Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
1.
DNA Repair (Amst) ; 143: 103770, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39357141

RESUMEN

The intracellular responses to DNA double-strand breaks (DSB) repair are crucial for genomic stability and play an essential role in cancer resistance. In addition to canonical DSB repair proteins, long non-coding RNAs (lncRNAs) have been found to be involved in this sophisticated network. In the present study, we performed a loss-of-function screen for a customized siRNA Premix Library to identify lncRNAs that participate in homologous recombination (HR) process. Among the candidates, we identified LINC01664 as a novel lncRNA required for HR repair. Furthermore, LINC01664 knockdown significantly increased the sensitivity of cancer cells to DNA damage agents such as ionizing radiation and genotoxic drugs. Mechanistically, LINC01664 interacted with Sirt1 promoter and then activated Sirt1 transcription, which contributed to HR-mediated DNA damage repair. In summary, our findings revealed a new mechanism of LINC01664 in DNA damage repair, providing evidence for a potential therapeutic strategy for eliminating the treatment bottlenecks caused by cancer resistance to chemotherapy and radiotherapy.

2.
Bioorg Chem ; 153: 107776, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39276490

RESUMEN

Among members of the mitogen-activated protein kinase (MAPK) family, c-Jun N-terminal kinases (JNKs) are vital for cellular responses to stress, inflammation, and apoptosis. Recent advances have highlighted their important implications in cancer biology, where dysregulated JNK signalling plays a role in the growth, progression, and metastasis of tumors. The present understanding of JNK kinase and its function in the etiology of cancer is summarized in this review. By modifying a number of downstream targets, such as transcription factors, apoptotic regulators, and cell cycle proteins, JNKs exert diverse effects on cancer cells. Apoptosis avoidance, cell survival, and proliferation are all promoted by abnormal JNK activation in many types of cancer, which leads to tumor growth and resistance to treatment. JNKs also affect the tumour microenvironment by controlling the generation of inflammatory cytokines, angiogenesis, and immune cell activity. However, challenges remain in deciphering the context-specific roles of JNK isoforms and their intricate crosstalk with other signalling pathways within the complex tumor environment. Further research is warranted to delineate the precise mechanisms underlying JNK-mediated tumorigenesis and to develop tailored therapeutic strategies targeting JNK signalling to improve cancer management. The review emphasizes the role of JNK kinases in cancer biology, as well as their potential as pharmaceutical targets for precision oncology therapy and cancer resistance. Also, this review summarizes all the available promising JNK inhibitors that are suggested to promote the responsiveness of cancer cells to cancer treatment.

3.
Toxicol In Vitro ; 101: 105942, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284535

RESUMEN

In this study, we investigated the role of two efflux transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in the cytotoxicity and intracellular accumulation of the organophosphate pesticide chlorpyrifos (CPF) and its active metabolite, CPF-oxon (CPFO), in a human-derived liver cell line (HepG2) and kidney epithelial cell line (HK-2). The cytotoxicity to CPF and CPFO differed between cell lines where HK-2 had lower IC50 values which could be attributed to lower basal expression and inducibility of metabolizing enzymes, transporters, and nuclear receptors in HK-2 cells. In HepG2 cells, co-exposure of CPF with a specific inhibitor of either P-gp or BCRP enhanced the cytotoxicity of CPF while co-exposure of CPFO with VRP enhanced the cytotoxicity of CPFO, suggesting the role of these transporters in the elimination CPF and CPFO. Inhibition of efflux transporters did not affect the cytotoxicity of CPF and CPFO in HK-2 cells. Co-incubation of CPF with P-gp and BCRP inhibitors increased the intracellular concentration of CPF in HepG2 cells suggesting that both transporters play a role in limiting the cellular accumulation of CPF in HepG2 cells. Our results provide evidence that inhibition of efflux transporters can enhance CPF-induced toxicity through enhanced cellular accumulation and raises additional questions regarding how pesticide-transporter interactions may influence toxicity of mixtures containing pesticides and other environmental chemicals.

4.
J Mol Evol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39256250

RESUMEN

This literature review is to present a new direction in developing better treatment or preventive measures. The larger the body of an organism, the more numerous the cells, which theoretically lead to a higher risk of cancer. However, observational studies suggest the lack of correlation between body size and cancer risk, which is known as Peto's paradox. The corollary of Peto's paradox is that large organisms must be cancer-resistant. Further investigation of the anti-cancer mechanisms in each species could be potentially rewarding, and how the anti-cancer mechanisms found in wild animals can help influence and develop more effective cancer treatment in humans is the main focus of this literature review. Due to a lack of research and understanding of the exact molecular mechanisms of the researched species, only a few (Elephants and rodents) that have been extensively researched have made substantive contributions to human oncology. A new research direction is to investigate the positively selective genes that are related to cancer resistance and see if homologous genes are presented in humans. Despite the great obstacle of applying anti-cancer mechanisms to the human body from phylogenetically distant species, this research direction of gaining insights through investigating cancer-resisting evolutionary adaptations in wild animals has great potential in human oncology research.

5.
Pharmaceutics ; 16(9)2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39339247

RESUMEN

The space environment can affect the function of all physiological systems, including the properties of cell membranes. Our goal in this study was to explore the effect of simulated microgravity (SMG) on the cellular uptake of small molecules based on reported microgravity-induced changes in membrane properties. SMG was applied to cultured cells using a random-positioning machine for up to three hours. We assessed the cellular accumulation of compounds representing substrates of uptake and efflux transporters, and of compounds not shown to be transported by membrane carriers. Exposure to SMG led to an increase of up to 60% (p < 0.01) in the cellular uptake of efflux transporter substrates, whereas a glucose transporter substrate showed a decrease of 20% (p < 0.05). The uptake of the cathepsin activity-based probe GB123 (MW, 1198 g/mol) was also enhanced (1.3-fold, p < 0.05). Cellular emission of molecules larger than ~3000 g/mol was reduced by up to 50% in SMG (p < 0.05). Our findings suggest that short-term exposure to SMG could differentially affect drug distribution across membranes. Longer exposure to microgravity, e.g., during spaceflight, may have distinct effects on the cellular uptake of small molecules.

6.
Pharmaceutics ; 16(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39204337

RESUMEN

Of the 450 cell membrane transporters responsible for shuttling substrates, nutrients, hormones, neurotransmitters, antioxidants, and signaling molecules, approximately nine are associated with clinically relevant drug-drug interactions (DDIs) due to their role in drug and metabolite transport. Therefore, a clinical study evaluating potential transporter DDIs is recommended if an investigational product is intestinally absorbed, undergoes renal or hepatic elimination, or is suspected to either be a transporter substrate or perpetrator. However, many of the transporter substrates and inhibitors administered during a DDI study also affect cytochrome P450 (CYP) activity, which can complicate data interpretation. To overcome these challenges, the assessment of endogenous biomarkers can help elucidate the mechanism of complex DDIs when multiple transporters or CYPs may be involved. This perspective article will highlight how creative study designs are currently being utilized to address complex transporter DDIs and the role of physiology-based -pharmacokinetic (PBPK) models can play.

7.
Biomolecules ; 14(7)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39062581

RESUMEN

Chemotherapeutic drugs and radiotherapy are fundamental treatments to combat cancer, but, often, the doses in these treatments are restricted by their non-selective toxicities, which affect healthy tissues surrounding tumors. On the other hand, drug resistance is recognized as the main cause of chemotherapeutic treatment failure. Rosmarinic acid (RA) is a polyphenol of the phenylpropanoid family that is widely distributed in plants and vegetables, including medicinal aromatic herbs, consumption of which has demonstrated beneficial activities as antioxidants and anti-inflammatories and reduced the risks of cancers. Recently, several studies have shown that RA is able to reverse cancer resistance to first-line chemotherapeutics, as well as play a protective role against toxicity induced by chemotherapy and radiotherapy, mainly due to its scavenger capacity. This review compiles information from 56 articles from Google Scholar, PubMed, and ClinicalTrials.gov aimed at addressing the role of RA as a complementary therapy in cancer treatment.


Asunto(s)
Cinamatos , Depsidos , Resistencia a Antineoplásicos , Neoplasias , Ácido Rosmarínico , Depsidos/farmacología , Depsidos/química , Depsidos/uso terapéutico , Cinamatos/farmacología , Cinamatos/uso terapéutico , Cinamatos/química , Humanos , Neoplasias/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico
8.
J Nanobiotechnology ; 22(1): 452, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080641

RESUMEN

Drug resistance to chemotherapy in cancers remains significant clinical challenges. CD44 modulates cellular adhesion, migration and growth, which plays a pivotal role in driving cancer resistance and even recurrence. Despite ongoing efforts, accurate, safe, and real-time dynamic monitoring techniques for CD44 expression remain inadequate in guiding the management of drug-resistant cancer treatment. In this study, we developed a nano-quenching and recovery detector of CD44 (Cy3-AptCD44@BPNSs) for visualizing cancer drug resistance. The fluorescence recovery of the detector is directly related to the CD44 expression level on cancer cells, which can be used to indicate the degree of drug resistance. It's confirmed that downregulating CD44 expression on cancer cells results in a corresponding decrease in the fluorescence intensity of the detector, which enables precise and dynamic monitoring of CD44. In addition, the Cy3-AptCD44@BPNSs also exhibited specificity in detecting CD44. This visualizing strategy may open up a wide range of possibilities for rapid recognition to cancer drug resistance, which is more efficient and flexible.


Asunto(s)
Resistencia a Antineoplásicos , Receptores de Hialuranos , Receptores de Hialuranos/metabolismo , Humanos , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Fluorescencia , Antineoplásicos/farmacología
9.
Biomed Pharmacother ; 178: 117114, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39053425

RESUMEN

Bosutinib has been approved for use in patients with chronic myeloid leukemia. Information regarding the effects of bosutinib on clinically important drug transporters is limited, particularly regarding its inhibitory potency on transporters and in vivo effects. Therefore, we conducted a study investigating the in vitro and in vivo effects of bosutinib on drug transporters. Bosutinib showed moderate or strong inhibitory effects on organic cation transporter 2, multidrug and toxin extrusion protein 1, and breast cancer resistance protein with IC50 values of 0.0894, 0.598, and 10.8 µM, respectively. In vivo experiments in rats showed that bosutinib significantly inhibited organic cation transporter 2 and multidrug and toxin extrusion protein 1, leading to a marked reduction in the renal clearance of metformin and an increase in systemic exposure to metformin. Bosutinib increased systemic exposure to sulfasalazine, a probe substrate of breast cancer resistance protein, by 75 % in rats, highlighting its potential to significantly affect intestinal drug efflux. These quantitative changes suggest that bosutinib may alter the in vivo pharmacokinetics of drugs that are substrates of these transporters, potentially leading to increased drug exposure and enhanced or unexpected pharmacological effects.


Asunto(s)
Compuestos de Anilina , Nitrilos , Quinolinas , Animales , Nitrilos/farmacología , Nitrilos/farmacocinética , Quinolinas/farmacología , Quinolinas/farmacocinética , Compuestos de Anilina/farmacología , Compuestos de Anilina/farmacocinética , Masculino , Ratas , Humanos , Ratas Sprague-Dawley , Metformina/farmacología , Metformina/farmacocinética , Transporte Biológico/efectos de los fármacos
10.
Biochem Biophys Res Commun ; 729: 150348, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986260

RESUMEN

Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/ß-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/ß-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/ß-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/ß-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/ß-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Vía de Señalización Wnt , Humanos , Resistencia a Antineoplásicos/genética , Vía de Señalización Wnt/efectos de los fármacos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , beta Catenina/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales
11.
Cancer Drug Resist ; 7: 24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050885

RESUMEN

The increasing prevalence of cancer drug resistance not only critically limits the efficiency of traditional therapies but also causes relapses or recurrences of cancer. Consequently, there remains an urgent need to address the intricate landscape of drug resistance beyond traditional cancer therapies. Recently, nanotechnology has played an important role in the field of various drug delivery systems for the treatment of cancer, especially therapy-resistant cancer. Among advanced nanomedicine technologies, lipid-based nanomaterials have emerged as effective drug carriers for cancer treatment, significantly improving therapeutic effects. Due to their biocompatibility, simplicity of preparation, and potential for functionalization, lipid-based nanomaterials are considered powerful competitors for resistant cancer. In this review, an overview of lipid-based nanomaterials for addressing cancer resistance is discussed. We summarize the recent progress in overcoming drug resistance in cancer by these lipid-based nanomaterials, and highlight their potential in future applications to reverse cancer resistance.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39044536

RESUMEN

Lung cancer is a leading cause of death globally, with lung adenocarcinoma being the most common subtype. Despite advancements in targeted therapy, drug resistance remains a major challenge. This study investigated the impact of Bacillus coagulans on drug resistance in lung adenocarcinoma cells. The cells were pretreated with B. coagulans culture filtrate (BCCF), and functional assays were performed, including cell proliferation, cell cycle, apoptosis, and immunofluorescence staining. Results showed that BCCF induced cell cycle arrest at the S phase, reducing cell proliferation and suppressing drug resistance marker P-glycoprotein expression in BCCF-treated resistant cells rather than BCCF-treated control cells. Moreover, drug-resistant cells exhibited the ability for epithelial-mesenchymal transition, which could contribute to their necrosis through the iron-mediated cell death pathway upon BCCF treatment. Proteomic analysis identified downregulation of DNA mismatch repair protein PMS2 after BCCF treatment. These findings suggest that B. coagulans may modulate the DNA repair pathway, influencing drug resistance in lung adenocarcinoma cells. In conclusion, this study highlights the potential impact of B. coagulans on drug-resistant lung adenocarcinoma cells. Further investigation and understanding of the regulatory mechanisms by which B. coagulans modulates drug resistance in lung adenocarcinoma can aid in the development of more effective treatment strategies to improve the prognosis of lung cancer patients.

13.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38984714

RESUMEN

The blood-brain barrier (BBB) is an extensive capillary network that protects the brain from environmental and metabolic toxins while limiting drug delivery to the central nervous system (CNS). The ATP-binding cassette transporter breast cancer resistance protein (Bcrp) reduces drug delivery across the BBB by actively transporting its clinical substrates back into peripheral circulation before their entry into the CNS compartment. 17ß-Estradiol (E2)-elicited changes in Bcrp transport activity and expression have been documented previously. We report a novel signaling mechanism by which E2 decreases Bcrp transport activity in mouse brain capillaries via rapid nongenomic signaling through estrogen receptor α. We extended this finding to investigate the effects of different endocrine-disrupting compounds (EDCs) and selective estrogen receptor modulators (SERMs) on Bcrp transport function. We also demonstrate sex-dependent expression of Bcrp and E2-sensitive Bcrp transport activity at the BBB ex vivo. This work establishes an explanted tissue-based model by which to interrogate EDCs and SERMs as modulators of nongenomic estrogenic signaling with implications for sex and hormonal regulation of therapeutic delivery into the CNS.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Barrera Hematoencefálica , Estradiol , Receptor alfa de Estrógeno , Transducción de Señal , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Receptor alfa de Estrógeno/metabolismo , Ratones , Femenino , Transducción de Señal/efectos de los fármacos , Estradiol/farmacología , Masculino , Transporte Biológico/efectos de los fármacos , Ratones Endogámicos C57BL
14.
Pharmaceutics ; 16(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39065581

RESUMEN

Expression of the breast cancer resistance protein (BCRP/ABCG2) transporter is downregulated in placentas from women with preeclampsia (PE) and in an immunological rat model of PE. While many drugs are substrates of this important efflux transporter, the impact of PE associated BCRP downregulation on maternal and fetal drug exposure has not been investigated. Using the PE rat model, we performed a pharmacokinetic study with rosuvastatin (RSV), a BCRP substrate, to investigate this impact. PE was induced in rats during gestational days (GD) 13 to 16 with daily low-dose endotoxin. On GD18, RSV (3 mg/kg) was administrated intravenously, and rats were sacrificed at time intervals between 0.5 and 6 h. As compared to controls, placental expression of Bcrp and Oatp2b1 significantly decreased in PE rats. A corresponding increase in RSV levels was seen in fetal tissues and amniotic fluid of the PE group (p < 0.05), while maternal plasma concentrations remained unchanged from the controls. An increase in Bcrp expression and decreased RSV concentration were seen in the livers of PE dams. This suggests that PE-mediated transporter dysregulation leads to significant changes in the maternal and fetal RSV disposition. Overall, our findings demonstrate that altered placental expression of transporters in PE can increase fetal accumulation of their substrates.

15.
Cell Rep Med ; 5(6): 101609, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897176

RESUMEN

ATP-binding cassette (ABC) transporters facilitate the movement of diverse molecules across cellular membranes, including those within the CNS. While most extensively studied in microvascular endothelial cells forming the blood-brain barrier (BBB), other CNS cell types also express these transporters. Importantly, disruptions in the CNS microenvironment during disease can alter transporter expression and function. Through this comprehensive review, we explore the modulation of ABC transporters in various brain pathologies and the context-dependent consequences of these changes. For instance, downregulation of ABCB1 may exacerbate amyloid beta plaque deposition in Alzheimer's disease and facilitate neurotoxic compound entry in Parkinson's disease. Upregulation may worsen neuroinflammation by aiding chemokine-mediated CD8 T cell influx into multiple sclerosis lesions. Overall, ABC transporters at the BBB hinder drug entry, presenting challenges for effective pharmacotherapy. Understanding the context-dependent changes in ABC transporter expression and function is crucial for elucidating the etiology and developing treatments for brain diseases.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Barrera Hematoencefálica , Encéfalo , Humanos , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Encéfalo/metabolismo , Encéfalo/patología , Encefalopatías/metabolismo , Encefalopatías/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología
16.
J Pharm Sci ; 113(9): 2871-2878, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38885812

RESUMEN

P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are important transporters causing drug-drug interaction (DDI). Here, we investigated the involvement of P-gp and BCRP in the oral absorption of ensitrelvir in non-clinical studies and estimated the DDI risk mediated by P-gp and BCRP inhibition in humans. Although ensitrelvir is an in vitro P-gp and BCRP substrate, it demonstrated high bioavailability in rats and monkeys after oral administration. Plasma exposures of ensitrelvir following oral administration were comparable in wild type (WT) and Bcrp (-/-) mice. On the other hand, the area under the plasma concentration-time curve (AUC) ratio of ensitrelvir in the Mdr1a/1b (-/-) mice to the WT mice was 1.92, indicating that P-gp, but not BCRP, was involved in the oral absorption of ensitrelvir. Based on our previous retrospective analyses, such a low AUC ratio (<3) in the Mdr1a/1b (-/-) mice indicates a minimal impact of P-gp on the oral absorption in humans. In conclusion, our studies demonstrate that the involvement of both P-gp and BCRP in the oral absorption of ensitrelvir is minimal, and suggest that ensitrelvir has a low risk for DDIs mediated by P-gp and BCRP inhibition in humans.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Ratones Noqueados , Animales , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Administración Oral , Humanos , Ratones , Ratas , Masculino , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Disponibilidad Biológica , Interacciones Farmacológicas , Inhibidores de Proteasas/farmacocinética , Inhibidores de Proteasas/administración & dosificación , Inhibidores de Proteasas/farmacología , Células CACO-2 , Ratas Sprague-Dawley , Perros , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Tratamiento Farmacológico de COVID-19 , Macaca fascicularis , Células de Riñón Canino Madin Darby , Indazoles , Triazinas , Triazoles
17.
Cancer Drug Resist ; 7: 15, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835346

RESUMEN

Decades ago, the viral myeloblastosis oncogene v-myb was identified as a gene responsible for the development of avian leukemia. However, the relevance of MYB proteins for human cancer diseases, in particular for solid tumors, remained basically unrecognized for a very long time. The human family of MYB transcription factors comprises MYB (c-MYB), MYBL2 (b-MYB), and MYBL1 (a-MYB), which are overexpressed in several cancers and are associated with cancer progression and resistance to anticancer drugs. In addition to overexpression, the presence of activated MYB-fusion proteins as tumor drivers was described in certain cancers. The identification of anticancer drug resistance mediated by MYB proteins and their underlying mechanisms are of great importance in understanding failures of current therapies and establishing new and more efficient therapy regimens. In addition, new drug candidates targeting MYB transcription factor activity and signaling have emerged as a promising class of potential anticancer therapeutics that could tackle MYB-dependent drug-resistant cancers in a more selective way. This review describes the correlation of MYB transcription factors with the formation and persistence of cancer resistance to various approved and investigational anticancer drugs.

18.
Chem Biol Interact ; 396: 111055, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38763348

RESUMEN

This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Animales , Terapia Molecular Dirigida
19.
Biochim Biophys Acta Rev Cancer ; 1879(3): 189105, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701938

RESUMEN

The present study explores the complex roles of High Mobility Group Box 1 (HMGB1) in the context of cancer development, emphasizing glioblastoma (GBM) and other central nervous system (CNS) cancers. HMGB1, primarily known for its involvement in inflammation and angiogenesis, emerges as a multifaceted player in the tumorigenesis of GBM. The overexpression of HMGB1 correlates with glioma malignancy, influencing key pathways like RAGE/MEK/ERK and RAGE/Rac1. Additionally, HMGB1 secretion is linked to the maintenance of glioma stem cells (GSCs) and contributes to the tumor microenvironment's (TME) vascular leakiness. Henceforth, our review discusses the bidirectional impact of HMGB1, acting as both a promoter of tumor progression and a mediator of anti-tumor immune responses. Notably, HMGB1 exhibits tumor-suppressive roles by inducing apoptosis, limiting cellular proliferation, and enhancing the sensitivity of GBM to therapeutic interventions. This dualistic nature of HMGB1 calls for a nuanced understanding of its implications in GBM pathogenesis, offering potential avenues for more effective and personalized treatment strategies. The findings underscore the need to explore HMGB1 as a prognostic marker, therapeutic target, and a promising tool for stimulating anti-tumor immunity in GBM.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Glioblastoma , Proteína HMGB1 , Microambiente Tumoral , Humanos , Proteína HMGB1/metabolismo , Glioblastoma/patología , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/inmunología , Neoplasias del Sistema Nervioso Central/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Animales , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Proliferación Celular
20.
Heliyon ; 10(9): e30207, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737275

RESUMEN

P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) multidrug resistance (MDR) transporters are localized at the luminal surface of the blood-brain barrier (BBB). They confer fetal brain protection against harmful compounds that may be circulating in the peripheral blood. The fetus develops in low oxygen levels; however, some obstetric pathologies such as pre-eclampsia, placenta accreta/previa may result in even greater fetal hypoxic states. We investigated how hypoxia impacts MDR transporters in human fetal brain endothelial cells (hfBECs) derived from early and mid-stages of pregnancy. Hypoxia decreased BCRP protein and activity in hfBECs derived in early pregnancy. In contrast, in hfBECs derived in mid-pregnancy there was an increase in P-gp and BCRP activity following hypoxia. Results suggest a hypoxia-induced reduction in fetal brain protection in early pregnancy, but a potential increase in transporter-mediated protection at the BBB during mid-gestation. This would modify accumulation of various key physiological and pharmacological substrates of P-gp and BCRP in the developing fetal brain and potentially contribute to the pathogenesis of neurodevelopmental disorders commonly associated with in utero hypoxia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...