated cartilage degradation and palliated OA pain compared with the injection of cell culture medium or unmodified cells. Mechanistically, the modified cells promoted the expression of factors beneficial to cartilage integrity, inhibited the production of catabolic enzymes in osteoarthritic joints, and suppressed immune cells. Interestingly, a substantial number of modified cells could survive in the cartilaginous tissues including articular cartilage and meniscus. Together, our results suggest that CRISPR-dCas9-based gene regulation is useful for optimizing MSC therapy for OA.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Mesenquimatosas , Osteoartritis , Factor de Transcripción SOX9 , Factor de Transcripción ReIA , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Osteoartritis/terapia , Osteoartritis/genética , Osteoartritis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética , Ratones , Humanos , Modelos Animales de Enfermedad , Cartílago Articular/metabolismo , Cartílago Articular/patología , Trasplante de Células Madre Mesenquimatosas/métodos , Condrogénesis/genética , Edición Génica , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Condrocitos/metabolismo
15.
J Neurooncol ; 169(1): 129-135, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38762829

RESUMEN

PURPOSE: Glioblastoma (GBM) stands out as the most prevalent and aggressive intracranial tumor, notorious for its poor prognosis. The current standard-of-care for GBM patients involves surgical resection followed by radiotherapy, combined with concurrent and adjuvant chemotherapy using Temozolomide (TMZ). The effectiveness of TMZ primarily relies on the activity of O6-methylguanine DNA methyltransferase (MGMT), which removes alkyl adducts from the O6 position of guanine at the DNA level, thereby counteracting the toxic effects of TMZ. METHOD: In this study, we employed fusions of catalytically-inactive Cas9 (dCas9) to DNA methyltransferases (dCas9-DNMT3A) to selectively downregulation MGMT transcription by inducing methylation at MGMT promoter and K-M enhancer. RESULT: Our findings demonstrate a significant reduction in MGMT expression, leading to intensified TMZ sensitivity in the HEK293T cell line. CONCLUSION: This study serves as a proof of concept for the utilization of CRISPR-based gene suppression to overcome TMZ resistance and enhance the lethal effect of TMZ in glioblastoma tumor cells.


Asunto(s)
Antineoplásicos Alquilantes , Sistemas CRISPR-Cas , Regulación hacia Abajo , Glioblastoma , Temozolomida , Humanos , Temozolomida/farmacología , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Glioblastoma/genética , Glioblastoma/tratamiento farmacológico , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Células HEK293 , Resistencia a Antineoplásicos/genética , Metilación de ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Línea Celular Tumoral , Regiones Promotoras Genéticas
16.
Mol Carcinog ; 63(7): 1349-1361, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38712797

RESUMEN

Although aberrant methylation of PAX1 is closely associated with cervical cancer (CC), PAX1 methylation (PAX1m) and its role in CC remain to be elucidated. Here, we clarified the biological function of PAX1 in CC. First, PAX1m in ThinPrep cytologic test samples was measured via quantitative methylation-specific PCR. The results showed that PAX1 promoter methylation levels were significantly increased in CC patients (p < 0.001). We also found that PAX1 promoter methylation levels were positively correlated with tumor purity but negatively correlated with immune-infiltration via public databases. Then, CRISPR-based methylation perturbation tools (dCas9-Tet1) were constructed to further demonstrate that DNA methylation participates in the regulation of PAX1 expression directly. Gain- and loss-of-function experiments were used to show that PAX1 overexpression restrained proliferation, migration and improved cisplatin sensitivity by interfering with the WNT/TIMELESS axis in CC cells. Additionally, Co-immunoprecipitation assays further confirmed the interaction between PAX1 and TCF7L2. Taken together, our results suggested that a tumor suppressor role of PAX1 in CC and that CRISPR-based PAX1 demethylation editing might be a promising therapeutic strategy for CC.


Asunto(s)
Proliferación Celular , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias del Cuello Uterino , Vía de Señalización Wnt , Femenino , Humanos , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Factores de Transcripción Paired Box/genética , Factores de Transcripción Paired Box/metabolismo , Regiones Promotoras Genéticas , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Vía de Señalización Wnt/genética
17.
Environ Epigenet ; 10(1): dvae006, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751572

RESUMEN

Gene therapy is a focus of interest in both human and veterinary medicine, especially in recent years due to the potential applications of CRISPR/Cas9 technology. Another relatively new approach is that of epigenetic therapy, which involves an intervention based on epigenetic marks, including DNA methylation, histone post-translational modifications, and post-transcription modifications of distinct RNAs. The epigenome results from enzymatic reactions, which regulate gene expression without altering DNA sequences. In contrast to conventional CRISP/Cas9 techniques, the recently established methodology of epigenetic editing mediated by the CRISPR/dCas9 system is designed to target specific genes without causing DNA breaks. Both natural epigenetic processes and epigenetic editing regulate gene expression and thereby contribute to maintaining the balance between physiological functions and pathophysiological states. From this perspective, knowledge of specific epigenetic marks has immense potential in both human and veterinary medicine. For instance, the use of epigenetic drugs (chemical compounds with therapeutic potential affecting the epigenome) seems to be promising for the treatment of cancer, metabolic, and infectious diseases. Also, there is evidence that an epigenetic diet (nutrition-like factors affecting epigenome) should be considered as part of a healthy lifestyle and could contribute to the prevention of pathophysiological processes. In summary, epigenetic-based approaches in human and veterinary medicine have increasing significance in targeting aberrant gene expression associated with various diseases. In this case, CRISPR/dCas9, epigenetic targeting, and some epigenetic nutrition factors could contribute to reversing an abnormal epigenetic landscape to a healthy physiological state.

18.
Small Methods ; : e2301764, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708688

RESUMEN

The objective of the current study is to develop a new method for tracking transplanted human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) using magnetic resonance imaging (MRI). The CRISPR/dCas9 activation system is employed to overexpress ferritin heavy chain (FHC) in hiPSC-CMs. The mRNA and protein expression of FHC in hiPSC and hiPSC-CMs significantly increased after transfection. Iron chloride does not affect the cell viability in a concentration range from 0 to 2000 µm. hiPSCs overexpressing FHC (hiPSC- FHCOE) and hiPSC-CMs overexpressing FHC (hiPSC-CM-FHCOE) significantly enhanced cellular uptake of iron chloride but with no changes in electrophysiological properties compared to hiPSC-CM-Control. Furthermore, hiPSC-CM-FHCOE presented robust contrast and lower T2* values, signifying their potential as highly effective candidates for cardiac MRI. Next, hiPSC-CM-FHCOE is injected into mouse hearts and after 3 days of transplantation, MR images are obtained. hiPSC-CM-FHCOE cells exhibited clear signals in the hearts with lower T2* and rapid signal decay. Collectively, data from this proof-of-concept study demonstrated that endogenous labeling with FHC in hiPSC-CMs can be a potent strategy for enhancing the accuracy of cardiac MRI. This technology represents a significant step forward in tracking the transplanted hiPSC-CMs in the hearts of live animals.

19.
Methods Mol Biol ; 2781: 93-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502446

RESUMEN

The placenta is a vital organ that regulates nutrient supply to the developing embryo during gestation. In mice, the placenta is composed of trophoblast lineage and mesodermal derivatives, which merge through the chorioallantoic fusion process in a critical event for the progression of placenta development. The trophoblast lineage is derived from self-renewing, multipotent cells known as mouse trophoblast stem cells (mTSCs). These cells are a valuable tool that allows scientists to comprehend the signals regulating major placental cell types' self-renewal and differentiation capacity. Recent advances in CRISPR-Cas9 genome editing applied in mTSCs have provided novel insights into the molecular networks involved in placentation. Here, we present a comprehensive CRISPR activation (CRISPRa) protocol based on the CRISPR/gRNA-directed synergistic activation mediator (SAM) method to overexpress specific target genes in mTSCs.


Asunto(s)
Placenta , ARN Guía de Sistemas CRISPR-Cas , Embarazo , Femenino , Animales , Ratones , Trofoblastos , Placentación/fisiología , Diferenciación Celular/genética , Células Madre
20.
Methods Mol Biol ; 2761: 81-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38427231

RESUMEN

The epigenome, consisting of chemical modifications to DNA and histone proteins, can alter gene expression. Clustered regularly interspaced short palindromic repeats/dead CRISPR-associated protein 9 (CRISPR/dCas9) systems enable precise target gene-specific gene modulation by attaching different "effector" domains to the dCas9 protein to activate or repress specific genes. CRISPR/dCas9-SunTag is an improved system version, allowing more efficient and precise gene activation or repression by recruiting multiple copies of the protein of interest. A CRISPR/dCas9-SunTag-based modular epigenetic toolkit was developed, enabling gene-specific epigenetic architecture modulation. This protocol generated a stable SH-SY5Y cell line expressing the CRISPR/dCas9-SunTag-JARID1A system to study H3K4Me3-mediated promoter regulation at a 200-400 bp of fine resolution. The procedure involved designing sgRNAs, subcloning dCas9-5XGCN4 into pLvx-DsRed, validating epigenetic mark changes with ChIP, and validating gene expression changes with RT-qPCR. This epigenetic toolkit is valuable for researchers to understand the relationship between gene-specific epigenetic modifications and gene expression.


Asunto(s)
Sistemas CRISPR-Cas , Neuroblastoma , Humanos , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ARN Guía de Sistemas CRISPR-Cas , Neuroblastoma/genética , Epigénesis Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...