Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Comput Struct Biotechnol J ; 23: 2934-2937, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39104711

RESUMEN

Cell sheet technology (CST) has primarily been applied in tissue engineering for repair purposes. Our preliminary research indicates that an in vivo prostate cancer model established using CST outperforms traditional cell suspension methods. However, the potential for CST to be used with bladder cancer cells has not yet been explored. In this study, we investigated the ability of two bladder cancer cell lines, T24 and 5637, to form cell sheets. We found that T24 cells successfully formed cell sheets. We then performed staining to evaluate the integrity, specific markers, and proliferation characteristics of the T24 cell sheets. Our findings demonstrate that bladder cancer cell sheets can be established, providing a valuable tool for both in vivo and in vitro bladder cancer studies and for personalized drug selection for patients.

3.
Tissue Eng Part A ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39041611

RESUMEN

To improve bladder compliance in patients with low-compliance bladders, augmentation cystoplasty with the intestinal tract is performed. However, the use of the intestinal tract often leads to serious surgical complications. Tissue engineering technologies have the potential to improve bladder compliance without using the intestinal tract. In this study, we fabricated bi-layered adipose-derived mesenchymal cell (AMC) sheets and then determined whether the bi-layered AMC sheets could improve bladder compliance in rats with spinal cord injury (SCI). The abdominal adipose tissues of green fluorescence protein (GFP)-transfected Sprague-Dawley (SD) rats were harvested, and the attached and proliferating cells on type I collagen were used as AMCs. The AMCs were then cultured on temperature-responsive culture dishes. After reaching over-confluence, the AMCs that maintained cell-cell contacts were detached from the dishes and applied to a gelatin hydrogel sheet. Then, another detached AMC monolayer was accumulated on the AMC monolayer-applied gelatin. Prior to 4 weeks of transplantation, the levels of T8-9 in the spinal cords of recipient SD rats were partially transected. After producing the bi-layered AMC sheets and the rats with SCI, the detrusor muscles of the anterior bladder walls of the rats with SCI were incised, and the bi-layered AMC sheet was patch-transplanted onto the exposed bladder epithelium (n = 8). As a control, the sham operation was performed (n = 7). Four weeks after the transplantation, bladder capacity and bladder compliance in AMC sheet-transplanted SCI rats were significantly higher than those in sham-operated control SCI rats. The smooth muscle layers in AMC sheet-transplanted bladders were significantly larger than those in control bladders. In addition, the collagen fibers in the AMC sheet-transplanted bladders were significantly smaller than those in the control bladders. Some GFP-positive transplanted AMCs differentiated into smooth muscle actin- or desmin-positive cells. Furthermore, GFP-positive cells secreted transforming growth factor-ß1 or vascular endothelial growth factor. Therefore, this study showed that bi-layered AMC sheets could improve bladder compliance and bladder tissues in SCI rats.

4.
Arch Med Sci ; 20(3): 813-821, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050175

RESUMEN

Introduction: Oral epithelial cells were recently shown to be able to differentiate into corneal epithelium, and the efficacy of cultured autologous oral mucosal epithelial cells (CAOMEC) has been suggested by the presence of epithelium replacement. Therefore, the aim of this study was to evaluate the treatment outcome in limbal stem cell deficiency (LSCD) by adding CAOMEC to regular amniotic membrane (AM) treatment. Material and methods: Eyes with LSCD were randomized to two groups to undergo either autologous oral mucosal epithelial cell sheet (CAOMECS) combined with AM transplantation (A group) or AM transplantation alone (B group). Clinical outcome measures were corneal epithelium healing, best corrected visual acuity, symblepharon, corneal transparency, corneal neovascularization and ocular surface inflammation. Results: The normal corneal epithelialization rate in group A (73.33%) was higher than that in group B (35.48%), and the average healing time was shorter (3.45 ±2.12 weeks vs. 4.64 ±1.63 weeks). The symblepharon in the above two groups was improved in the first 3 months after surgery, but after 6 months, part of the B group had recurrence. In improving corneal transparency, group A has obvious advantages. Corneal neovascularization (CNV) was improved to some extent in the first 3 months after surgery, but group A (1.47 ±0.64) was better than group B (1.94 ±0.85) after 6 months. Both groups can improve the inflammatory state to some extent. Conclusions: The transplantation of CAOMECS offers a viable and safe alternative in the reconstruction of a stable ocular surface. The effect is better than that of traditional AM transplantation, mainly in promoting corneal epithelialization, improving ocular surface structure, and reducing fiber and vascular infiltration.

5.
Regen Ther ; 26: 80-88, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841206

RESUMEN

Introduction: Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) are promising candidates for stem cell therapy. Various methods such as enzymatic treatment, cell scraping, and temperature reduction using temperature-responsive cell culture dishes have been employed to culture and harvest UC-MSCs. However, the effects of different harvesting methods on cell properties and functions in vitro remain unclear. In this study, we investigated the properties and functions of UC-MSC using various cell-harvesting methods. Methods: UC-MSC suspensions were prepared using treatments with various enzymes, cell scraping, and temperature reduction in temperature-responsive cell culture dishes. UC-MSC sheets were prepared in a temperature-responsive cell culture dish. The properties and functions of the UC-MSC suspensions and sheets were assessed according to Annexin V staining, lactate dehydrogenase (LDH) assay, re-adhesion behavior, and cytokine secretion analysis via enzyme-linked immunosorbent assay. Results: Annexin V staining revealed that accutase induced elevated UC-MSC apoptosis. Physical scraping using a cell scraper induced a relatively high LDH release due to damaged cell membranes. Dispase exhibited relatively low adhesion from initial incubation until 3 h. UC-MSC sheets exhibited rapid re-adhesion at 15 min and cell migration at 6 h. UC-MSC sheets expressed higher levels of cytokines such as HGF, TGF-ß1, IL-10, and IL-6 than did UC-MSCs in suspension. Conclusions: The choice of enzyme and physical scraping methods for harvesting UC-MSCs significantly influenced their activity and function. Thus, selecting appropriate cell-harvesting methods is important for successful stem cell therapy.

6.
J Control Release ; 372: 372-385, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38901733

RESUMEN

While surgical resection is the predominant clinical strategy in the treatment of melanoma, postoperative recurrence and undetectable metastasis are both pernicious drawbacks to this otherwise highly successful approach. Furthermore, the deep cavities result from tumor excision can leave long lasting wounds which are slow to heal and often leave visible scars. These unmet needs are addressed in the present work through the use of a multidimensional strategy, and also promotes wound healing and scar reduction. In the first phase, cell membrane-derived nanovesicles (NVs) are engineered to show PD-1 and dibenzocyclooctyne (DBCO). These are capable of reactivating T cells by blocking the PD-1/PD-L1 pathway. In the second phase, azido (N3) labeled mesenchymal stem cells (MSCs) are cultured into cell sheets using tissue engineering, then apply directly to surgical wounds to enhance tissue repair. Owing to the complementary association between DBCO and N3 groups, PD-1 NVs were accumulated at the site of excision. This strategy can inhibit postoperative tumor recurrence and metastasis, whilst also promoting wound healing and reducing scar formation. The results of this study set a precedent for a new and innovative multidimensional therapeutic strategy in the postoperative treatment of melanoma.


Asunto(s)
Cicatriz , Melanoma , Células Madre Mesenquimatosas , Recurrencia Local de Neoplasia , Animales , Cicatriz/prevención & control , Recurrencia Local de Neoplasia/prevención & control , Melanoma/patología , Cicatrización de Heridas , Ratones Endogámicos C57BL , Línea Celular Tumoral , Membrana Celular/metabolismo , Humanos , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Femenino , Neoplasias Cutáneas/patología , Melanoma Experimental/patología , Masculino
7.
Stem Cell Res Ther ; 15(1): 163, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38853252

RESUMEN

BACKGROUND: A rising population faces challenges with healing-impaired cutaneous wounds, often leading to physical disabilities. Adipose-derived stem cells (ASCs), specifically in the cell sheet format, have emerged as a promising remedy for impaired wound healing. Human platelet lysate (HPL) provides an attractive alternative to fetal bovine serum (FBS) for culturing clinical-grade ASCs. However, the potential of HPL sheets in promoting wound healing has not been fully investigated. This study aimed to explore the anti-fibrotic and pro-angiogenic capabilities of HPL-cultured ASC sheets and delve into the molecular mechanism. METHODS: A rat burn model was utilized to evaluate the efficacy of HPL-cultured ASC sheets in promoting wound healing. ASC sheets were fabricated with HPL, and those with FBS were included for comparison. Various analyses were conducted to assess the impact of HPL sheets on wound healing. Histological examination of wound tissues provided insights into aspects such as wound closure, collagen deposition, and overall tissue regeneration. Immunofluorescence was employed to assess the presence and distribution of transplanted ASCs after treatment. Further in vitro studies were conducted to decipher the specific factors in HPL sheets contributing to angiogenesis. RESULTS: HPL-cultured ASC sheets significantly accelerated wound closure, fostering ample and organized collagen deposition in the neo-dermis. Significantly more retained ASCs were observed in wound tissues treated with HPL sheets compared to the FBS counterparts. Moreover, HPL sheets mitigated macrophage recruitment and decreased subsequent wound tissue fibrosis in vivo. Immunohistochemistry also indicated enhanced angiogenesis in the HPL sheet group. The in vitro analyses showed upregulation of C-C motif chemokine ligand 5 (CCL5) and angiogenin in HPL sheets, including both gene expression and protein secretion. Culturing endothelial cells in the conditioned media compared to media supplemented with CCL5 or angiogenin suggested a correlation between CCL5 and the pro-angiogenic effect of HPL sheets. Additionally, through neutralizing antibody experiments, we further validated the crucial role of CCL5 in HPL sheet-mediated angiogenesis in vitro. CONCLUSIONS: The present study underscores CCL5 as an essential factor in the pro-angiogenic effect of HPL-cultured ASC sheets during the wound healing process. These findings highlight the potential of HPL-cultured ASC sheets as a promising therapeutic option for healing-impaired cutaneous wounds in clinical settings. Furthermore, the mechanism exploration yields valuable information for optimizing regenerative strategies with ASC products. BRIEF ACKNOWLEDGMENT: This research was supported by the National Science and Technology Council, Taiwan (NSTC112-2321-B-002-018), National Taiwan University Hospital (111C-007), and E-Da Hospital-National Taiwan University Hospital Joint Research Program (111-EDN0001, 112-EDN0002).


Asunto(s)
Tejido Adiposo , Plaquetas , Quimiocina CCL5 , Neovascularización Fisiológica , Cicatrización de Heridas , Animales , Humanos , Ratas , Plaquetas/metabolismo , Quimiocina CCL5/metabolismo , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Células Madre/metabolismo , Células Madre/citología , Ratas Sprague-Dawley , Células Cultivadas , Masculino , Trasplante de Células Madre/métodos , Angiogénesis
8.
Tissue Eng Regen Med ; 21(6): 867-879, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38904732

RESUMEN

BACKGROUND: Stem cell-based transplantation therapy holds promise for peripheral nerve injury treatment, but adult availability is limited. A cell culture protocol utilizing a small-molecule cocktail effectively reprogrammed stem cells from apical papilla (SCAPs) into neural progenitor cells, subsequently differentiating into neuron-like cells. This study aims to evaluate neural-induced SCAPs, with and without small-molecule cocktail, for sciatic nerve repair potential. METHODS: A scaffold-free cell sheet technique was used to construct a three-dimensional cell sheet. Subsequently, this cell sheet was carefully rolled into a tube and seamlessly inserted into a collagen conduit, which was then transplanted into a 5 mm sciatic nerve injury rat model. Functional sciatic nerve regeneration was evaluated via toe spread test, walking track analysis and gastrocnemius muscle weight. Additionally, degree of sciatic nerve regeneration was determined based on total amount of myelinated fibers. RESULTS: Small-molecule cocktail induced SCAPs enhanced motor function recovery, evident in improved sciatic function index and gastrocnemius muscle retention. We also observed better host myelinated fiber retention than undifferentiated SCAPs or neural-induced SCAPs without small-molecule cocktail. However, clusters of neuron-like cell bodies (surrounded by sparse myelinated fibers) were found in all cell sheet-implanted groups in the implantation region. This suggests that while the implanted cells likely survived transplantation, integration was poor and would likely hinder long-term recovery by occupying the space needed for host nerve fibers to project through. CONCLUSION: Neural-induced SCAPs with small-molecule cocktail demonstrated promising benefits for nerve repair; further research is needed to improve its integration and optimize its potential for long-term recovery.


Asunto(s)
Regeneración Nerviosa , Células-Madre Neurales , Ratas Sprague-Dawley , Nervio Ciático , Trasplante de Células Madre , Animales , Células-Madre Neurales/citología , Nervio Ciático/lesiones , Regeneración Nerviosa/efectos de los fármacos , Ratas , Trasplante de Células Madre/métodos , Modelos Animales de Enfermedad , Diferenciación Celular , Traumatismos de los Nervios Periféricos/terapia , Masculino , Músculo Esquelético , Recuperación de la Función
9.
BMC Res Notes ; 17(1): 139, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750547

RESUMEN

BACKGROUND: Pulmonary air leaks (PALs) due to visceral pleura injury during surgery is frequently observed after pulmonary resections and the complication is difficult to avoid in thoracic surgery. The development of postoperative PALs is the most common cause of prolonged hospitalization. Previously, we reported that PALs sealants using autologous dermal fibroblast sheets (DFSs) harvested from temperature-responsive culture dishes successfully closed intraoperative PALs during lung resection. OBJECTIVE: In this study, we investigated the fate of human DFSs xenogenetically transplanted onto lung surfaces to seal PALs of immunocompromised rat. Dual-color FISH analyses of human fibroblast was employed to detect transplantation human cells on the lung surface. RESULTS: One month after transplantation, FISH analyses revealed that transplanted human fibroblasts still composed a sheet-structure, and histology also showed that beneath the sheet's angiogenesis migrating into the sheets was observed from the recipient tissues. FISH analyses revealed that even at 3 months after transplantation, the transplanted human fibroblasts still remained in the sheet. Dual-color FISH analyses of the transplanted human fibroblasts were sparsely present as a result of the cells reaching the end of their lifespan, the cells producing extracellular matrix, and remained inside the cell sheet and did not invade the lungs of the host. CONCLUSIONS: DFS-transplanted human fibroblasts showed that they are retained within cell sheets and do not invade the lungs of the host.


Asunto(s)
Fibroblastos , Huésped Inmunocomprometido , Pulmón , Animales , Humanos , Ratas , Pleura , Hibridación Fluorescente in Situ , Trasplante Heterólogo/métodos , Masculino , Modelos Animales de Enfermedad
10.
Stem Cell Res Ther ; 15(1): 117, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38654373

RESUMEN

BACKGROUND: The detection rate of superficial non-ampullary duodenal epithelial tumors (SNADETs) has recently been increasing. Large tumors may contain malignant lesions and early therapeutic intervention is recommended. Endoscopic mucosal dissection (ESD) is considered a feasible treatment modality, however, the anatomical and physiological characteristics of the duodenum create a risk of postoperative perforation after ESD. METHODS: To explore whether myoblast sheet transplantation could prevent delayed perforation after ESD, a first-in-human (FIH) clinical trial of laparoscopic autologous myoblast sheet transplantation after duodenal ESD was launched. Autologous myoblast sheets fabricated from muscle tissue obtained seven weeks before ESD were transplanted laparoscopically onto the serous side of the ESD. The primary endpoints were the onset of peritonitis due to delayed perforation within three days after surgery and all adverse events during the follow-up period. RESULTS: Three patients with SNADETs ≥ 20 mm in size underwent transplantation of a myoblast sheet onto the serous side of the duodenum after ESD. In case 1, The patient's postoperative course was uneventful. Endoscopy and abdominal computed tomography revealed no signs of delayed perforation. Despite incomplete mucosal closure in case 2, and multiple micro perforations during ESD in case 3, cell sheet transplantation could prevent the postoperative massive perforation after ESD, and endoscopy on day 49 after transplantation revealed no stenosis. CONCLUSIONS: This clinical trial showed the safety, efficacy, and procedural operability of this novel regenerative medicine approach involving transplanting an autologous myoblast sheet laparoscopically onto the serosa after ESD in cases with a high risk of delayed perforation. This result indicates the potential application of cell sheet medicine in treating various abdominal organs and conditions with minimal invasiveness in the future. TRIAL REGISTRATION: jRCT, jRCT2073210094. Registered November 8 2021, https://jrct.niph.go.jp/latest-detail/jRCT2073210094 .


Asunto(s)
Laparoscopía , Mioblastos , Trasplante Autólogo , Humanos , Laparoscopía/métodos , Laparoscopía/efectos adversos , Masculino , Femenino , Mioblastos/trasplante , Trasplante Autólogo/métodos , Persona de Mediana Edad , Duodeno , Anciano , Mucosa Intestinal , Resección Endoscópica de la Mucosa/efectos adversos , Resección Endoscópica de la Mucosa/métodos , Neoplasias Duodenales/cirugía , Perforación Intestinal/etiología
11.
Biomed Pharmacother ; 174: 116599, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38640711

RESUMEN

OBJECTIVE: The aim of this study was to produce and characterize triple-layered cell sheet constructs with varying cell compositions combined or not with the fibrin membrane scaffold obtained by the technology of Plasma Rich in Growth Factors (mPRGF). MATERIALS AND METHODS: Human primary cultures of periodontal ligament stem cells (hPDLSCs) were isolated, and their stemness nature was evaluated. Three types of triple-layered composite constructs were generated, composed solely of hPDLSCs or combined with human umbilical vein endothelial cells (HUVECs), either as a sandwiched endothelial layer or as coculture sheets of both cell phenotypes. These three triple-layered constructs were also manufactured using mPRGF as cell sheets' support. Necrosis, glucose consumption, secretion of extracellular matrix proteins and synthesis of proangiogenic factors were determined. Histological evaluations and proteomic analyses were also performed. RESULTS: The inclusion of HUVECs did not clearly improve the properties of the multilayered constructs and yet hindered their optimal conformation. The presence of mPRGF prevented the shrinkage of cell sheets, stimulated the metabolic activity and increased the matrix synthesis. At the proteome level, mPRGF conferred a dramatic advantage to the hPDLSC constructs in their ability to provide a suitable environment for tissue regeneration by inducing the expression of proteins necessary for bone morphogenesis and cellular proliferation. CONCLUSIONS: hPDLSCs' triple-layer construct onto mPRGF emerges as the optimal structure for its use in regenerative therapeutics. CLINICAL RELEVANCE: These results suggest the suitability of mPRGF as a promising tool to support cell sheet formation by improving their handling and biological functions.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana , Péptidos y Proteínas de Señalización Intercelular , Ligamento Periodontal , Células Madre , Andamios del Tejido , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre/metabolismo , Células Madre/citología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Andamios del Tejido/química , Células Cultivadas , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Técnicas de Cocultivo , Proteómica , Plasma/metabolismo
12.
Mater Today Bio ; 25: 101012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38464495

RESUMEN

Urethral stricture (US) is a common disease in urology, lacking effective treatment options. Although injecting a stem cells suspension into the affected area has shown therapeutic benefits, challenges such as low retention rate and limited efficacy hinder the clinical application of stem cells. This study evaluates the therapeutic impact and the mechanism of adipose-derived vascular fraction (SVF) combined with cell sheet engineering technique on urethral fibrosis in a rat model of US. The results showed that SVF-cell sheets exhibit positive expression of α-SMA, CD31, CD34, Stro-1, and eNOS. In vivo study showed less collagen deposition, low urethral fibrosis, and minimal tissue alteration in the group receiving cell sheet transplantation. Furthermore, the formation of a three-dimensional (3D) tissue-like structure by the cell sheets enhances the paracrine effect of SVF, facilitates the infiltration of M2 macrophages, and suppresses the TGF-ß/Smad2 pathway through HGF secretion, thereby exerting antifibrotic effects. Small animal in vivo imaging demonstrates improved retention of SVF cells at the damaged urethra site with cell sheet application. Our results suggest that SVF combined with cell sheet technology more efficiently inhibits the early stages of urethral fibrosis.

13.
Biomater Adv ; 159: 213826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38479241

RESUMEN

Thermosensitive hydrogels based on the N-vinyl caprolactam (VCL), capable of allowing for cell adhesion and proliferation, as well as non-aggressive detachment by controlled temperature drop, were functionalized with 23 % or lower molar percentages of the cationizable hydrophobic unit 2-(diisopropylamino) ethyl methacrylate (DPAEMA), to obtain networks with dual sensitivity to temperature and pH. The swelling analysis of the systems has shown a transition pK (pKb) close to physiological values, dependent on the temperature of the medium (pKb of 6.6 and 6.9 when the temperature of the medium is above and below the transition temperature VPTT, respectively) and little dependence on the degree of functionalization of DPAEMA. In addition, at temperatures below the transition temperature (VPTT), the systems have shown large swelling variations as a function of the pH (i.e. below and above the pKb), exhibiting greater absorption capacity at pHs below pKb, where the DPAEMA units are cationized. Cytocompatibility and transplant capacity have been evaluated using the C166-GFP endothelial cell line. None of the thermosensitive hydrogels with variable DPAEMA content showed a delay with respect to the control without DPAEMA neither in terms of adhesion nor in proliferation. However, by increasing the percentage of DPAEMA functionalization -and decreasing thermosensitivity-, a correlative decrease in mitochondrial activity was obtained in the transplant, with significant differences for the hydrogels with DPAEMA molar percentage of 3 % or higher. Taking advantage of the proximity of the pKb to the physiological value, we have evaluated the cellular response and the capacity for transplantation after lowering the pH to 6.5, below pKb. A direct relationship of the DPAEMA functionalization degree on the detachment efficiency was observed, since the hydrogels with the highest molar load of DPAEMA showed higher mitochondrial metabolic activity after cell detachment.


Asunto(s)
Hidrogeles , Metacrilatos , Temperatura , Línea Celular , Metacrilatos/farmacología , Metacrilatos/química , Interacciones Hidrofóbicas e Hidrofílicas
14.
Stem Cell Rev Rep ; 20(3): 816-826, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38340274

RESUMEN

Mesenchymal stromal cells (MSCs) grown in high-density monolayers (sheets) are promising vehicles for numerous bioengineering applications. When MSC sheets are maintained in prolonged cultures, they undergo rapid senescence, limiting their downstream efficacy. Although rapamycin is a potential agent that can inhibit senescence in cell cultures, no study has investigated rapamycin's effect on MSCs grown in high-density culture and its effect on downstream target gene expression. In this study, placental-derived MSCs (PMSCs) were seeded at high density to generate PMSC sheets in 24 hours and were then treated with rapamycin or vehicle for up to 7 days. Autophagy activity, cell senescence and apoptosis, cell size and granularity, and senescence-associated cytokines (IL-6 and IL-8) were analyzed. Differential response in gene expression were assessed via microarray analysis. Rapamycin significantly increased PMSC sheet autophagy activity, inhibited cellular senescence, decreased cell size and granularity at all timepoints. Rapamycin also significantly decreased the number of cells in late apoptosis at day 7 of sheet culture, as well as caspase 3/7 activity at all timepoints. Notably, while rapamycin decreased IL-6 secretion, increased IL-8 levels were observed at all timepoints. Microarray analysis further confirmed the upregulation of IL-8 transcription, as well as provided a list of 396 genes with 2-fold differential expression, where transforming growth factor-ß (TGF-ß) signaling were identified as important upregulated pathways. Rapamycin both decreased senescence and has an immunomodulatory action of PMSCs grown in sheet culture, which will likely improve the chemotaxis of pro-healing cells to sites of tissue repair in future bioengineering applications.


Asunto(s)
Células Madre Mesenquimatosas , Sirolimus , Femenino , Humanos , Embarazo , Sirolimus/farmacología , Interleucina-8/genética , Interleucina-8/metabolismo , Interleucina-8/farmacología , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Interleucina-6/metabolismo , Placenta/metabolismo
15.
Cytotherapy ; 26(4): 360-371, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363247

RESUMEN

BACKGROUND AIMS: Despite advancements in wound care, wound healing remains a challenge, especially in individuals with type 2 diabetes. Cell sheet technology has emerged as an efficient and promising therapy for tissue regeneration and wound repair. Among these, bilayered human keratinocyte-fibroblast cell sheets constructed using temperature-responsive culture surfaces have been shown to mimic a normal tissue-like structure and secrete essential cytokines and growth factors that regulate the wound healing process. METHODS: This study aimed to evaluate the safety and therapeutic potential of human skin cell sheets to treat full-thickness skin defects in a rat model of type 2 diabetes. RESULTS: Our findings demonstrate that diabetic wounds transplanted with bilayered cell sheets resulted in accelerated re-epithelialization, increased angiogenesis, enhanced macrophage polarization and regeneration of tissue that closely resembled healthy skin. In contrast, the control group that did not receive cell sheet transplantation presented characteristic symptoms of impaired and delayed wound healing associated with type 2 diabetes. CONCLUSIONS: The secretory cytokines and the upregulation of Nrf2 expression in response to cell sheet transplantation are believed to have played a key role in the improved wound healing observed in diabetic rats. Our study suggests that human keratinocyte-fibroblast cell sheets hold great potential as a therapeutic alternative for diabetic ulcers.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Humanos , Ratas , Animales , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Cicatrización de Heridas/fisiología , Queratinocitos/fisiología , Queratinocitos/trasplante , Piel , Fibroblastos/fisiología , Citocinas
16.
Adv Sci (Weinh) ; 11(11): e2306746, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38164116

RESUMEN

As a living repair material, cell sheet exhibits significant potential in wound repair. Nonetheless, wound healing is a complicated and protracted process that necessitates specific repair functions at each stage, including hemostasis and antibacterial activity. In this work, on the basis of harvesting the cell sheet via a photothermal response strategy, a fibronectin attached cell sheet (FACS) is prepared to enhance its wound repair capability. For this purpose, the azide group (N3 ) is initially tagged onto the cell surface through metabolic glycoengineering of unnatural sugars, and then the conjugate (DBCO-fibronectin) comprises of the dibenzocyclooctyne (DBCO) and fibronectin with multiple wound repair functions is linked to N3 using click chemistry. Biological evaluations following this demonstrates that the FACS preparation exhibits excellent biocompatibility, and the fibronectin modification enhances the capacity for cell proliferation and migration. Moreover, in vivo wound healing experiment confirms the reparative efficacy of FACS. It not only has a wound closure rate 1.46 times that of a conventional cell sheet but also reduces inflammatory cell infiltration, promotes hair follicle and blood vessel regeneration, and encourages collagen deposition. This strategy holds enormous clinical potential and paves the way for advanced functional modifications of cell sheets.


Asunto(s)
Traumatismo Múltiple , Cicatrización de Heridas , Humanos , Química Clic , Fibronectinas , Membrana Celular
17.
Biomed Mater ; 19(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38194706

RESUMEN

Type 1 diabetes-mellitus (T1DM) is characterized by damage of beta cells in pancreatic islets. Cell-sheet engineering, one of the newest therapeutic approaches, has also been used to create functional islet systems by creating islet/beta cell-sheets and transferring these systems to areas that require minimally invasive intervention, such as extrahepatic areas. Since islets, beta cells, and pancreas transplants are allogeneic, immune problems such as tissue rejection occur after treatment, and patients become insulin dependent again. In this study, we aimed to design the most suitable cell-sheet treatment method and macrocapsule-device that could provide long-term normoglycemia in rats. Firstly, mesenchymal stem cells (MSCs) and beta cells were co-cultured in a temperature-responsive culture dish to obtain a cell-sheet and then the cell-sheets macroencapsulated using different concentrations of alginate. The mechanical properties and pore sizes of the macrocapsule-device were characterized. The viability and activity of cell-sheets in the macrocapsule were evaluatedin vitroandin vivo. Fasting blood glucose levels, body weight, and serum insulin & C-peptide levels were evaluated after transplantation in diabetic-rats. After the transplantation, the blood glucose level at 225 mg dl-1on the 10th day dropped to 168 mg dl-1on the 15th day, and remained at the normoglycemic level for 210 days. In this study, an alginate macrocapsule-device was successfully developed to protect cell-sheets from immune attacks after transplantation. The results of our study provide the basis for future animal and human studies in which this method can be used to provide long-term cellular therapy in T1DM patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Ratas , Humanos , Animales , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Glucemia/metabolismo , Alginatos , Insulina/metabolismo
18.
J Control Release ; 366: 160-169, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154542

RESUMEN

Hepatic tissue engineering has been applied for the treatment of intractable liver diseases, and hepatocyte sheets are promising for this purpose. However, hepatocyte sheets have poor survival after transplantation because of their high metabolic activity. In this study, we aimed to develop basic fibroblast growth factor (bFGF)-releasing nanoparticles to prolong the survival of hepatocyte sheets after transplantation. The nanoparticles were prepared by electrospraying a bFGF-dispersed poly(D,l-lactide-co-glycolide) emulsion. bFGF-loaded PLGA nanoparticles can be developed by optimizing the applied electrospray voltage and the oil:water ratio of the emulsion. The prepared nanoparticles exhibited prompt release at the initial duration and continuous gradual release at the subsequent duration. Hepatocyte sheet engraftment was evaluated by transplanting hepatocyte sheets containing the prepared nanoparticles into rats. The hepatocyte sheets with the prepared nanoparticles exhibited longer survival than those without the bFGF nanoparticles or solution owing to the local and continuous release of bFGF from the nanoparticles and the subsequent enhanced angiogenesis at the transplantation site. These results indicated that the prepared bFGF-releasing nanoparticles can enhance the efficiency of hepatocyte sheet transplantation. The developed bFGF-releasing nanoparticles would be useful for the transplantation of cellular tissue with post-transplantation survival challenges.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Hepatocitos , Nanopartículas , Animales , Ratas , Emulsiones , Hepatocitos/trasplante , Ingeniería de Tejidos/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...