RESUMEN
Food waste (FW) with high content of lipid typically inhibits anaerobic digestion (AD) and methane production. In this study, a novel whole-cell catalyst was created to degrade lipid by displaying lipase on the E. coli cells surface to improve FW anaerobic digestion. The methane production rose, going from 25.78 to 161.77 mL/g VS, with a greater VS removal rate of 66.3% compared to CK group (29.6%). Long-chain fatty acids (LCFAs) was similarly reduced from 1733.6 mg/L to 337 mg/L. Microbial community analysis showed the relative abundance of Acinetbacter and Hydrogenophaga were increased from 1.7% to 6.6% and 1.3%-4.9%, respectively for substrates degradation. The methanogenic Methanosarcina increased from 24.7% to 52.3% for methane production. This study provided a potential approach that might be used to lessen lipid inhibition and improve anaerobic digestion of food waste.
RESUMEN
Trehalose production via a one-step enzymatic route using trehalose synthase (TreS) holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates. However, the development of a robust whole-cell biocatalyst expressing TreS remains crucial for enabling practical and economically viable production. In this study, a high-sugar tolerant strain of S. cerevisiae was screened and employed as a host cell for the cell surface display of TreS from Acidiplasma aeolicum. The resultant strain, S. cerevisiae I3A, exhibited remarkable surface displayed TreS activity of 3358 U/g CDW and achieved approximately 64% trehalose yield (10.8 g/L/h productivity) from maltose. Interestingly, no glucose by-product was observed during trehalose production. The S. cerevisiae I3A cells exhibited reusability for up to 12 cycles leading to potential cost reduction of trehalose products. Therefore, our study demonstrated the development of a high-sugar tolerant S. cerevisiae strain expressing TreS on its surface as a whole-cell biocatalyst for efficient and economical trehalose production with potential applications in the food and pharmaceutical industries.
RESUMEN
Engineered outer membrane vesicles (OMVs) derived from Gram-negative bacteria are a promising vaccine technology for developing immunity against diverse pathogens. However, antigen display on OMVs can be challenging to control and highly variable due to bottlenecks in protein expression and localization to the bacterial host cell's outer membrane, especially for bulky and complex antigens. Here, we describe methods related to a universal vaccine technology called AvidVax (avidin-based vaccine antigen crosslinking) for rapid and simplified assembly of antigens on the exterior of OMVs during vaccine development. The AvidVax platform involves remodeling the OMV surface with multiple copies of a synthetic antigen-binding protein (SNAP), which is an engineered fusion protein comprised of an outer membrane scaffold protein linked to a biotin-binding protein. The resulting SNAPs enable efficient decoration of OMVs with a molecularly diverse array of biotinylated subunit antigens, including globular and membrane proteins, glycans and glycoconjugates, haptens, lipids, nucleic acids, and short peptides. We detail the key steps in the AvidVax vaccine production pipeline including preparation and isolation of SNAP-OMVs, biotinylation and enrichment of vaccine antigens, and formulation and characterization of antigen-loaded SNAP-OMVs.
Asunto(s)
Antígenos Bacterianos , Biotinilación , Vesículas Extracelulares , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genética , Vacunas Bacterianas/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Desarrollo de Vacunas , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/inmunologíaRESUMEN
To take advantage of the high specificity of enzymatic catalysis along with the high efficiency of electrochemical cofactor regeneration, a bacterial surface displayed enzyme-nanomaterial hybrid bioelectrocatalytic system is herein developed. A cofactor-dependent xylose reductase, capable of reducing xylose to xylitol, is displayed on the surface of Bacillus subtilis, followed by the attachment of copper nanomaterials via the binding of His-tagged enzyme with the nickel ion. This hybrid system can regenerate NADPH with a highest efficiency of 71.6% in 4 h without the usage of extra electron mediators, and 2.35 mM of xylitol can be synthesized after a series of optimization processes. This work opens up new possibilities for the construction and application of bioelectrocatalytic systems with enzyme-nanomaterial hybrids.
Asunto(s)
Bacillus subtilis , Bacillus subtilis/enzimología , Biocatálisis , Cobre/química , Nanoestructuras/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Técnicas Electroquímicas/métodosRESUMEN
Antibiotic contamination has become an increasingly important environmental problem as a potentially hazardous emergent and recalcitrant pollutant that poses threats to human health. In this study, manganese peroxidase displayed on the outer membrane of Escherichia coli as a whole-cell biocatalyst (E. coli MnP) was expected to degrade antibiotics. The manganese peroxidase activity of the whole-cell biocatalyst was 13.88 ± 0.25â¯U/L. The typical tetracycline antibiotic chlortetracycline was used to analyze the degradation process. Chlortetracycline at 50â¯mg/L was effectively transformed via the whole-cell biocatalyst within 18â¯h. After six repeated batch reactions, the whole-cell biocatalyst retained 87.2â¯% of the initial activity and retained over 87.46â¯% of the initial enzyme activity after storage at 25°C for 40 days. Chlortetracycline could be effectively removed from pharmaceutical and livestock wastewater by the whole-cell biocatalyst. Thus, efficient whole-cell biocatalysts are effective alternatives for degrading recalcitrant antibiotics and have potential applications in treating environmental antibiotic contamination.
Asunto(s)
Antibacterianos , Clortetraciclina , Escherichia coli , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Antibacterianos/química , Contaminantes Químicos del Agua/análisis , Peroxidasas/metabolismo , Biodegradación Ambiental , Biocatálisis , Eliminación de Residuos Líquidos/métodosRESUMEN
A novel bacterial display vector based on Escherichia coli has been engineered for recombinant protein production and purification. Accordingly, a construct harboring the enhanced green ï¬uorescent protein (EGFP) and the ice nucleation protein (INP) was designed to produce EGFP via the surface display in E. coli cells. The fusion EGFP-expressed cells were then investigated using fluorescence measurement, SDS- and native-PAGE before and after TEV protease digestion. The displayed EGFP was obtained with a recovery of 57.7 % as a single band on SDS-PAGE. Next, the efficiency of the cell surface display for mutant EGFP (EGFP S202H/Q204H) was examined in sensing copper ions. Under optimal conditions, a satisfactorily linear range for copper ions concentrations up to 10 nM with a detection limit of 0.073 nM was obtained for cell-displayed mutant EGFP (mEGFP). In the presence of bacterial cell lysates and purified mEGFP, response to copper was linear in the 2-10 nM and 0.1-2 µM concentration range, respectively, with a 1.3 nM and 0.14 µM limit of detection. The sensitivity of bacterial cell lysates and surface-displayed mEGFP in the detection of copper ions is higher than the purified mEGFP.
Asunto(s)
Técnicas Biosensibles , Cobre , Escherichia coli , Proteínas Fluorescentes Verdes , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas Biosensibles/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/biosíntesisRESUMEN
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Asunto(s)
Bacillus pumilus , Compuestos de Bencidrilo , Biodegradación Ambiental , Disruptores Endocrinos , Lacasa , Fenoles , Compuestos de Bencidrilo/metabolismo , Lacasa/metabolismo , Lacasa/genética , Fenoles/metabolismo , Bacillus pumilus/enzimología , Bacillus pumilus/genética , Bacillus pumilus/metabolismo , Disruptores Endocrinos/metabolismo , Concentración de Iones de Hidrógeno , Saccharomycetales/metabolismo , Saccharomycetales/genéticaRESUMEN
Excessive dietary fat intake is closely associated with an increased risk of obesity, type 2 diabetes, cardiovascular disease, gastrointestinal diseases, and certain types of cancer. The administration of multi-strain probiotics has shown a significantly beneficial effect on the mitigation of obesity induced by high-fat diets (HFDs). In this study, Amuc_1100, an outer membrane protein of Akkermansia muciniphila, was fused with green fluorescent protein and LPXTG motif anchor protein and displayed on the surface of Lactobacillus rhamnosus (pLR-GAA) and Lactobacillus plantarum (pLP-GAA), respectively. The localization of the fusion protein on the bacterial cell surface was confirmed via fluorescence microscopy and Western blotting. Both recombinant strains demonstrated the capacity to ameliorate hyperglycemia and decrease body weight gain in a dose-dependent manner. Moreover, daily oral supplementation of pLR-GAA or pLP-GAA suppressed the HFD-induced intestinal permeability by regulating the mRNA expressions of tight junction proteins and inflammatory cytokines, thereby reducing gut microbiota-derived lipopolysaccharide concentration in serum and mitigating damage to the gut, liver, and adipose tissue. Compared with Lactobacillus rhamnosus treatment, high-dose pLR-GAA restored the expression level of anti-inflammatory factor interleukin-10 in the intestine. In conclusion, our approach enables the maintenance of intestinal health through the use of recombinant probiotics with surface-displayed functional protein, providing a potential therapeutic strategy for HFD-induced obesity and associated metabolic comorbidities.
RESUMEN
Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 µM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.
Asunto(s)
Biocatálisis , Sistema Libre de Células , Estireno/metabolismo , Estireno/química , Escherichia coli/genética , Escherichia coli/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismoRESUMEN
Phospholipids are widely utilized in various industries, including food, medicine, and cosmetics, due to their unique chemical properties and healthcare benefits. Phospholipase D (PLD) plays a crucial role in the biotransformation of phospholipids. Here, we have constructed a super-folder green fluorescent protein (sfGFP)-based phospholipase D (PLD) expression and surface-display system in Escherichia coli, enabling the surface display of sfGFP-PLDr34 on the bacteria. The displayed sfGFP-PLDr34 showed maximum enzymatic activity at pH 5.0 and 45 °C. The optimum Ca2+ concentrations for the transphosphatidylation activity and hydrolysis activity are 100 mM and 10 mM, respectively. The use of displayed sfGFP-PLDr34 for the conversion of phosphatidylcholine (PC) and L-serine to phosphatidylserine (PS) showed that nearly all the PC was converted into PS at the optimum conditions. The displayed enzyme can be reused for up to three rounds while still producing detectable levels of PS. Thus, Escherichia coli/sfGFP-PLD shows potential for the feasible industrial-scale production of PS. Moreover, this system is particularly valuable for quickly screening higher-activity PLDs. The fluorescence of sfGFP can indicate the expression level of the fused PLD and changes that occur during reuse.
Asunto(s)
Escherichia coli , Fosfatidilserinas , Fosfolipasa D , Calcio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Concentración de Iones de Hidrógeno , Fosfatidilcolinas/metabolismo , Fosfatidilcolinas/biosíntesis , Fosfatidilserinas/biosíntesis , Fosfatidilserinas/metabolismo , Fosfolipasa D/genética , Fosfolipasa D/metabolismoRESUMEN
BACKGROUND: Isomaltulose is a 'generally recognized as safe' ingredient and is widely used in the food, pharmaceutical and chemical industries. The exploration and development of efficient technologies is essential for enhancing isomaltulose yield. RESULTS: In the present study, a simple and efficient surface display platform mediated by a non-yeast signal peptide was developed in Yarrowia lipolytica and utilized to efficiently produce isomaltulose from sucrose. We discovered that the signal peptide SP1 of sucrose isomerase from Pantoea dispersa UQ68J (PdSI) could guide SIs anchoring to the cell surface of Y. lipolytica, demonstrating a novel and simple cell surface display strategy. Furthermore, the PdSI expression level was significantly increased through optimizing the promoters and multi-site integrating genes into chromosome. The final strain gained 451.7 g L-1 isomaltulose with a conversion rate of 90.3% and a space-time yield of 50.2 g L-1 h-1. CONCLUSION: The present study provides an efficient way for manufacturing isomaltulose with a high space-time yield. This heterogenous signal peptide-mediated cell surface display strategy featured with small fusion tag (approximately 2.2 kDa of SP1), absence of enzyme leakage in fermentation broth and ample room for optimization, providing a convenient way to construct whole-cell biocatalysts to synthesize other products and broadening the array of molecular toolboxes accessible for engineering Y. lipolytica. © 2024 Society of Chemical Industry.
Asunto(s)
Isomaltosa , Señales de Clasificación de Proteína , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Isomaltosa/metabolismo , Isomaltosa/análogos & derivados , Ingeniería Metabólica , Pantoea/genética , Pantoea/metabolismo , Pantoea/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Técnicas de Visualización de Superficie Celular , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismoRESUMEN
Carbonic anhydrase (CA) is currently under investigation because of its potential to capture CO2. A novel N-domain of ice nucleoproteins (INPN)-mediated surface display technique was developed to produce CA with low-temperature capture CO2 based on the mining and characterization of Colwellia sp. CA (CsCA) with cold-adapted enzyme structural features and catalytic properties. CsCA and INPN were effectively integrated into the outer membrane of the cell as fusion proteins. Throughout the display process, the integrity of the membrane of engineered bacteria BL21/INPN-CsCA was maintained. Notably, the study affirmed positive applicability, wherein 94 % activity persisted after 5 d at 15 °C, and 73 % of the activity was regained after 5 cycles of CO2 capture. BL21/INPN-CsCA displayed a high CO2 capture capacity of 52 mg of CaCO3/mg of whole-cell biocatalysts during CO2 mineralization at 25 °C. Therefore, the CsCA functional cell surface display technology could contribute significantly to environmentally friendly CO2 capture.
Asunto(s)
Dióxido de Carbono , Anhidrasas Carbónicas , Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Técnicas de Visualización de Superficie Celular , Bacterias/metabolismo , CatálisisRESUMEN
Enzymatic degradation of polyethylene terephthalate (PET) is attracting attention as a new technology because of its mild reaction conditions. However, the cost of purified enzymes is a major challenge for the practical application of this technology. In this study, we attempted to display the surface of the PET-degrading enzyme, PETase, onto Escherichia coli using the membrane anchor, PgsA, from Bacillus subtilis to omit the need for purification of the enzyme. Immunofluorescence staining confirmed that PETase was successfully displayed on the surface of E. coli cells when a fusion of PgsA and PETase was expressed. The surface-displaying E. coli was able to degrade 94.6% of 1 mM bis(2-hydroxyethyl) terephthalate in 60 min, and the PET films were also degraded in trace amounts. These results indicate that PgsA can be used to present active PETase on the cell surface of E. coli. This technique is expected to be applied for efficient PET degradation.
Asunto(s)
Bacillus subtilis , Escherichia coli , Tereftalatos Polietilenos , Escherichia coli/metabolismo , Escherichia coli/enzimología , Tereftalatos Polietilenos/química , Bacillus subtilis/enzimología , Membrana Celular/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/químicaRESUMEN
Vibrio splendidus is one of the main pathogens caused diseases with a diversity of marine cultured animals, especially the skin ulcer syndrome in Apostichopus japonicus. However, limited virulence factors have been identified in V. splendidus. In this study, one aerAVs gene coding an aerolysin of V. splendidus was cloned and conditionally expressed in Escherichia coli. The haemolytic activity of the recombinant AerAVs was analyzed. Western blotting was used to study of the secretion pathway of proaerolysin, and it showed that the proaerolysin was secreted via both outer membrane vehicles and classical secretion pathways. Since no active protein of aerolysin was obtained, one aerolysin surface displayed bacterium DH5α/pAT-aerA was constructed, and its haemolytic activity and virulence were determined. The results showed that the AerAVs displayed on the surface showed obvious haemolytic activity and cytotoxic to the coelomocyte of A. japonicus. Artificial immerse infection separately using the DH5α/pAT or DH5α/pAT-aerA was conducted. The result showed that the mortality percent of sea cucumber A. japonicus challenged with DH5α/pAT-aerA was 38.89 % higher than that challenged with the control strain DH5α/pAT, and earlier death occurred. Combined all the results indicates that aerolysin with the haemolytic activity and cytotoxic activity is a virulence factor of V. splendidus.
Asunto(s)
Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros , Stichopus , Vibriosis , Vibrio , Animales , Vibriosis/microbiología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Clonación Molecular , Stichopus/genética , Stichopus/microbiología , Inmunidad InnataRESUMEN
Listek et al. described some technical concerns for the single transgenic hybridoma selection method (STHSM) that we developed. In this work, we developed the STHSM to screen hapten-specific hybridoma cells based on a streptavidin-labeled antigen originally proposed by Listek et al. that was used for the selection of OVA-specific hybridoma. Due to the obvious differences between hapten with a single epitope and protein with multiple epitopes, we significantly innovated the specific procedures in the STHSM that could answer the questions raised by Listek's group.
RESUMEN
Efficient and cost-effective conversion of CO2 to biomass holds the potential to address the climate crisis. Light-driven CO2 conversion can be realized by combining inorganic semiconductors with enzymes or cells. However, designing enzyme cascades for converting CO2 to multicarbon compounds is challenging, and inorganic semiconductors often possess cytotoxicity. Therefore, there is a critical need for a straightforward semiconductor biohybrid system for CO2 conversion. Here, we used a visible-light-responsive and biocompatible C3N4 porous nanosheet, decorated with formate dehydrogenase, formaldehyde dehydrogenase, and alcohol dehydrogenase to establish an enzyme-photocoupled catalytic system, which showed a remarkable CO2-to-methanol conversion efficiency with an apparent quantum efficiency of 2.48% in the absence of externally added electron mediator. To further enable the in situ transformation of methanol into biomass, the enzymes were displayed on the surface of Komagataella phaffii, which was further coupled with C3N4 to create an organic semiconductor-enzyme-cell hybrid system. Methanol was produced through enzyme-photocoupled CO2 reduction, achieving a rate of 4.07 mg/(L·h), comparable with reported rates from photocatalytic systems employing mediators or photoelectrochemical cells. The produced methanol can subsequently be transported into the cell and converted into biomass. This work presents a sustainable, environmentally friendly, and cost-effective enzyme-photocoupled biocatalytic system for efficient solar-driven conversion of CO2 within a microbial cell.
Asunto(s)
Dióxido de Carbono , Metanol , Alcohol Deshidrogenasa/genética , Biocatálisis , Transporte BiológicoRESUMEN
To eliminate efficiency restriction of polyethylene microplastics low-temperature biodegradation, a novel InaKN-mediated Escherichia coli surface display platform for cold-active degrading laccase PsLAC production was developed. Display efficiency of 88.0% for engineering bacteria BL21/pET-InaKN-PsLAC was verified via subcellular extraction and protease accessibility, exhibiting an activity load of 29.6 U/mg. Cell growth and membrane integrity revealed BL21/pET-InaKN-PsLAC maintained stable growth and intact membrane structure during the display process. The favorable applicability was confirmed, with 50.0% activity remaining in 4 days at 15 °C, and 39.0% activity recovery retention after 15 batches of activity substrate oxidation reactions. Moreover, BL21/pET-InaKN-PsLAC possessed high polyethylene low-temperature depolymerizing capacity. Bioremediation experiments proved that the degradation rate was 48.0% within 48 h at 15 °C, and reached 66.0% after 144 h. Collectively, cold-active PsLAC functional surface display technology and its significant contributions to polyethylene microplastics low-temperature degradation constitute an effective improvement strategy for biomanufacturing and microplastics cold remediation.
Asunto(s)
Lacasa , Polietileno , Lacasa/metabolismo , Microplásticos , Plásticos , Temperatura , Biodegradación AmbientalRESUMEN
Cadmium (Cd) is a hazardous metal that can accumulate in aquatic organisms and endanger human health via the food chain. In this study, genetic engineering was used to display a peptide with Cd-binding potential on the surface of Escherichia coli cells. This whole-cell adsorbent exhibited high affinity for Cd ions (Cd2+) in the solution. The Cd2+ adsorption capacity of the whole-cell adsorbent was three-fold that of the control cells in a 20 µM Cd2+ solution, and 97.2% ± 2.38% of the Cd2+ was removed. The whole-cell adsorbent was fed to shrimp (Neocaridina denticulata), and the surface-engineered E. coli successfully colonized the shrimp intestine, which showed significantly less Cd accumulation than the group not fed surface-engineered E. coli. The whole-cell adsorbent evidently protected shrimp from the toxicity of Cd2+ by adsorbing it. Moreover, the whole-cell adsorbent mitigated the changes in microbial community structure in the shrimp gut caused by the exposure of Cd2+. These findings suggest that this strategy is effective for controlling the contamination of Cd2+ in shrimp.
Asunto(s)
Cadmio , Decápodos , Animales , Humanos , Cadmio/toxicidad , Escherichia coli/genética , Péptidos , Metales , AdsorciónRESUMEN
Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application. The challenge in DC engineering lies in the large diversity of possible building blocks and architectures, resulting in a multivariate and immense design space. Simultaneously, the precise DC composition affects many relevant parameters such as activity, stability, and manufacturability. Since protein engineers face a lack of high-throughput approaches to explore this vast design space, DC engineering may result in an unsatisfying outcome. This review provides a roadmap to guide researchers through the process of DC engineering. Each step, starting from concept to evaluation, is described and provided with its challenges, along with possible solutions, both for DCs that are assembled in vitro or are displayed on the yeast cell surface. KEY POINTS: ⢠Construction of designer cellulosomes is a multi-step process. ⢠Designer cellulosome research deals with multivariate construction challenges. ⢠Boosting designer cellulosome efficiency requires exploring a vast design space.
Asunto(s)
Celulosomas , Celulosomas/metabolismo , Celulosa/metabolismo , Membrana Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Bacterianas/metabolismoRESUMEN
Phenylketonuria (PKU), a disease resulting in the disability to degrade phenylalanine (Phe) is an inborn error with a 1 in 10,000 morbidity rate on average around the world which leads to neurotoxicity. As an potential alternative to a protein-restricted diet, oral intake of engineered probiotics degrading Phe inside the body is a promising treatment, currently at clinical stage II (Isabella, et al., 2018). However, limited transmembrane transport of Phe is a bottleneck to further improvement of the probiotic's activity. Here, we achieved simultaneous degradation of Phe both intracellularly and extracellularly by expressing genes encoding the Phe-metabolizing enzyme phenylalanine ammonia lyase (PAL) as an intracellularly free and a cell surface-immobilized enzyme in Escherichia coli Nissle 1917 (EcN) which overcomes the transportation problem. The metabolic engineering strategy was also combined with strengthening of Phe transportation, transportation of PAL-catalyzed trans-cinnamic acid and fixation of released ammonia. Administration of our final synthetic strain TYS8500 with PAL both displayed on the cell surface and expressed inside the cell to the PahF263S PKU mouse model reduced blood Phe concentration by 44.4% compared to the control EcN, independent of dietary protein intake. TYS8500 shows great potential in future applications for PKU therapy.