Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Food Sci Biotechnol ; 33(11): 2509-2519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39144200

RESUMEN

The change of quality characteristics in snakehead fillets were investigated during brining, ultrasound, and ultrasound-assisted brining processing. Results showed that ultrasound and brine had significantly impact on the tissue microstructure and the color parameter of fillets. Compared to 60-min marination in deionized water, the shear force was reduced by 17.67 g by ultrasound, compared to 80-min marination in deionized water, the shear force was reduced by 28.68 g by brine. Brine significantly increased the water-holding capacity of fish fillets. Ultrasound resulted in increased random coils, ß-turn and hydrophobic interaction, while brine significantly promoted the formation of the α-helix structure. The increase of the thermal stability of the myosin head was due to the synergistic effect of ultrasound and brine, but the decrease of the thermal stability of actin only associated with brine. The study provides the reference for the application of ultrasound-assisted brining technology to aquatic industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-023-01506-8.

2.
Front Vet Sci ; 11: 1367066, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38659458

RESUMEN

Nocardia seriolae is the primary pathogen causing nocardiosis in various fish species, leads to significant economic losses in the aquaculture industry. In this study, 10 bacterial strains isolated from Micropterus salmoides and Channa argus infected with nocardiosis, were identified as N. seriolae by physiological and biochemical identification, as well as 16S rDNA sequencing. Moreover, the key virulence-related genes such as ESX-1, T7SS-2, T7SS-3, EspG1, sodC, sod2 and ESAT6 were all positive, and showing high homology among different strains. Pathogenicity testing revealed mortality rates ranging from 70 to 100%, accompanied by the presence of white nodules in the viscera of deceased fish. The drug sensitivity test demonstrated that LY21811, the most lethal strain, exhibited high sensitivity to nine types of antibiotics, including azithromycin, doxycycline, florfenicol and compound sulfamethoxazole, yet showed complete resistance to ß-lactam antibiotics. Additionally, the tannic acid also demonstrated potent inhibitory effects against LY21811, with a minimum inhibitory concentration of 0.0625 mg/mL. These results showed that N. seriolae originated from M. salmoides and C. argus in Zhejiang Province were highly conserved, demonstrating a high homogeneity in genetic characteristics, pathogenicity and antimicrobial susceptibilities. These results provide a foundation for further research on the pathogenic characteristics and disease prevention of N. seriolae infections.

3.
Fish Shellfish Immunol ; 150: 109554, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641217

RESUMEN

Nocardia seriolae pathogen causes chronic granulomatous disease, reportedly affecting over 40 species of marine and freshwater cultured fish. Hence, research is required to address and eliminate this significant threat to the aquaculture industry. In this respect, a reliable and reproducible infection model needs to be established to better understand the biology of this pathogen and its interactions with the host during infection, as well as to develop new vaccines or other effective treatment methods. In this study, we examined the pathogenicity of the pathogen and the immune response of snakehead (Channa argus) juvenile to N. seriolae using a range of methods and analyses, including pathogen isolation and identification, histopathology, Kaplan-Meier survival curve analysis, and determination of the median lethal dose (LD50) and cytokine expression. We have preliminarily established a N. seriolae - C. argus model. According to our morphological and phylogenetic analysis data, the isolated strain was identified as N. seriolae and named NSE01. Eighteen days post-infection of healthy juvenile C. argus with N. seriolae NSE01, the mortality rate in all four experimental groups (intraperitoneally injected with 1 × 105 CFU/mL - 1 × 108 CFU/mL of bacterial suspension) (n = 120) was 100 %. The LD50 of N. seriolae NSE01 for juvenile C. argus was determined to be 1.13 × 106 CFU/fish. Infected juvenile C. argus had significant pathological changes, including visceral tissue swelling, hemorrhage, and the presence of numerous nodules of varying sizes in multiple tissues. Further histopathological examination revealed typical systemic granuloma formation. Additionally, following infection with N. seriolae NSE01, the gene expression of important cytokines, such as Toll-like receptor genes TLR2, TLR13, interleukin-1 receptor genes IL1R1, IL1R2, and interferon regulatory factor IRF2 were significantly upregulated in different tissues, indicating their potential involvement in the host immune response and regulation against N. seriolae. In conclusion, juvenile C. argus can serve as a suitable model for N. seriolae infection. The establishment of this animal model will facilitate the study of the pathogenesis of nocardiosis and the development of vaccines.


Asunto(s)
Enfermedades de los Peces , Nocardiosis , Nocardia , Animales , Nocardia/inmunología , Nocardiosis/veterinaria , Nocardiosis/inmunología , Nocardiosis/microbiología , Nocardiosis/mortalidad , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Filogenia , Peces/inmunología , Inmunidad Innata , Perciformes/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...