RESUMEN
PURPOSE: Meningothelial cells (MECs) play a central role in the maintenance of cerebrospinal fluid (CSF) homeostasis and in physiological and pathophysiological processes within the subarachnoid space (SAS) linking them to optic nerve (ON) pathologies. Still, not much is known about their structural properties that might enable MECs to perform specific functions within the ON microenvironment. METHODS: For closer characterization of the structural properties of the human MEC layer in the arachnoid, we performed immunohistological analyses to evaluate the presence of cell-cell interaction markers, namely, markers for tight junctions (JAM1, Occludin, and Claudin 5), gap junctions (Connexin 26 and 43), and desmosomes (Desmoplakin) as well as for water channel marker aquaporin 4 (AQP4) in retrobulbar, midorbital, and intracanalicular human ON sections. RESULTS: MECs displayed immunopositivity for markers of tight junctions (JAM1, Occludin, and Claudin 5) and gap junctions (Connexin 26 and 43) as well as for AQP4 water channels. However, no immunopositivity was found for Desmoplakin. CONCLUSION: MECs are connected via tight junctions and gap junctions, and they possess AQP4 water channels. The presence of these proteins emphasizes the important function of MECs within the ON microenvironment as part of the meningeal barrier. Beyond this barrier function, the expression of these proteins by MECs supports a broader role of these cells in signal transduction and CSF clearance pathways within the ON microenvironment.
RESUMEN
OF BACKGROUND DATA: It is well established that syringomyelia can cause neurological symptoms and deficit by accumulation of fluid within syrinx cavities that lead to internal compression within the spinal cord. When other intervention treating the underlying etiology failed to yield any improvement, the next option would be a procedure to divert the fluid from the syrinx cavity, such as syringo-subarachnoid, syringo-peritoneal or syringo-pleural shunting. The indications and long term efficacy of these direct shunting procedures are still questionable and controversial. OBJECTIVE: To investigate the clinical indication, outcome and complication of syringe-pleural shunt (SPS) as an alternative for treatment of syringomyelia. STUDY DESIGN: We reported a retrospective 26 cases of syringomyelia were found to have indication for a diversion procedure. SPS was offered. Patients' symptoms, mJOA score, and MRI were collected to evaluate the change of the syringomyelia and prognosis of the patients. 2-tailed wilcoxon signed-rank test was used to perform the statistical analysis of the mJOA scores. METHODS: All 26 patients underwent SPS. The clinical information was collected, the mean follow-up time was 27.4 months, 2-tailed wilcoxon signed-rank test was used to perform the statistical analysis of the mJOA scores. The key surgical technique, outcome and complications of SPS were reported in detail. RESULTS: No mortality and severe complications occurred. Postoperative MRIs revealed near-complete resolution of syrinx in 14 patients, significant shrinkage of syrinx in 10 patients, no obvious reduction or unchanged in remaining 2 patient. Postoperatively, the symptoms improved in 24 cases (92.3%). Statistical analysis of the mJOA scores showed a statistical significance (P<0.001) between the preoperative group and the 2-week postoperative group. No further significant improvement between 2 weeks to the final follow up at 27 months. CONCLUSION: Collapse or remarkable shrinkage of the syrinx by SPS could ameliorate or at least stabilize the symptoms for the patient. We recommend small laminectomy and a less than 3mm myelotomy either at PML or DREZ. The SPS procedure can be an effective and relatively long-lived treatment for the idiopathic syringomyelia and those that failed other options.