Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Rep ; 37: 101649, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38318524

RESUMEN

Mycobacterium tuberculosis catalase-peroxidase (Mt-KatG) is a bifunctional heme-dependent enzyme that has been shown to activate isoniazid (INH), the widely used antibiotic against tuberculosis (TB). The L333V-KatG variant has been associated with INH resistance in clinical M. tuberculosis isolates from Mexico. To understand better the mechanisms of INH activation, its catalytic properties (catalase, peroxidase, and IN-NAD formation) and crystal structure were compared with those of the wild-type enzyme (WT-KatG). The rate of IN-NAD formation mediated by WT-KatG was 23% greater than L333V-KatG when INH concentration is varied. In contrast to WT-KatG, the crystal structure of the L333V-KatG variant has a perhydroxy modification of the indole nitrogen of W107 from MYW adduct. L333V-KatG shows most of the active site residues in a similar position to WT-KatG; only R418 is in the R-conformation instead of the double R and Y conformation present in WT-KatG. L333V-KatG shows a small displacement respect to WT-KatG in the helix from R385 to L404 towards the mutation site, an increase in length of the coordination bond between H270 and heme Fe, and a longer H-bond between proximal D381 and W321, compared to WT-KatG; these small displacements could explain the altered redox potential of the heme, and result in a less active and stable enzyme.

2.
Arch Biochem Biophys ; 640: 17-26, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305053

RESUMEN

CAT-2, a cytosolic catalase-peroxidase (CP) from Neurospora crassa, which is induced during asexual spore formation, was heterologously expressed and characterized. CAT-2 had the Met-Tyr-Trp (M-Y-W) adduct required for catalase activity. Its KM for H2O2 was micromolar for peroxidase and millimolar for catalase activity. A Em = -158 mV reduction potential value was obtained and the Soret band shift suggested a mixture of low and high spin ferric iron. CAT-2 EPR spectrum at 10 K indicated an axial and a rhombic component. With peroxyacetic acid (PAA), formation of Compound I* was observed with EPR. CAT-2 homodimer crystallographic structure contained two K+ ions; Glu107 residues were displaced to bind them. CAT-2 showed the essential amino acid residues for activity in similar positions to other CPs. CAT-2 Arg426 is oriented towards the M-Y-W adduct, interacting with the deprotonated Tyr238 hydroxyl group. A perhydroxy modification of the indole nitrogen of Trp90 was oriented toward the catalytic His91. In contrast to cytochrome c peroxidase and ascorbate peroxidase, the catalase-peroxidase heme propionates are not exposed to the solvent. Together with other N. crassa enzymes that utilize H2O2 as a substrate, CAT-2 has many tryptophan and proline residues at its surface, probably related to H2O2 selection in water.


Asunto(s)
Catalasa/metabolismo , Citosol/enzimología , Peróxido de Hidrógeno/metabolismo , Neurospora crassa/enzimología , Peroxidasas/metabolismo , Catalasa/química , Catalasa/genética , Clonación Molecular , Cristalografía por Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Regulación de la Expresión Génica , Cinética , Oxidación-Reducción , Peroxidasas/química , Conformación Proteica , Multimerización de Proteína , Triptófano/metabolismo , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...