Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Immunother Cancer ; 12(8)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39151930

RESUMEN

BACKGROUND: Antitumor effect of chimeric antigen receptor (CAR)-T cells against solid tumors is limited due to various factors, such as low infiltration rate, poor expansion capacity, and exhaustion of T cells within the tumor. NR4A transcription factors have been shown to play important roles in T-cell exhaustion in mice. However, the precise contribution of each NR4a factor to human T-cell differentiation remains to be clarified. METHODS: In this study, we deleted NR4A family factors, NR4A1, NR4A2, and NR4A3, in human CAR-T cells recognizing human epidermal growth factor receptor type 2 (HER2) by using the CRISPR/Cas9 system. We induced T-cell exhaustion in these cells in vitro through repeated co-culturing of CAR-T cells with Her2+A549 lung adenocarcinoma cells and evaluated cell surface markers such as memory and exhaustion phenotypes, proliferative capacity, cytokine production and metabolic activity. We validated the antitumor toxicity of NR4A1/2/3 triple knockout (TKO) CAR-T cells in vivo by transferring CAR-T cells into A549 tumor-bearing immunodeficient mice. RESULTS: Human NR4A-TKO CAR-T cells were resistant against exhaustion induced by repeated antigen stimulation in vitro, and maintained higher tumor-killing activity both in vitro and in vivo compared with control CAR-T cells. A comparison of the effectiveness of NR4A single, double, and TKOs demonstrated that triple KO was the most effective in avoiding exhaustion. Furthermore, a strong enhancement of antitumor effects by NR4A TKO was also observed in T cells from various donors including aged persons. Mechanistically, NR4A TKO CAR-T cells showed enhanced mitochondrial oxidative phosphorylation, therefore could persist for longer periods within the tumors. CONCLUSIONS: NR4A factors regulate CAR-T cell persistence and stemness through mitochondrial gene expression, therefore NR4A is a highly promising target for the generation of superior CAR-T cells against solid tumors.


Asunto(s)
Inmunoterapia Adoptiva , Mitocondrias , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Mitocondrias/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Neoplasias/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Proteínas de Unión al ADN , Receptores de Esteroides
2.
J Immunother Cancer ; 12(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111833

RESUMEN

BACKGROUND: High-grade gliomas including glioblastoma (GBM) and diffuse midline gliomas (DMG) represent the most lethal and aggressive brain cancers where current treatment modalities offer limited efficacy. Chimeric antigen receptor (CAR) T cell therapies have emerged as a promising strategy, boasting tumor-specific targeting and the unique ability to penetrate the blood-brain barrier. However, the effective clinical application hinges on the optimal choice of antigen, with a limited number, currently under investigation. METHODS: We employed cell surface proteomic analysis of primary human high-grade glioma samples from both adult and pediatric patients. This led to the identification of Ephrin type-A receptor 3 (EphA3) as a prevalently expressed target. We engineered a second-generation EphA3-targeted CAR T cell and assessed function using in vitro and in vivo models of GBM and DMG. RESULTS: EphA3-targeted CAR T cells demonstrated robust antigen-specific killing of human GBM and DMG cell lines in vitro. In an orthotopic xenograft NSG mouse model, EphA3-targeted CAR T cells not only effectively eradicated tumors but also established a functional T cell population protective on rechallenge. Remarkably, mice rechallenged with a second contralateral orthotopic tumor implantation achieved complete tumor clearance and maintained a sustained complete response 6 months following initial treatment. CONCLUSION: Building on the proven safety profile of EphA3 antibodies in clinical settings, our study provides compelling preclinical evidence supporting the efficacy of EphA3-targeted CAR T cells against high-grade gliomas. These findings underscore the potential for transitioning this innovative therapy into clinical trials, aiming to revolutionize the treatment landscape for patients afflicted with these formidable brain cancers.


Asunto(s)
Glioma , Receptor EphA3 , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Glioma/terapia , Glioma/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Femenino , Memoria Inmunológica
3.
J Immunother Cancer ; 12(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39111832

RESUMEN

BACKGROUND: Adoptive T-cell therapy targeting antigens expressed in glioblastoma has emerged as a potential therapeutic strategy to prevent or delay recurrence and prolong overall survival in this aggressive disease setting. Ephrin receptor A3 (EphA3), which is highly expressed in glioblastoma; in particular, on the tumor vasculature and brain cancer stem cells, is an ideal target for immune-based therapies. METHODS: We have designed an EphA3-targeted chimeric antigen receptor (CAR) using the single chain variable fragment of a novel monoclonal antibody, and assessed its therapeutic potential against EphA3-expressing patient-derived glioblastoma neurospheres, organoids and xenografted glioblastoma tumors in immunodeficient mice. RESULTS: In vitro expanded EphA3 CAR T cells from healthy individuals efficiently recognize and kill EphA3-positive glioblastoma cells in vitro. Furthermore, these effector cells demonstrated curative efficacy in an orthotopic xenograft model of glioblastoma. EphA3 CAR T cells were equally effective in targeting patient-derived neurospheres and infiltrate, disaggregate, and induce apoptosis in glioblastoma-derived organoids. CONCLUSIONS: This study provides compelling evidence supporting the therapeutic potential of EphA3 CAR T-cell therapy against glioblastoma by targeting EphA3 associated with brain cancer stem cells and the tumor vasculature. The ability to target patient-derived glioblastoma underscores the translational significance of this EphA3 CAR T-cell therapy in the pursuit of effective and targeted glioblastoma treatment strategies.


Asunto(s)
Glioblastoma , Receptor EphA3 , Glioblastoma/terapia , Glioblastoma/inmunología , Humanos , Animales , Ratones , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Línea Celular Tumoral
4.
J Immunother Cancer ; 12(7)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964787

RESUMEN

BACKGROUND: Chimeric antigen receptor natural killer (CAR-NK) therapy holds great promise for treating hematologic tumors, but its efficacy in solid tumors is limited owing to the lack of suitable targets and poor infiltration of engineered NK cells. Here, we explore whether immunogenic cell death (ICD) marker ERp57 translocated from endoplasmic reticulum to cell surface after drug treatment could be used as a target for CAR-NK therapy. METHODS: To target ERp57, a VHH phage display library was used for screening ERp57-targeted nanobodies (Nbs). A candidate Nb with high binding affinity to both human and mouse ERp57 was used for constructing CAR-NK cells. Various in vitro and in vivo studies were performed to assess the antitumor efficacy of the constructed CAR-NK cells. RESULTS: We demonstrate that the translocation of ERp57 can not only be induced by low-dose oxaliplatin (OXP) treatment but also is spontaneously expressed on the surface of various types of tumor cell lines. Our results show that G6-CAR-NK92 cells can effectively kill various tumor cell lines in vitro on which ERp57 is induced or intrinsically expressed, and also exhibit potent antitumor effects in cancer cell-derived xenograft and patient-derived xenograft mouse models. Additionally, the antitumor activity of G6-CAR-NK92 cells is synergistically enhanced by the low-dose ICD-inducible drug OXP. CONCLUSION: Collectively, our findings suggest that ERp57 can be leveraged as a new tumor antigen for CAR-NK targeting, and the resultant CAR-NK cells have the potential to be applied as a broad-spectrum immune cell therapy for various cancers by combining with ICD inducer drugs.


Asunto(s)
Muerte Celular Inmunogénica , Células Asesinas Naturales , Oxaliplatino , Proteína Disulfuro Isomerasas , Humanos , Animales , Ratones , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/efectos de los fármacos , Muerte Celular Inmunogénica/efectos de los fármacos , Proteína Disulfuro Isomerasas/metabolismo , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Femenino
5.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955421

RESUMEN

BACKGROUND: Adoptive cell therapy using genetically modified T cells to express chimeric antigen receptors (CAR-T) has shown encouraging results, particularly in certain blood cancers. Nevertheless, over 40% of B cell malignancy patients experience a relapse after CAR-T therapy, likely due to inadequate persistence of the modified T cells in the body. IL15, known for its pro-survival and proliferative properties, has been suggested for incorporation into the fourth generation of CAR-T cells to enhance their persistence. However, the potential systemic toxicity associated with this cytokine warrants further evaluation. METHODS: We analyzed the persistence, antitumor efficacy and potential toxicity of anti-mouse CD19 CAR-T cells which express a membrane-bound IL15-IL15Rα chimeric protein (CD19/mbIL15q CAR-T), in BALB/c mice challenged with A20 tumor cells as well as in NSG mice. RESULTS: Conventional CD19 CAR-T cells showed low persistence and poor efficacy in BALB/c mice treated with mild lymphodepletion regimens (total body irradiation (TBI) of 1 Gy). CD19/mbIL15q CAR-T exhibits prolonged persistence and enhanced in vivo efficacy, effectively eliminating established A20 B cell lymphoma. However, this CD19/mbIL15q CAR-T displays important long-term toxicities, with marked splenomegaly, weight loss, transaminase elevations, and significant inflammatory findings in some tissues. Mice survival is highly compromised after CD19/mbIL15q CAR-T cell transfer, particularly if a high TBI regimen is applied before CAR-T cell transfer. CONCLUSION: Tethered IL15-IL15Rα augments the antitumor activity of CD19 CAR-T cells but displays long-term toxicity in immunocompetent mice. Inducible systems to regulate IL15-IL15Rα expression could be considered to control this toxicity.


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Interleucina-15 , Animales , Ratones , Antígenos CD19/inmunología , Inmunoterapia Adoptiva/métodos , Humanos , Modelos Animales de Enfermedad , Línea Celular Tumoral , Femenino , Subunidad alfa del Receptor de Interleucina-15 , Receptores Quiméricos de Antígenos/inmunología , Linfoma/terapia , Linfoma/inmunología , Ratones Endogámicos BALB C , Linfocitos T/inmunología , Linfocitos T/trasplante
6.
J Immunother Cancer ; 12(7)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39060023

RESUMEN

BACKGROUND: Autologous BCMA-specific CAR T-cell therapies have substantial activity in multiple myeloma (MM). However, due to logistical limitations and BCMAlow relapses, there is a need for alternatives. UCARTCS1 cells are 'off-the-shelf' allogeneic CAR T-cells derived from healthy donors targeting SLAMF7 (CS1), which is highly expressed in MM cells. In this study, we evaluated the preclinical activity of UCARTCS1 in MM cell lines, in bone marrow (BM) samples obtained from MM patients and in an MM mouse model. METHODS: Luciferase-transduced MM cell lines were incubated with UCARTCS1 cells or control (non-transduced, SLAMF7/TCRαß double knock-out) T-cells at different effector to target ratios for 24 hours. MM cell lysis was assessed by bioluminescence. Anti-MM activity of UCARTCS1 was also evaluated in 29 BM samples obtained from newly diagnosed patients (n=10), daratumumab-naïve relapsed/refractory patients (n=10) and daratumumab-refractory patients (n=9) in 24-hour flow cytometry-based cytotoxicity assays. Finally, UCARTCS1 activity was assessed in mouse xenograft models. RESULTS: UCARTCS1 cells induced potent CAR-mediated, and dose-dependent lysis of both MM cell lines and primary MM cells. There was no difference in ex vivo activity of UCARTCS1 between heavily pretreated and newly diagnosed patients. In addition, efficacy of UCARTCS1 was not affected by SLAMF7 expression level on MM cells, proportion of tumor cells, or frequency of regulatory T-cells in BM samples obtained from MM patients. UCARTCS1 treatment eliminated SLAMF7+ non-malignant immune cells in a dose-dependent manner, however lysis of normal cells was less pronounced compared to that of MM cells. Additionally, durable anti-MM responses were observed with UCARTCS1 in an MM xenograft model. CONCLUSIONS: These results demonstrate that UCARTCS1 has potent anti-MM activity against MM cell lines and primary MM cells, as well as in an MM xenograft model and support the evaluation of UCARTCS1 in patients with advanced MM.


Asunto(s)
Inmunoterapia Adoptiva , Mieloma Múltiple , Familia de Moléculas Señalizadoras de la Activación Linfocitaria , Mieloma Múltiple/terapia , Mieloma Múltiple/inmunología , Mieloma Múltiple/patología , Humanos , Animales , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Ratones , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Línea Celular Tumoral
7.
J Immunother Cancer ; 12(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955420

RESUMEN

BACKGROUND: Fludarabine in combination with cyclophosphamide (FC) is the standard lymphodepletion regimen for CAR T-cell therapy (CAR T). A national fludarabine shortage in 2022 necessitated the exploration of alternative regimens with many centers employing single-agent bendamustine as lymphodepletion despite a lack of clinical safety and efficacy data. To fill this gap in the literature, we evaluated the safety, efficacy, and expansion kinetics of bendamustine as lymphodepletion prior to axicabtagene ciloleucel (axi-cel) therapy. METHODS: 84 consecutive patients with relapsed or refractory large B-cell lymphoma treated with axi-cel and managed with a uniform toxicity management plan at Stanford University were studied. 27 patients received alternative lymphodepletion with bendamustine while 57 received FC. RESULTS: Best complete response rates were similar (73.7% for FC and 74% for bendamustine, p=0.28) and there was no significant difference in 12-month progression-free survival or overall survival estimates (p=0.17 and p=0.62, respectively). The frequency of high-grade cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome was similar in both the cohorts. Bendamustine cohort experienced lower proportions of hematological toxicities and antibiotic use for neutropenic fever. Immune reconstitution, as measured by quantitative assessment of cellular immunity, was better in bendamustine cohort as compared with FC cohort. CAR T expansion as measured by peak expansion and area under the curve for expansion was comparable between cohorts. CONCLUSIONS: Bendamustine is a safe and effective alternative lymphodepletion conditioning for axi-cel with lower early hematological toxicity and favorable immune reconstitution.


Asunto(s)
Clorhidrato de Bendamustina , Productos Biológicos , Linfoma de Células B Grandes Difuso , Humanos , Clorhidrato de Bendamustina/uso terapéutico , Clorhidrato de Bendamustina/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Anciano , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Productos Biológicos/uso terapéutico , Productos Biológicos/efectos adversos , Adulto , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Antígenos CD19/inmunología , Antígenos CD19/uso terapéutico
8.
J Immunother Cancer ; 12(7)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043602

RESUMEN

BACKGROUND: Chimeric antigen receptor T-cell (CAR-T) therapy has achieved remarkable remission in patients with B-cell malignancies. However, its efficacy in treating solid tumors remains limited. Here, we investigated a combination therapy approach using an engineered long-acting interleukin (IL)-7 (rhIL-7-hyFc or NT-I7) and CAR-T cells targeting three antigens, glypican-2 (GPC2), glypican-3 (GPC3), and mesothelin (MSLN), against multiple solid tumor types including liver cancer, neuroblastoma, ovarian cancer, and pancreatic cancer in mice. METHODS: CAR-T cells targeting GPC2, GPC3, and MSLN were used in combination with NT-I7 to assess the anticancer activity. Xenograft tumor models, including the liver cancer orthotopic model, were established using NOD scid gamma mice engrafted with cell lines derived from hepatocellular carcinoma, neuroblastoma, ovarian cancer, and pancreatic cancer. The mice were monitored by bioluminescence in vivo tumor imaging and tumor volume measurement using a caliper. Immunophenotyping of CAR-T cells on NT-I7 stimulation was evaluated for memory markers, exhaust markers, and T-cell signaling molecules by flow cytometry and western blotting. RESULTS: Compared with the IL-2 combination, preclinical evaluation of NT-I7 exhibited regression of solid tumors via enhanced occupancy of CD4+ CAR-T, improved T-cell expansion, reduced exhaustion markers (programmed cell death protein 1 or PD-1 and lymphocyte-activation gene 3 or LAG-3) expression, and increased generation of stem cell-like memory CAR-T cells. The STAT5 pathway was demonstrated to be downstream of NT-I7 signaling, mediated by increased expression of the IL-7 receptor expression in CAR-T cells. Furthermore, CAR-T cells improved efficacy against tumors with low antigen density when combined with NT-I7 in mice, presenting an avenue for patients with heterogeneous antigenic profiles. CONCLUSION: This study provides a rationale for NT-I7 plus CAR-T cell combination therapy for solid tumors in humans.


Asunto(s)
Inmunoterapia Adoptiva , Interleucina-7 , Animales , Humanos , Ratones , Inmunoterapia Adoptiva/métodos , Femenino , Neoplasias/terapia , Neoplasias/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Receptores Quiméricos de Antígenos/inmunología , Ratones SCID , Ratones Endogámicos NOD , Mesotelina
9.
J Immunother Cancer ; 12(7)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043604

RESUMEN

BACKGROUND: Advances in pediatric oncology have occurred for some cancers; however, new therapies for sarcoma have been inadequate. Cellular immunotherapy using chimeric antigen receptor (CAR) T cells has shown dramatic benefits in leukemia, lymphoma, and multiple myeloma but has been far less successful in pediatric solid tumors such as rhabdomyosarcoma (RMS) and osteosarcoma (OS). Balancing issues of "on-target, off-tumor toxicity", investigators have identified B7-H3 as a broadly expressed tumor antigen with otherwise restricted expression on normal tissues. We hypothesized that rapid homing via a chemokine receptor and CAR engagement through B7-H3 would enhance CAR T cell efficacy in solid tumors. METHODS: We generated B7-H3 CAR T cells that also express the Interleukin-8 (IL-8) receptor, CXCR2. Cytokine production, flow cytometry, Seahorse assays and RNA sequencing were used to compare the B7-H3 CXCR2 (BC2) CAR T cells with B7-H3 CAR T cells. We developed an IL-8 overexpressing human RMS mouse model to test homing and cytotoxicity in vivo. RESULTS: We demonstrate that IL-8 is expressed by RMS and OS and expression significantly increases after radiation. Overexpression of an IL-8 receptor, CXCR2, on B7-H3 CAR T cells enhances homing into IL-8 expressing tumors, augments T cell metabolism and leads to significant tumor regression. CONCLUSION: These findings warrant further investigation into the use of BC2 CAR T cells as a treatment for patients with RMS, OS and other B7-H3-expressing, IL-8 producing solid tumors.


Asunto(s)
Antígenos B7 , Interleucina-8 , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Antígenos B7/metabolismo , Interleucina-8/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Sarcoma/terapia , Sarcoma/inmunología , Línea Celular Tumoral , Niño , Linfocitos T/inmunología , Linfocitos T/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
J Immunother Cancer ; 12(5)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38821719

RESUMEN

BACKGROUND: To accelerate the translation of novel immunotherapeutic treatment approaches, the development of analytic methods to assess their efficacy at early in vitro stages is necessary. Using a droplet-based microfluidic platform, we have established a method for multiparameter quantifiable phenotypic and genomic observations of immunotherapies. Chimeric antigen receptor (CAR) natural killer (NK) cells are of increased interest in the current immunotherapy landscape and thus provide an optimal model for evaluating our novel methodology. METHODS: For this approach, NK cells transduced with a CD19 CAR were compared with non-transduced NK cells in their ability to kill a lymphoma cell line. Using our microfluidic platform, we were able to quantify the increase in cytotoxicity and synaptic contact formation of CAR NK cells over non-transduced NK cells. We then optimized our droplet sorter and successfully used it to separate NK cells based on target cell killing to perform transcriptomic analyses. RESULTS: Our data revealed expected improvement in cytotoxicity with the CD19 CAR but more importantly, provided unique insights into the factors involved in the cytotoxic mechanisms of CAR NK cells. This demonstrates a novel, improved system for accelerating the pre-clinical screening of future immunotherapy treatments. CONCLUSIONS: This study provides a new potential approach for enhanced early screening of immunotherapies to improve their development, with a highly relevant cell model to demonstrate. Additionally, our validation studies provided some potential insights into transcriptomic determinants influencing CAR NK cytotoxicity.


Asunto(s)
Células Asesinas Naturales , Receptores Quiméricos de Antígenos , Análisis de la Célula Individual , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Humanos , Análisis de la Célula Individual/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Inmunoterapia Adoptiva/métodos , Fenotipo , Citotoxicidad Inmunológica , Genotipo , Línea Celular Tumoral
11.
J Immunother Cancer ; 12(5)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754916

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR) T cell therapies specific for the CD19 and B-cell maturation antigen have become an approved standard of care worldwide for relapsed and refractory B-cell malignancies. If CAR-T cell therapy for non-hematological malignancies is to achieve the same stage of clinical development, then iterative early-phase clinical testing can add value to the clinical development process for evaluating CAR-T cell products containing different CAR designs and manufactured under differing conditions. METHODS: We conducted a phase 1 trial of third-generation GD2-specific CAR-T cell therapy, which has previously been tested in neuroblastoma patients. In this study, the GD2-CAR-T therapy was evaluated for the first time in metastatic melanoma patients in combination with BRAF/MEK inhibitor therapy, and as a monotherapy in patients with colorectal cancer and a patient with fibromyxoid sarcoma. Feasibility and safety were determined and persistence studies, multiplex cytokine arrays on sera and detailed immune phenotyping of the original CAR-T products, the circulating CAR-T cells, and, in select patients, the tumor-infiltrating CAR-T cells were performed. RESULTS: We demonstrate the feasibility of manufacturing CAR-T products at point of care for patients with solid cancer and show that a single intravenous infusion was well tolerated with no dose-limiting toxicities or severe adverse events. In addition, we note significant improvements in CAR-T cell immune phenotype, and expansion when a modified manufacturing procedure was adopted for the latter 6 patients recruited to this 12-patient trial. We also show evidence of CAR-T cell-mediated immune activity and in some patients expanded subsets of circulating myeloid cells after CAR-T cell therapy. CONCLUSIONS: This is the first report of third-generation GD2-targeting CAR-T cells in patients with metastatic melanoma and other solid cancers such as colorectal cancer, showing feasibility, safety and immune activity, but limited clinical effect. TRIAL REGISTRATION NUMBER: ACTRN12613000198729.


Asunto(s)
Inmunoterapia Adoptiva , Melanoma , Receptores Quiméricos de Antígenos , Humanos , Melanoma/inmunología , Melanoma/terapia , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Receptores Quiméricos de Antígenos/inmunología , Masculino , Femenino , Persona de Mediana Edad , Gangliósidos/inmunología , Adulto , Anciano , Linfocitos T/inmunología , Resultado del Tratamiento
12.
J Immunother Cancer ; 12(5)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802271

RESUMEN

BACKGROUND: Relapsed/refractory (R/R) central nervous system lymphomas (CNSLs) are associated with a poor prognosis. Relmacabtagene autoleucel (relma-cel), expressing the same chimeric antigen receptor (CAR) as lisocabtagene maraleucel, with an optimized commercial-ready process developed in China, demonstrated remarkable efficacy and manageable safety in the pivotal RELIANCE study. However, no published data are available on the "real-world" use of relma-cel, especially for patients with CNS involvement. PATIENTS AND METHODS: Retrospective analyses were conducted for commercial relma-cel used in patients with R/R CNSL at 12 clinics. The primary endpoint was to evaluate the proportion of patients who achieved complete response (CR) at 3 months. Secondary endpoints included best complete response (BCR), progression-free survival (PFS), duration of response (DOR), overall survival (OS), and the incidence of adverse events. RESULTS: Among the 22 CNSL patients (12 primary CNSLs; 10 secondary CNSLs), the best overall response rate was 90.9% and the BCR rate was 68.2%. With median follow-up of 316 days (range, 55-618 days), the estimated 1-year PFS rate, DOR, and OS rate were 64.4%, 71.5%, and 79.2%, respectively. Significant clinical benefits were observed in patients who were in durable CR or partial response to the most recent prior therapy preleukapheresis and received relma-cel as consolidation therapy (n=8), with 1-year PFS rate of 100.0% versus 41.7% (p=0.02). In addition, in terms of primary endpoint, non-CR at 3 months postinfusion seemed to be predictive of a worse prognosis, with an estimated 1-year PFS of 83.3% versus 37.0% (p=0.03), respectively. CRS occurred in 72.9% of patients (grade 3: 4.5%) and immune effector cell-associated neurotoxicity syndrome in 36.4% of patients (grade 3: 4.5%). With the add-on agent PD-1 inhibitor (tislelizumab) to the ongoing BTKi, significant re-expansions of CAR T-cell were detected by quantitative PCR or flow cytometry after a median of 2 weeks (range, 12-32 days). CONCLUSIONS: This study was the first and largest real-world study of commercial relma-cel for R/R CNSL, demonstrating promising efficacy and acceptable safety. We reaffirmed the benefit of immuno-agents such as BTKi or PD-1 inhibitor on CAR T-cell re-expansion and hypothesized a dual-agent CAR-T related combinatorial therapies, which warrants further validation. Most importantly, we highlighted the earlier use of CAR T-cell therapy as a consolidative therapy for patients sensitive to salvage therapy, which provided an impetus and inspired-future strategy.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Neoplasias del Sistema Nervioso Central/terapia , China , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Linfoma/terapia , Linfoma/tratamiento farmacológico , Receptores Quiméricos de Antígenos/uso terapéutico , Estudios Retrospectivos
13.
J Immunother Cancer ; 12(5)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772686

RESUMEN

BACKGROUND: CD33 is a tractable target in acute myeloid leukemia (AML) for chimeric antigen receptor (CAR) T cell therapy, but clinical success is lacking. METHODS: We developed 3P14HLh28Z, a novel CD33-directed CD28/CD3Z-based CAR T cell derived from a high-affinity binder obtained through membrane-proximal fragment immunization in humanized mice. RESULTS: We found that immunization exclusively with the membrane-proximal domain of CD33 is necessary for identification of membrane-proximal binders in humanized mice. Compared with clinically validated lintuzumab-based CAR T cells targeting distal CD33 epitopes, 3P14HLh28Z showed enhanced in vitro functionality as well as superior tumor control and increased overall survival in both low antigen density and clinically relevant patient-derived xenograft models. Increased activation and enhanced polyfunctionality led to enhanced efficacy. CONCLUSIONS: Showing for the first time that a membrane-proximal CAR is superior to a membrane-distal one in the setting of CD33 targeting, our results demonstrate the rationale for targeting membrane-proximal epitopes with high-affinity binders. We also demonstrate the importance of optimizing CAR T cells for functionality in settings of both low antigen density and clinically relevant patient-derived models.


Asunto(s)
Inmunoterapia Adoptiva , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Humanos , Animales , Ratones , Lectina 3 Similar a Ig de Unión al Ácido Siálico/metabolismo , Lectina 3 Similar a Ig de Unión al Ácido Siálico/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Linfocitos T/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
14.
J Immunother Cancer ; 12(4)2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38631712

RESUMEN

BACKGROUND: Approximately two-thirds of patients with relapsed or refractory large B-cell lymphoma (R/R LBCL) do not respond to or relapse after anti-CD19 chimeric antigen receptor T (CAR T)-cell therapy, leading to poor outcomes. Previous studies have suggested that intensified lymphodepletion and hematological stem cell infusion can promote adoptively transferred T-cell expansion, enhancing antitumor effects. Therefore, we conducted a phase I/II clinical trial in which CNCT19 (an anti-CD19 CAR T-cell) was administered after myeloablative high-dose chemotherapy and autologous stem cell transplantation (HDT/ASCT) in patients with R/R LBCL. METHODS: Transplant-eligible patients with LBCL who were refractory to first-line immunochemotherapy or experiencing R/R status after salvage chemotherapy were enrolled. The study aimed to evaluate the safety and efficacy of this combinational therapy. Additionally, frozen peripheral blood mononuclear cell samples from this trial and CNCT19 monotherapy studies for R/R LBCL were used to evaluate the impact of the combination therapy on the in vivo behavior of CNCT19 cells. RESULTS: A total of 25 patients with R/R LBCL were enrolled in this study. The overall response and complete response rates were 92.0% and 72.0%, respectively. The 2-year progression-free survival rate was 62.3%, and the overall survival was 68.5% after a median follow-up of 27.0 months. No unexpected toxicities were observed. All cases of cytokine release syndrome were of low grade. Two cases (8%) experienced grade 3 or higher CAR T-cell-related encephalopathy syndrome. The comparison of CNCT19 in vivo behavior showed that patients in the combinational therapy group exhibited enhanced in vivo expansion of CNCT19 cells and reduced long-term exhaustion formation, as opposed to those receiving CNCT19 monotherapy. CONCLUSIONS: The combinational therapy of HDT/ASCT and CNCT19 demonstrates impressive efficacy, improved CNCT19 behavior, and a favorable safety profile. TRIAL REGISTRATION NUMBERS: ChiCTR1900025419 and NCT04690192.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma de Células B Grandes Difuso , Humanos , Leucocitos Mononucleares , Recurrencia Local de Neoplasia/terapia , Trasplante Autólogo , Linfoma de Células B Grandes Difuso/terapia , Resultado del Tratamiento , Linfocitos T
15.
J Immunother Cancer ; 12(4)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684370

RESUMEN

BACKGROUND: Chimeric antigen receptor (CAR)-T cell quality and stemness are associated with responsiveness, durability, and memory formation, which benefit clinical responses. Autologous T cell starting material across patients with cancer is variable and CAR-T expansion or potency can fail during manufacture. Thus, strategies to develop allogeneic CAR-T platforms including the identification and expansion of T cell subpopulations that correspond with CAR-T potency are an active area of investigation. Here, we compared CAR-T cells generated from healthy adult peripheral blood T cells versus placental circulating T (P-T) cells. METHODS: CAR-T cells from healthy adult peripheral blood mononuclear cells (PBMCs) and P-T cells were generated using the same protocol. CAR-T cells were characterized in detail by a combination of multiparameter flow cytometry, functional assays, and RNA sequencing. In vivo antitumor efficacy and persistence of CAR-T cells were evaluated in a Daudi lymphoma xenograft model. RESULTS: P-T cells possess stemness advantages compared with T cells from adult PBMCs. P-T cells are uniformly naïve prior to culture initiation, maintain longer telomeres, resist immune checkpoint upregulation, and resist further differentiation compared with PBMC T cells during CD19 CAR-T manufacture. P-T CD19 CAR-T cells are equally cytotoxic as PBMC-CD19 CAR-T cells but produce less interferon gamma in response to lymphoma. Transcriptome analysis shows P-T CD19 CAR-T cells retain a stem-like gene signature, strongly associate with naïve T cells, an early memory phenotype, and a unique CD4 T cell signature compared with PBMC-CD19 CAR-T cells, which enrich for exhaustion and stimulated memory T cell signatures. Consistent with functional data, P-T CD19 CAR-T cells exhibit attenuated inflammatory cytokine and chemokine gene signatures. In a murine in vivo model, P-T CD19 CAR-T cells eliminate lymphoma beyond 90 days. PBMC-CD19 CAR-T cells provide a non-durable benefit, which only delays disease onset. CONCLUSION: We identified characteristics of T cell stemness enriched in P-T CD19 CAR-T which are deficient in PBMC-derived products and translate into response durability in vivo. Our findings demonstrate that placental circulating T cells are a valuable cell source for allogeneic CAR-T products. Stemness advantages inherent to P-T cells translate to in vivo persistence advantages and long-term durable activity.


Asunto(s)
Citocinas , Inmunoterapia Adoptiva , Leucocitos Mononucleares , Placenta , Receptores Quiméricos de Antígenos , Linfocitos T , Humanos , Femenino , Animales , Ratones , Embarazo , Placenta/inmunología , Placenta/metabolismo , Citocinas/metabolismo , Inmunoterapia Adoptiva/métodos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Adulto , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Immunother Cancer ; 12(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38443094

RESUMEN

BACKGROUND: Over 50% of patients with relapsed or refractory large B-cell lymphoma (r/r LBCL) receiving CD19-targeted chimeric antigen receptor (CAR19) T-cell therapy fail to achieve durable remission. Early identification of relapse or progression remains a significant challenge. In this study, we prospectively investigate the prognostic value of dynamic circulating tumor DNA (ctDNA) and track genetic evolution non-invasively, for the first time in an Asian population of r/r patients undergoing CAR19 T-cell therapy. METHODS: Longitudinal plasma samples were prospectively collected both before lymphodepletion and at multiple timepoints after CAR19 T-cell infusion. ctDNA was detected using a capture-based next-generation sequencing which has been validated in untreated LBCL. RESULTS: The study enrolled 23 patients with r/r LBCL and collected a total of 101 ctDNA samples. Higher pretreatment ctDNA levels were associated with inferior progression-free survival (PFS) (p=0.031) and overall survival (OS) (p=0.023). Patients with undetectable ctDNA negative (ctDNA-) at day 14 (D14) achieved an impressive 3-month complete response rate of 77.8% vs 22.2% (p=0.015) in patients with detectable ctDNA positive (ctDNA+), similar results observed for D28. CtDNA- at D28 predicted significantly longer 1-year PFS (90.9% vs 27.3%; p=0.004) and OS (90.9% vs 49.1%; p=0.003) compared with patients who remained ctDNA+. Notably, it is the first time to report that shorter ctDNA fragments (<170 base pairs) were significantly associated with poorer PFS (p=0.031 for D14; p=0.002 for D28) and OS (p=0.013 for D14; p=0.008 for D28) in patients with LBCL receiving CAR T-cell therapy. Multiple mutated genes exhibited an elevated prevalence among patients with progressive disease, including TP53, IGLL5, PIM1, BTG1, CD79B, GNA13, and P2RY8. Notably, we observed a significant correlation between IGLL5 mutation and inferior PFS (p=0.008) and OS (p=0.014). CONCLUSIONS: Our study highlights that dynamic ctDNA monitoring during CAR T-cell therapy can be a promising non-invasive method for early predicting treatment response and survival outcomes. Additionally, the ctDNA mutational profile provides novel insights into the mechanisms of tumor-intrinsic resistance to CAR19 T-cell therapy.


Asunto(s)
ADN Tumoral Circulante , Linfoma de Células B Grandes Difuso , Humanos , ADN Tumoral Circulante/genética , Inmunoterapia Adoptiva , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/terapia , Genómica , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/terapia
18.
J Immunother Cancer ; 12(2)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413223

RESUMEN

BACKGROUND: Targeting of solid cancers with chimeric antigen receptor (CAR)-T cells is limited by the lack of suitable tumor-specific antigens and the immunosuppressive, desmoplastic tumor microenvironment that impedes CAR-T cell infiltration, activity and persistence. We hypothesized that targeting the endosialin (CD248) receptor, strongly expressed by tumor-associated pericytes and perivascular cancer-associated fibroblasts, would circumvent these challenges and offer an exciting antigen for CAR-T cell therapy due to the close proximity of target cells to the tumor vasculature, the limited endosialin expression in normal tissues and the lack of phenotype observed in endosialin knockout mice. METHODS: We generated endosialin-directed E3K CAR-T cells from three immunocompetent mouse strains, BALB/c, FVB/N and C57BL/6. E3K CAR-T cell composition (CD4+/CD8+ ratio), activity in vitro against endosialin+ and endosialin- cells, and expansion and activity in vivo in syngeneic tumor models as well as in tumor-naive healthy and wounded mice and tumor-bearing endosialin knockout mice was assessed. RESULTS: E3K CAR-T cells were active in vitro against both mouse and human endosialin+, but not endosialin-, cells. Adoptively transferred E3K CAR-T cells exhibited no activity in endosialin knockout mice, tumor-naive endosialin wildtype mice or in wound healing models, demonstrating an absence of off-target and on-target/off-tumor activity. By contrast, adoptive transfer of E3K CAR-T cells into BALB/c, FVB/N or C57BL/6 mice bearing syngeneic breast or lung cancer lines depleted target cells in the tumor stroma resulting in increased tumor necrosis, reduced tumor growth and a substantial impairment in metastatic outgrowth. CONCLUSIONS: Together these data highlight endosialin as a viable antigen for CAR-T cell therapy and that targeting stromal cells closely associated with the tumor vasculature avoids CAR-T cells having to navigate the harsh immunosuppressive tumor microenvironment. Further, the ability of E3K CAR-T cells to recognize and target both mouse and human endosialin+ cells makes a humanized and optimized E3K CAR a promising candidate for clinical development applicable to a broad range of solid tumor types.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Ratones , Animales , Pericitos/metabolismo , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Ratones Endogámicos C57BL , Neoplasias/metabolismo , Linfocitos T/metabolismo , Ratones Noqueados , Microambiente Tumoral , Antígenos de Neoplasias/metabolismo , Antígenos CD/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...