Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Water Res ; 256: 121641, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38643643

RESUMEN

Extracellular polymeric substances (EPS) play significant roles in the formation, function, and interactions of microalgal-bacteria consortia. Understanding the key roles of EPS depends on reliable extraction and quantification methods, but differentiating of EPS from microalgae versus bacteria is challenging. In this work, cation exchange resin (CER) and thermal treatments were applied for total EPS extraction from microalgal-bacteria mixed culture (MBMC), flow cytometry combined with SYTOX Green staining was applied to evaluate cell disruption during EPS extraction, and auto-fluorescence-based cell sorting (AFCS) was used to separate microalgae and bacteria in the MBMC. Thermal extraction achieved much higher EPS yield than CER, but higher temperature and longer time reduced cell activity and disrupted the cells. The highest EPS yield with minimal loss of cell activity and cell disruption was achieved using thermal extraction at 55℃ for 30 min, and this protocol gave good results for MBMC with different microalgae:bacteria (M:B) mass ratios. AFCS combined with thermal treatment achieved the most-efficient biomass differentiation and low EPS loss (<4.5 %) for the entire range of M:B ratios. EPS concentrations in bacteria were larger than in microalgae: 42.8 ± 0.4 mg COD/g TSS versus 9.19 ± 0.38 mg COD/g TSS. These findings document sensitive and accurate methods to extract and quantify EPS from microalgal-bacteria aggregates.


Asunto(s)
Bacterias , Matriz Extracelular de Sustancias Poliméricas , Microalgas , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Bacterias/metabolismo , Biomasa , Citometría de Flujo
2.
Int Microbiol ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38483746

RESUMEN

The indiscriminate use of petroleum-based polymers and plastics for single-use food packaging has led to serious environmental problems due the non-biodegradable characteristics. Thus, much attention has been focused on the research of new biobased and biodegradable materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with highly promising properties for the development of biodegradable materials. This study aimed to select a preparation method to develop new biodegradable films using the whole biomass of Paecilomyces variotii subjected to successive physical treatments including ultrasonic homogenization (US) and heat treatment. Sterilization process had an important impact on the final filmogenic dispersion and mechanical properties of the films. Longer US treatments produced a reduction in the particle size and the application of an intermediate UT treatment contributed favorably to the breaking of agglomerates allowing the second US treatment to be more effective, achieving an ordered network with a more uniform distribution. Samples that were not filtrated after the sterilization process presented mechanical properties similar to plasticized materials. On the other hand, the filtration process after sterilization eliminated soluble and hydratable compounds, which produced a reduction in the hydration of the films.

3.
Life (Basel) ; 14(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38255748

RESUMEN

Non-concentrated algae storage can bridge the period between algae harvesting and processing while avoiding the stress conditions associated with the concentration step required for concentrate storage. This study aimed to examine organic matter losses during the non-concentrated storage of Microchloropsis gaditana at pilot-scale. Algae cultures (400-500 L) were stored for up to 12 days either at an 8 °C target temperature or at 19 °C as the average temperature. The centrifugation yield of stored algal cultures decreased from day 5 or day 8 onwards for all storage conditions. After 12 days, the centrifugation yields were between 57% and 93% of the initial yields. Large differences in centrifugation yields were noted between the algae batches. The batch-to-batch difference outweighed the effect of storage temperature, and the highest yield loss was observed for the 8 °C cooled algae batch. The analysis of stored algae before and after centrifugation suggested that the decreasing yields were not related to respiration losses, but rather, the decreasing efficiency with which organic matter is collected during the centrifugation step.

4.
ACS Biomater Sci Eng ; 9(8): 4770-4780, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37503882

RESUMEN

Biomimetic nanostructures with bactericidal performance have become the research focus in constructing sterilization surfaces, but the mechano-bactericidal mechanism is still not fully understood, especially for the hierarchical nanostructure arrays with different heights. Herein, the interaction between Escherichia coli cells and nanostructure arrays was simulated by finite element, and the initial rupture points, i.e., critical action sites, of bacterial cells and the effects of nanostructure geometries on the cell rupture speed were analyzed based on the mechano-response of Escherichia coli cells on flat (identical heights) and hierarchical nanostructure arrays. The critical action sites of bacterial cells on nanostructure arrays are all at the three-phase junction zone of cell-liquid-nanostructure, but they are slightly shifted by the height difference ΔH of nanostructures on hierarchical nanopillar (NP)/nanosheet (NS) arrays, where the NP is higher than the NS. When ΔH < 20 nm, the site nears the NS corners, and when ΔH ≥ 20 nm, the site is consistent with that of the NP/NP array, i.e., the site locates at the three-phase junction zone of cell-liquid-high NP. In addition, except for decreasing the NP diameter, the NS thickness/width, or properly increasing the nanostructure spacing, the cell rupture can be accelerated via increasing the ΔH of nanostructures. ΔH = 40 nm is distinguished as the boundary for the effect of nanostructure ΔH on the cell rupture speed. When ΔH < 40 nm, the cell rupture speed rapidly increases as the ΔH increases; when ΔH ≥ 40 nm, the cell rupture speed reaches the maximum value and remains stable. This study provides a new strategy on how to design high-efficiency bactericidal surfaces.


Asunto(s)
Nanoestructuras , Análisis de Elementos Finitos , Propiedades de Superficie , Nanoestructuras/química , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química
5.
Molecules ; 28(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903429

RESUMEN

Inspired by nature, it is envisaged that a nanorough surface exhibits bactericidal properties by rupturing bacterial cells. In order to study the interaction mechanism between the cell membrane of a bacteria and a nanospike at the contact point, a finite element model was developed using the ABAQUS software package. The model, which saw a quarter of a gram-negative bacteria (Escherichia coli) cell membrane adhered to a 3 × 6 array of nanospikes, was validated by the published results, which show a reasonably good agreement with the model. The stress and strain development in the cell membrane was modeled and were observed to be spatially linear and temporally nonlinear. From the study, it was observed that the bacterial cell wall was deformed around the location of the nanospike tips as full contact was generated. Around the contact point, the principal stress reached above the critical stress leading to a creep deformation that is expected to cause cell rupture by penetrating the nanospike, and the mechanism is envisaged to be somewhat similar to that of a paper punching machine. The obtained results in this project can provide an insight on how bacterial cells of a specific species are deformed when they adhere to nanospikes, and how it is ruptured using this mechanism.


Asunto(s)
Antibacterianos , Bacterias Gramnegativas , Análisis de Elementos Finitos
6.
Insects ; 13(6)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35735848

RESUMEN

Riptortus pedestris (Fabricius) is a major agricultural pest feeding on soybean pods and seeds. The large populations occur during seed maturity stages from pod filling to harvest. Its infestation results in shriveled and dimpled seeds while vegetative structures (leaflet and stem) remain green, known as "Stay Green" syndrome. Additional evidence also demonstrates that soybean pods and seeds are required for Riptortus pedestris development. However, the feeding behavior strategies employed by this stink bug to feed on soybean plants are still not clear. In the present study, the feeding behaviors of R. pedestris on soybean plants were recorded by electropenetrography (EPG), and a waveform library was created for this species. A total of five phases of waveforms-nonprobing, pathway (Rp1), xylem sap ingestion (Rp2), salivation and ingestion (Rp3), and interruption (Rp4)-were identified. Non-probing waveforms Z and NP and pathway (Rp1) were found in all tested plant structures (leaflet, stem, cotyledon, and pods). Waveform Rp2 (xylem sap ingestion, xylem ingestion) was primarily recorded during R. pedestris feeding on leaflets and stems, while Rp3 (salivation/ingestion) was only observed during feeding on cotyledon and pods. Histological examinations confirmed that correlation between Rp2 and stylet tip positioning in the xylem vessel in leaflets and stems. Stylet tips end in the tissues of cotyledon and pods when Rp3 is recorded. Taken together, our results demonstrate that R. pedestris ingests xylem sap from vegetative tissues of soybean (leaflet and stem) via a salivary sheath strategy to obtain water. It mainly acquires nutrients from soybean pods and/or seeds using cell-rupture tactics. This study provided insightful information to understand the field occurrence patterns of "Stay Green" syndrome, which may have important implications for pest control.

7.
Genes (Basel) ; 13(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35205267

RESUMEN

Sweet bee venom (sBV) contains various pharmacologically active components of bee venom (BV), but it is modified via the removal of the harmful substances found in BV. Thus, sBV has been used for pain relief in Oriental medicine but has only recently been applied for the treatment of various diseases. In this study, we examined the pharmacological effects and immunomodulatory functions of sBV in THP-1 monocytic leukemia cells. Growth inhibition and cell death were observed according to the concentration of sBV. However, the rapid collapse of cell cycle distribution was shown at 20 µg/mL sBV treatment, indicating that sBV led to cell death or acute cell rupture according to concentration. sBV administration activated Caspase-9, PARP1, RIPK1, and RIPK3, suggesting that the pharmacological actions of sBV were associated with induction of apoptosis and necroptosis. On the other hand, sBV or LPS administration increased cytokine expression, including IL-1ß, and showed synergistic cell death in combinatory treatment conditions. Moreover, combinatory administration of sBV and LPS induced severe damage or death during egg development. This result implies that sBV exhibits both pharmacological and toxic effects depending on its concentration. Therefore, sBV might be a promising therapeutic approach, but optimal concentration should be considered before treatment.


Asunto(s)
Venenos de Abeja , Leucemia , Apoptosis , Venenos de Abeja/farmacología , Humanos , Lipopolisacáridos/farmacología , Células THP-1
8.
ACS Nano ; 15(11): 17947-17958, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34739757

RESUMEN

Nanopore sensing has been widely used in applications ranging from DNA sequencing to disease diagnosis. To improve these capabilities, pressure-biased nanopores have been explored in the past to-primarily-increase the residence time of the analyte inside the pore. Here, we studied the effect of pressure on the ability to accurately quantify the excluded volume which depends on the current drop magnitude produced by a single entity. Using the calibration standard, the inverse current drop (1/ΔI) decreases linearly with increasing pressure, while the dwell drop reduces exponentially. We therefore had to derive a pressure-corrected excluded volume equation to accurately assess the volume of translocating species under applied pressure. Moreover, a method to probe deformation in nanoliposomes and a single cell is developed as a result. We show that the soft nanoliposomes and even cells deform significantly under applied pressure which can be probed in terms of the shape factor which was introduced in the excluded volume equation. The proposed work has practical applications in mechanobiology, namely, assessing the stiffness and mechanical rigidity of liposomal drug carriers. Pressure-biased pores also enabled multiple observations of cell-cell aggregates as well as their subsequent rupture, potentially allowing for the study of microbial symbioses or pathogen recognition by the human immune system.


Asunto(s)
Nanoporos , Humanos , Fenómenos Biomecánicos , Análisis de Secuencia de ADN , Biofisica , Lípidos
9.
Biotechnol Lett ; 43(1): 89-98, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33064227

RESUMEN

OBJECTIVE: This work aimed at evaluating the influence of organic solvents and stationary phases in the extraction with glass beads and chromatographic purification of carotenoids, especially torularhodin, from Sporobolomyces ruberrimus. RESULTS: The combinations of acetone:hexane (1:1 v/v) and acetone:ethyl ether (1:1 v/v) yielded 171.74 and 172.19 µg of total carotenoids.g of cells-1, respectively. The first blend resulted in the highest percent of cell lysis of 57.4%. Among different proportions of acetone:hexane, the 9:1 v/v mixture showed a significant difference (p < 0.05), resulting in a recovery of total carotenoids of 221.88 µg.g of cells-1. The purification of carotenoids was made by preparative chromatography and the yield of the silica-containing stationary phase was higher (24 µg torularhodin.g cells-1). The analyses of the purified fractions in thin layer chromatography and high performance liquid chromatography indicated that the purification of carotenoids, especially of torularhodin, was successfully performed. CONCLUSIONS: The combination of polar (acetone) and non-polar solvents (hexane) and the use of silica as stationary phase was efficient to recover and purify torularhodin from the intracellular pigments of Sporobolomyces ruberrimus.


Asunto(s)
Basidiomycota/química , Carotenoides/aislamiento & purificación , Solventes/química , Acetona/química , Carotenoides/química , Cromatografía Liquida , Hexanos/química
10.
Cells ; 9(4)2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32326222

RESUMEN

The plasma membrane surrounds every single cell and essentially shapes cell life by separating the interior from the external environment. Thus, maintenance of cell membrane integrity is essential to prevent death caused by disruption of the plasma membrane. To counteract plasma membrane injuries, eukaryotic cells have developed efficient repair tools that depend on Ca2+- and phospholipid-binding annexin proteins. Upon membrane damage, annexin family members are activated by a Ca2+ influx, enabling them to quickly bind at the damaged membrane and facilitate wound healing. Our recent studies, based on interdisciplinary research synergy across molecular cell biology, experimental membrane physics, and computational simulations show that annexins have additional biophysical functions in the repair response besides enabling membrane fusion. Annexins possess different membrane-shaping properties, allowing for a tailored response that involves rapid bending, constriction, and fusion of membrane edges for resealing. Moreover, some annexins have high affinity for highly curved membranes that appear at free edges near rupture sites, a property that might accelerate their recruitment for rapid repair. Here, we discuss the mechanisms of annexin-mediated membrane shaping and curvature sensing in the light of our interdisciplinary approach to study plasma membrane repair.


Asunto(s)
Anexinas/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Animales , Humanos , Lípidos de la Membrana/química , Simulación de Dinámica Molecular , Nanotubos/química
11.
Arch Microbiol ; 202(5): 1263-1266, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31955240

RESUMEN

Respiratory NADH oxidation in the rumen bacterium Prevotella bryantii is catalyzed by the Na+-translocating NADH:quinone oxidoreductase (NQR). A method for cell disruption and membrane isolation of P. bryantii under anoxic conditions using the EmulisFlex-C3 homogenizer is described. We compared NQR activity and protein yield after oxic and anoxic cell disruption by the EmulsiFlex, by ultrasonication, and by glass beads treatment. With an overall membrane protein yield of 50 mg L-1 culture and a NADH oxidation activity of 0.8 µmol min-1 mg-1, the EmulsiFlex was the most efficient method. Anoxic preparation yielded fourfold higher NQR activity compared to oxic preparation. P. bryantii lacks genes coding for superoxide dismutases and cell extracts do not exhibit superoxide dismutase activity. We propose that inactivation of NQR during oxic cell rupture is caused by superoxide, which accumulates in P. bryantii extracts exposed to air. Anoxic cell rupture is indispensable for the preparation of redox-active proteins and enzymes such as NQR from P. bryantii.


Asunto(s)
Proteínas Bacterianas/metabolismo , Microbiología Industrial , NAD/metabolismo , Prevotella/enzimología , Quinona Reductasas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Presión , Superóxidos/metabolismo
12.
Toxicol In Vitro ; 62: 104667, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31629901

RESUMEN

Serum is an important component in cell culture medium. It also possesses potent antioxidant properties. Therefore, the conventional protocols for detecting reactive oxygen species (ROS) in cultured cells with fluorescent probes include washing and suspending cells with serum-free buffers, such as PBS. This transient serum deprivation is essential for the ROS detecting. Unfortunately, it may also cause unexpected results, which push us to choose more optimal experiment conditions. In the present study, we found an acute lytic cell death induced by xanthohumol (XN), which obstructed ROS detecting in human leukemia cell line HL-60 cells. XN induced ROS burst, caused cell swelling, membrane permeability increase, LDH release, and ultimately an acute lytic cell death and cell rupture. These effects could be alleviated by the antioxidant N-Acetyl-L-cysteine (NAC). Apoptosis, pyroptosis or necroptosis were not observed in this process. Results also indicated that 2% serum addition had already completely scavenged ROS induced by 10 µM XN. Taken together, it is strongly suggested to detecting ROS in a serum-free medium when studying where and how ROS generated in cells. The concentration at the ROS maximum point (10 µM XN in this study) can be selected as the optimal concentration.


Asunto(s)
Flavonoides/toxicidad , Propiofenonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Acetilcisteína/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Células HL-60 , Humanos , Interleucina-1beta/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Suero
13.
Animal ; 13(6): 1188-1197, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30428948

RESUMEN

This study examined the comminution of fresh herbage, subsequent nutrient release, and the characteristics of swallowed boli from three physically and chemically contrasting forages during ingestive mastication by dairy cows. The extent and pattern of nutrient release will determine their availability to rumen microflora, and potentially influence their efficiency of use. The forages evaluated were perennial ryegrass (ryegrass, Lolium perenne L., cv Alto AR37), lucerne (Medicago sativa L., cv Torlesse) and chicory (Cichorium intybus L., cv Choice). Experimental design was a 3×3 cross-over with three forages and three consecutive 1-day measurement periods, conducted twice. Six non-lactating, pregnant, multiparous Holstein-Friesian×Jersey cows (Bos taurus) were used, with the first cross-over applied to three mature (10.1±0.61 years old; BW 631±64 kg) cows, and the second to three young (4.8±0.02 years; BW 505±19 kg) cows. Fresh cut forage was offered to the cows following partial rumen evacuation. Swallowed boli were collected directly at the cardia at the commencement, middle and end of the first feeding bout of the first meal of the day. Forage species did not affect the fresh weight of ingested boli (mean 169 g, P=0.605) but the proportion of saliva in boli varied between forage. Boli of chicory contained the greatest amount of herbage material and least amount of saliva, whereas ryegrass boli were the opposite. Boli fresh weight tended to increase as time in the meal progressed, but the age of the cow was not shown to affect any boli characteristics or nutrient release. Particle size reduction was affected by forage, with 31%, 38% and 35% of chicory, lucerne and ryegrass herbage reduced to <2 mm. There was little evidence of relationship between comminution and any physical or chemical characteristic of the forage, except in ryegrass where extent of comminution was moderately correlated with herbage strength. Proportional release of herbage soluble carbohydrate exceeded that of N during mastication. Differences in loss of N were moderately correlated with the amount of N in the herbage (R 2=0.53) but herbage comminution was not strongly correlated with release of either N or carbohydrate. These findings illustrate the complex animal×forage interactions that occur during mastication, and that it is not possible to infer nutrient loss from herbage based on herbage characteristics as the driver for this differ between species.


Asunto(s)
Alimentación Animal/análisis , Bovinos , Cichorium intybus , Lolium , Medicago sativa , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Estudios Cruzados , Dieta/veterinaria , Femenino , Valor Nutritivo , Rumen , Rumiación Digestiva/fisiología
14.
AMB Express ; 8(1): 126, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30083943

RESUMEN

The constant growing demand for vegetable oil for biodiesel and food is raising many environmental concerns about the sustainability of its production based on crops. Oleaginous yeasts show great potential to end with those concerns due to their high lipid productivity in small areas. To evaluate their productivity in lipids, an efficient and reproducible extraction process should be used. As no standard extraction process is available for the extraction of yeast lipids, an optimized extraction process is presented. In this work, the lipids extraction process for the yeasts Rhodotorula glutinis and Lipomyces kononenkoae is optimized using bead beating for cell rupture and introducing adaptations of the two most used extraction methods (Bligh and Dyer and Folch). For Rhodotorula g. the optimum extraction conditions are obtained by the Bligh and Dyer method applying 4.8 cycles of 47 s with 0.7 g of glass beads. For Lipomyces k. the optimum extraction conditions make use of the Folch method applying seven cycles of 42 s with 0.54 g of glass beads. These results reinforce the idea that, for each yeast, different extraction processes may be needed to correctly determine the lipid yield. The extraction procedure was further evaluated with less harmful solvents. Toluene was tested as a possible substitute of chloroform, and ethanol as a possible substitute of methanol. With the optimized extraction process, better results for Lipomyces k. were obtained using toluene and ethanol, while for Rhodotorula g. toluene proved to be a valid substitute of chloroform but ethanol is far less effective than methanol.

15.
Bioresour Technol ; 263: 163-171, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29738979

RESUMEN

We aimed to use physical methods of microalgal biomass rupture to study saccharification strategies using free and immobilized amylolytic enzymes. The biomass of Spirulina platensis, which consists of 50-60% carbohydrates, was exposed to physical cell rupture treatments, with better results obtained using freeze/thaw cycles following by gelatinization. In saccharification tests, it was possible to hydrolyze Spirulina biomass with hydrolysis efficiencies above 99% and 83%, respectively, using 1% (v/v) of free enzymes or 1% (m/v) of amylolytic enzymes immobilized together. The use of free and immobilized enzymes yielded high levels of conversion of polysaccharides to simple sugars in Spirulina biomass, showing that these processes are promising for the advancement of bioethanol production using microalgal biomass.


Asunto(s)
Enzimas Inmovilizadas , Spirulina , Biomasa , Hidrólisis , Microalgas
16.
Bull Environ Contam Toxicol ; 101(1): 117-123, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29744520

RESUMEN

Ultrasound can be used to induce cell resonance and cavitation to inhibit cyanobacterial growth, but it can also lead to increase in dissolved nutrients because of cell disruption. This study investigated the process from cell inactivation to disruption of Microcystis aeruginosa. Algal cells were sonicated (at 35 kHz) under various intensities and durations. Results showed that chlorophyll a content and Fv/Fm values decreased slightly within the first 5 min. Superoxide dismutase activity was stimulated and its peak value appeared at the fifth minute. After 20 min, considerable number of ruptured cells were observed and the concentrations of dissolved nitrogen and phosphorus increased rapidly. Finally, ammonia and nitrate merely composed a small portion of dissolved nitrogen. This study demonstrated that excessive ultrasound treatment can significantly rupture algal cells and lead to the release of cellular inclusions, which may cause ecological issues or public health problems. Based on our findings, ultrasonic intensity controlled at 0.035 W/mL and applied for a duration of 20 min delivers the optimal result in effectively inhibiting physiological activities of Microcystis aeruginosa without marked cell disruption. This will ultimately help to achieve algal control, while conserving energy and preserving the environment and human health.


Asunto(s)
Microcystis/crecimiento & desarrollo , Nitrógeno/análisis , Fósforo/análisis , Ondas Ultrasónicas , Contaminantes Químicos del Agua/análisis , Clorofila A/metabolismo , Microcystis/metabolismo , Modelos Teóricos
17.
J Insect Physiol ; 105: 64-75, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29291390

RESUMEN

This study is the first to fully evaluate whether electrical signals applied to large insects during electropenetrography (EPG; also called electrical penetration graph) negatively affect insect behavior. During EPG, electrical signals are applied to plants, and thus to the gold-wire-tethered insects feeding on them. The insect completes an electrical circuit whose changes in voltage reflect the insect's stylet probing/penetration behaviors, recorded as waveform output. For nearly 50 years of EPG science, evidence has supported that there are no or negligible effects on tiny insects from applied electricity during EPG. Recently however, EPG studies of large-bodied hemipterans such as heteropterans and sharpshooter leafhoppers have been published. The wider stylet diameters of such large insects cause them to have lower inherent resistances to applied signals compared with smaller insects, conveying more electrical current. The present study asked whether such increased currents would affect insect stylet probing, by comparing Lygus lineolaris behaviors on pin-head cotton squares using an AC-DC electropenetrograph. Effects of AC or DC applied signals were separately examined in two factorial studies, each comparing four input resistor (Ri) levels (106, 107, 108 and 109 Ω) and four applied voltage levels (2, 60, 150 and 250 mV). Results showed that changes in both probing and non-probing behaviors were indeed caused by changing signal type, Ri level, or applied voltage. Negative effects on feeding were numerically greater overall for DC than AC applied signals, perhaps due to muscular tetany from DC; however, AC versus DC could not be statistically tested. Results strongly support the need for flexible Ri and applied voltage levels and types, to tailor instrument settings to the size and special needs of each insect subject. Our findings will facilitate further EPG studies of Lygus spp., such as host plant resistance or insecticidal assays/bioassays to assess mode of action and appropriate dosage. It is hoped that this study will also inform EPG studies of similar, large heteropterans in the future.


Asunto(s)
Hemípteros/fisiología , Animales , Antenas de Artrópodos/fisiología , Electrodiagnóstico , Conducta Alimentaria , Gossypium , Caminata
18.
Cell Microbiol ; 19(11)2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28671740

RESUMEN

Septa of filamentous ascomycetes are perforated by septal pores that allow communication between individual hyphal compartments. Upon injury, septal pores are plugged rapidly by Woronin bodies (WBs), thereby preventing extensive cytoplasmic bleeding. The mechanism by which WBs translocate into the pore is not known, but it has been suggested that wound-induced cytoplasmic bleeding "flushes" WBs into the septal opening. Alternatively, contraction of septum-associated tethering proteins may pull WBs into the septal pore. Here, we investigate WB dynamics in the wheat pathogen Zymoseptoria tritici. Ultrastructural studies showed that 3.4 ± 0.2 WBs reside on each side of a septum and that single WBs of 128.5 ± 3.6 nm in diameter seal the septal pore (41 ± 1.5 nm). Live cell imaging of green fluorescent ZtHex1, a major protein in WBs, and the integral plasma membrane protein ZtSso1 confirms WB translocation into the septal pore. This was associated with the occasional formation of a plasma membrane "balloon," extruding into the dead cell, suggesting that the plasma membrane rapidly seals the wounded septal pore wound. Minor amounts of fluorescent ZtHex1-enhanced green fluorescent protein (eGFP) appeared associated with the "ballooning" plasma membrane, indicating that cytoplasmic ZtHex1-eGFP is recruited to the extending plasma membrane. Surprisingly, in ~15% of all cases, WBs moved from the ruptured cell into the septal pore. This translocation against the cytoplasmic flow suggests that an active mechanism drives WB plugging. Indeed, treatment of unwounded and intact cells with the respiration inhibitor carbonyl cyanide m-chlorophenyl hydrazone induced WB translocation into the pores. Moreover, carbonyl cyanide m-chlorophenyl hydrazone treatment recruited cytoplasmic ZtHex1-eGFP to the lateral plasma membrane of the cells. Thus, keeping the WBs out of the septal pores, in Z. tritici, is an ATP-dependent process.


Asunto(s)
Ascomicetos/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/metabolismo , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Proteínas Fluorescentes Verdes , Microscopía Electrónica , Enfermedades de las Plantas/microbiología , Triticum/microbiología
19.
J Micromech Mol Phys ; 2(2)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29863153

RESUMEN

Recent studies have shown that ultrasound is used to open drug-carrying liposomes to release their payloads; however, a shockwave energetic enough to rupture lipid membranes can cause collateral damage to surrounding cells. Similarly, a destructive shockwave, which may be used to rupture a cell membrane in order to lyse the cell (e.g., as in cancer treatments) may also impair or destroy nearby healthy tissue. To address this problem, we use dissipative particle dynamic (DPD) simulation to investigate the addition of a cavitation bubble between the shockwave and the model cell membrane to alter the shockwave front, allowing low-velocity shockwaves to specifically damage an intended target. We focus specifically on a spherical lipid bilayer model, and note the effect of shockwave velocity, bubble size, and orientation on the damage to the model cell. We show that a cavitation bubble greatly decreases the necessary shockwave velocity required to damage the lipid bilayer and rupture the model cell. The cavitation bubble focuses the kinetic energy of the shockwave front into a smaller area, inducing penetration at the edge of the model cell. With this work, we provide a comprehensive approach to the intricacies of model cell destruction via shockwave impact, and hope to offer a guideline for initiating targeted cellular destruction using induced cavitation bubbles and low-velocity shockwaves.

20.
J Ind Microbiol Biotechnol ; 43(12): 1671-1680, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27778140

RESUMEN

Nitrogen deprivation (N-deprivation) is a proven strategy for inducing triacylglyceride accumulation in microalgae. However, its effect on the physical properties of cells and subsequently on product recovery processes is relatively unknown. In this study, the effect of N-deprivation on the cell size, cell wall thickness, and mechanical strength of three microalgae was investigated. As determined by analysis of micrographs from transmission electron microscopy, the average cell size and cell wall thickness for N-deprived Nannochloropsis sp. and Chlorococcum sp. were ca. 25% greater than the N-replete cells, and 20 and 70% greater, respectively, for N-deprived Chlorella sp. The average Young's modulus of N-deprived Chlorococcum sp. cells was estimated using atomic force microscopy to be 775 kPa; 30% greater than the N-replete population. Although statistically significant, these microstructural changes did not appear to affect the overall susceptibility of cells to mechanical rupture by high pressure homogenisation. This is important as it suggests that subjecting these microalgae to nitrogen starvation to accumulate lipids does not adversely affect the recovery of intracellular lipids.


Asunto(s)
Pared Celular/metabolismo , Chlorella/metabolismo , Microalgas/metabolismo , Nitrógeno/metabolismo , Tamaño de la Célula , Pared Celular/ultraestructura , Chlorella/ultraestructura , Metabolismo de los Lípidos , Microalgas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...