Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Hum Genomics ; 18(1): 95, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232803

RESUMEN

BACKGROUND: Chromosome 16p11.2 deletions and duplications were found to be the second most common copy number variation (CNV) reported in cases with clinical presentation suggestive of chromosomal syndromes. Chromosome 16p11.2 deletion syndrome shows remarkable phenotypic heterogeneity with a wide variability of presentation extending from normal development and cognition to severe phenotypes. The clinical spectrum ranges from neurocognitive and global developmental delay (GDD), intellectual disability, and language defects (dysarthria /apraxia) to neuropsychiatric and autism spectrum disorders. Other presentations include dysmorphic features, congenital malformations, insulin resistance, and a tendency for obesity. Our study aims to narrow the gap of knowledge in Saudi Arabia and the Middle Eastern and Northern African (MENA) region about genetic disorders, particularly CNV-associated disorders. Despite their rarity, genetic studies in the MENA region revealed high potential with remarkable genetic and phenotypic novelty. RESULTS: We identified a heterozygous de novo recurrent proximal chromosome 16p11.2 microdeletion by microarray (arr[GRCh38]16p11.2(29555974_30166595)x1) [(arr[GRCh37]16p11.2(29567295_30177916)x1)] and confirmed by whole exome sequencing (arr[GRCh37]16p11.2(29635211_30199850)x1). We report a Saudi girl with severe motor and cognitive disability, myoclonic epilepsy, deafness, and visual impairment carrying the above-described deletion. Our study broadens the known phenotypic spectrum associated with recurrent proximal 16p11.2 microdeletion syndrome to include developmental dysplasia of the hip, optic atrophy, and a flat retina. Notably, the patient exhibited a rare combination of microcephaly, features consistent with the Dandy-Walker spectrum, and a thin corpus callosum (TCC), which are extremely infrequent presentations in patients with the 16p11.2 microdeletion. Additionally, the patient displayed areas of skin and hair hypopigmentation, attributed to a homozygous hypomorphic allele in the TYR gene. CONCLUSION: This report expands on the clinical phenotype associated with proximal 16p11.2 microdeletion syndrome, highlighting the potential of genetic research in Saudi Arabia and the MENA region. It underscores the importance of similar future studies.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 16 , Síndrome de Dandy-Walker , Microcefalia , Fenotipo , Humanos , Cromosomas Humanos Par 16/genética , Microcefalia/genética , Microcefalia/patología , Microcefalia/complicaciones , Femenino , Síndrome de Dandy-Walker/genética , Síndrome de Dandy-Walker/complicaciones , Síndrome de Dandy-Walker/patología , Variaciones en el Número de Copia de ADN/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos de los Cromosomas/genética , Trastornos de los Cromosomas/patología , Niño , Masculino , Arabia Saudita , Preescolar , Trastorno Autístico
2.
Front Genet ; 15: 1429185, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221225

RESUMEN

Background: Chromosome 16p13.11 microdeletion is a very rare copy number variant (CNV), associated with a clinical syndrome characterized by global development delay, neuropsychiatric conditions, facial dysmorphisms, microcephaly, gastroesophageal reflux disease, and congenital heart defects. The 16p13.11 locus is a very unstable genomic region, rich in low-copy number repeats, characterized by many homologous DNA sequences. Usually, the most common CNV of this region include microduplications/duplications, while the microdeletions are rare, and their clinical features are heterogeneous and poorly described so far. Case report: In this paper, we report the genetic and the clinical features of a patient diagnosed with chromosome 16p13.11 microdeletion, and a short review of the literature on this topic. Our patient was characterized by several facial dysmorphic features, autistic symptoms and language development delay. The genetic evaluation revealed and interstitial deletion of the long arm of the chromosome 16, approximately of 1.5 Mb. Conclusion: Interestingly, compared to previous cases, this patient was characterized by autistic symptoms, severe language and motor coordination disorder, without cognitive and cerebral malformations, frequently associated with this microdeletion syndrome.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38821666

RESUMEN

Cytogenetic studies have shown that human chromosomes 1, 9, and 16, with a large heterochromatic region of highly methylated classical satellite DNA, are prone to induction of chromatid breaks and interchanges by mitomycin C (MMC). A couple of studies have indicated that material from chromosome 9, and possibly also from chromosomes 1 and 16, are preferentially micronucleated by MMC. Here, we further examined the chromosome-specific induction of micronuclei (MN; with and without cytochalasin B) and chromosomal aberrations (CAs) by MMC. Cultures of isolated human lymphocytes from two male donors were treated (at 48 h of culture, for 24 h) with MMC (500 ng/ml), and the induced MN were examined by a pancentromeric DNA probe and paint probe for chromosome 9, and by paint probes for chromosomes 1 and 16. MMC increased the total frequency of MN by 6-8-fold but the frequency of chromosome 9 -positive (9+) MN by 29-30-fold and the frequency of chromosome 1 -positive (1+) MN and chromosome 16 -positive (16+) MN by 12-16-fold and 10-17-fold, respectively. After treatment with MMC, 34-47 % of all MN were 9+, 17-20 % 1+, and 3-4 % 16+. The majority (94-96 %) of the 9+ MN contained no centromere and thus harboured acentric fragments. When MMC-induced CAs aberrations were characterized by using the pancentromeric DNA probe and probes for the classical satellite region and long- and short- arm telomeres of chromosome 9, a high proportion of chromosomal breaks (31 %) and interchanges (41 %) concerned chromosome 9. In 83 % of cases, the breakpoint in chromosome 9 was just below the region (9cen-q12) labelled by the classical satellite probe. Our results indicate that MMC specifically induces MN harbouring fragments of chromosome 9, 1, and 16. CAs of chromosome 9 are highly overrepresented in metaphases of MMC-treated lymphocytes. The preferential breakpoint is below the region 9q12.


Asunto(s)
Aberraciones Cromosómicas , Cromosomas Humanos Par 16 , Cromosomas Humanos Par 1 , Cromosomas Humanos Par 9 , Micronúcleos con Defecto Cromosómico , Mitomicina , Humanos , Mitomicina/toxicidad , Mitomicina/farmacología , Masculino , Aberraciones Cromosómicas/inducido químicamente , Aberraciones Cromosómicas/efectos de los fármacos , Micronúcleos con Defecto Cromosómico/inducido químicamente , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Cromosomas Humanos Par 9/genética , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 16/genética , Linfocitos/efectos de los fármacos , Linfocitos/metabolismo , Adulto , Pruebas de Micronúcleos , Células Cultivadas , Citocalasina B/farmacología , Hibridación Fluorescente in Situ
4.
BMC Med Genomics ; 16(1): 315, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-38049856

RESUMEN

BACKGROUND: Distal chromosome 16 duplication syndrome (also known as 16q partial trisomy) is a very rare genetic disorder recently described in few clinical reports. 16q trisomy is generally associated with a multisystemic phenotype including intrauterine growth restriction (IUGR), brain and cardiac defects, intellectual disability (ID) and an increased risk of both prenatal and postnatal lethality. Smaller copy number variants (CNV) within the 16q region create partial trisomies, which occur less frequently than full trisomy 16q. CASE PRESENTATION: We present the clinical case of a 12-years-old male with a 16q22.3q24.1 de novo heterozygous duplication whose phenotype was characterized by ID, facial dysmorphisms, stature and weight overgrowth. To date, only five other cases of this syndrome have been reported in scientific literature, and none of them comprised overgrowth. CONCLUSIONS: Our case report highlights the great heterogeneity in clinical manifestations and provides new evidence for better defining the phenotypic picture for smaller 16q distal CNVs, suggesting unusual features.


Asunto(s)
Discapacidad Intelectual , Trisomía , Embarazo , Femenino , Humanos , Masculino , Niño , Trisomía/genética , Discapacidad Intelectual/genética , Retardo del Crecimiento Fetal , Cromosomas Humanos Par 16/genética , Encéfalo
5.
Mol Genet Genomic Med ; 11(7): e2174, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37013606

RESUMEN

BACKGROUND: The short arm of chromosome 16 consists of several copy number variants (CNVs) that are crucial in neurodevelopmental disorders; however, incomplete penetrance and diverse phenotypes after birth aggravate the difficulty of prenatal genetic counseling. METHODS: We screened 15,051 pregnant women who underwent prenatal chromosomal microarray analysis between July 2012 and December 2017. Patients with positive array results were divided into four subgroups based on the type of mutation identified on screening (16p13.3, 16p13.11, 16p12.2, and 16p11.2), and the maternal characteristics, prenatal examinations, and postnatal outcomes of different cases were reviewed. RESULTS: Chromosome 16 CNVs were identified in 34 fetuses, including four with 16p13.3 CNVs, 22 with 16p13.11 CNVs, two with 16p12.2 microdeletions, and six with 16p11.2 CNVs. Of the 34 fetuses, 17 delivered without early childhood neurodevelopmental disorders, three developed neurodevelopmental disorders during childhood, and 10 were terminated. CONCLUSION: Incomplete penetrance and variable expressivity make prenatal counseling challenging. Most cases with inherited 16p13.11 microduplication were reported to have normal development in early childhood, and we also report a few cases of de novo 16p CNVs without further neurodevelopmental disorders.


Asunto(s)
Trastornos de los Cromosomas , Diagnóstico Prenatal , Embarazo , Preescolar , Humanos , Femenino , Diagnóstico Prenatal/métodos , Variaciones en el Número de Copia de ADN , Cromosomas Humanos Par 16/genética , Trastornos de los Cromosomas/genética , Feto
6.
Int J Hematol ; 118(3): 381-387, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36964839

RESUMEN

Acute pancreatitis is an acute inflammatory process of the pancreas that is becoming an increasingly common clinical issue. The most frequent underlying etiologies include gallstones and chronic alcohol use, which account for more than two-thirds of cases. We recently experienced a rare case of acute myeloid leukemia (AML) presenting with recurrent acute pancreatitis, which we later discovered was caused by diffusely infiltrating extramedullary sarcoma in the pancreas. Comprehensive analysis of previous cases of AML presenting as acute pancreatitis suggested involvement of cytogenetic alterations in chromosome 16 in its pathogenesis. Further improvement in management of acute pancreatitis is needed, and clinicians should note that this occasionally fatal condition can be the initial and only manifestation of AML. In practice, prompt initiation of intensive chemotherapy is critical for treating such cases of AML-induced acute pancreatitis.


Asunto(s)
Leucemia Mieloide Aguda , Pancreatitis , Humanos , Enfermedad Aguda , Cromosomas Humanos Par 16/genética , Pancreatitis/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Reordenamiento Génico
7.
Cancers (Basel) ; 13(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34771519

RESUMEN

Fluorescence in situ hybridization (FISH) is a confirmatory test to establish a diagnosis of inv(16)/t(16;16) AML. However, incidental findings and their clinical diagnostic implication have not been systemically studied. We studied 1629 CBFB FISH cases performed in our institution, 262 (16.1%), 1234 (75.7%), and 133 (8.2%) were reported as positive, normal, and abnormal, respectively. The last included CBFB copy number changes (n = 120) and atypical findings such as 3'CBFB deletion (n = 11), 5'CBFB deletion (n = 1), and 5'CBFB gain (n = 1). Correlating with CBFB-MYH11 RT-PCR results, totally 271 CBFB rearrangement cases were identified, including five with discrepancies between FISH and RT-PCR due to new partner genes (n = 3), insertion (n = 1), or rare CBFB-MYH11 variant (n = 1) and eight with 3'CBFB deletion. All cases with atypical findings and/or discrepancies presented clinical diagnostic challenges. Correlating FISH signal patterns and karyotypes, additional chromosome 16 aberrations (AC16As) show impacts on the re-definition of a complex karyotype and prognostic prediction. The CBFB rearrangement but not all AC16As will be detected by NGS-based methods. Therefore, FISH testing is currently still needed to provide a quick and straightforward confirmatory inv(16)/t(16;16) AML diagnosis and additional information related to clinical management.

8.
Genes (Basel) ; 12(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34680922

RESUMEN

Down syndrome (DS), trisomy of the long arm of human chromosome 21 (Hsa21), is the most common genetic cause of intellectual disability (ID). Currently, there are no effective pharmacotherapies. The success of clinical trials to improve cognition depends in part on the design of preclinical evaluations in mouse models. To broaden understanding of the common limitations of experiments in learning and memory, we report performance in context fear conditioning (CFC) in three mouse models of DS, the Dp(16)1Yey, Dp(17)1Yey and Dp(10)1Yey (abbreviated Dp16, Dp17 and Dp10), separately trisomic for the human Hsa21 orthologs mapping to mouse chromosomes 16, 17 and 10, respectively. We examined female and male mice of the three lines on the standard C57BL/6J background at 3 months of age and Dp17 and Dp10 at 18 months of age. We also examined female and male mice of Dp17 and Dp10 at 3 months of age as F1 hybrids obtained from a cross with the DBA/2J background. Results indicate that genotype, sex, age and genetic background affect CFC performance. These data support the need to use both female and male mice, trisomy of sets of all Hsa21 orthologs, and additional ages and genetic backgrounds to improve the reliability of preclinical evaluations of drugs for ID in DS.


Asunto(s)
Condicionamiento Clásico , Síndrome de Down/fisiopatología , Antecedentes Genéticos , Animales , Síndrome de Down/genética , Miedo , Femenino , Hipocampo/crecimiento & desarrollo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Caracteres Sexuales
9.
Mol Syndromol ; 12(5): 300-304, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34602957

RESUMEN

A 15-month-old boy presented with growth and global developmental delay, feeding difficulties, sleep disturbance and several minor anomalies, including a large anterior fontanel, relative macrocephaly, and a triangular face. Clinical suspicion prompted genetic investigations for Silver-Russell syndrome and related disorders. SNP array analysis led to the diagnosis of an approximately 10-Mb large deletion of the long arm in chromosome 16q22.2q23.3. Interstitial deletions of 16q show a wide variability of related features; however, considering the differences in size and location of the deletions in the known patients, the phenotypic overlap is surprising. Here, we report a novel microdeletion, compare the proband with data from scientific literature and international databases, and discuss possible diagnostic implications.

10.
Diagnostics (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34441391

RESUMEN

This study examined the molecular characterization of a prenatal case with true fetal mosaicism of small supernumerary marker chromosome 16 (sSMC(16)). A 41-year-old female underwent amniocentesis at 19 weeks of gestation due to advanced maternal age. Chromosomal analysis for cultured amniocytes revealed a karyotype of 47,XY,+mar[4]/46,XY[16]. Spectral karyotyping and metaphase fluorescence in situ hybridization (FISH) demonstrated that the sSMC was derived from chromosome 16 (47,XY,+mar.ish der(16)(D16Z1+)[13/20]). Confined placental mosaicism was initially suspected because the prenatal ultrasound revealed a normal structure and the pregnancy was uneventful. However, interphase FISH of cord blood performed at 28 weeks of gestation showed 20% mosaicism of trisomy chromosome 16 (nuc ish(D16Z2×3)[40/200]). Chromosome microarray analysis further demonstrated 55% mosaicism of an 8.02 Mb segmental duplication at the subcentromeric region of 16p12.1p11.1 (arr[GRCh37] 16p12.1p11.1(27021975_35045499)×3[0.55]). The results demonstrated a true fetal mosaicism of sSMC(16) involving chromosome16p12.1p11.1 that is associated with chromosome 16p11.2 duplication syndrome (OMIM #614671). After non-directive genetic counseling, the couple opted for late termination of pregnancy. This case illustrated the use of multiple molecular cytogenetic tools to elucidate the origin and structure of sSMC, which is crucial for prenatal counseling, decision making, and clinical management.

11.
Clin Case Rep ; 9(3): 1629-1633, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33768904

RESUMEN

Two new cases of 16q22.3q23.3 Duplication syndrome demonstrate that phenotype can vary from severely affected to mild psychiatric concerns, even within the same family and identical duplications.

12.
AME Case Rep ; 4: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793859

RESUMEN

Epigenetic mechanisms, genetic factors, and environment influence the diversity of phenotypes developed in various diseases. Duplications in several chromosomes are well characterized in the scientific literature, but partial duplications, in some cases, present with milder forms of a disease and are yet to be understood. Fortunately, the identification of genetic diseases has now become more feasible due to several cytogenetic techniques such as microarray analysis and karyotyping. With these tools, together with other laboratory results and clinical examination, we are able to report the first case in the medical literature of double partial trisomy of chromosome 9q34 and 16p13.

13.
Eur J Med Genet ; 63(10): 104027, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32758661

RESUMEN

The short arm of chromosome 16 (16p) is enriched for segmental duplications, making it susceptible to recurrent, reciprocal rearrangements implicated in the etiology of several phenotypes, including intellectual disability, speech disorders, developmental coordination disorder, autism spectrum disorders, attention deficit hyperactivity disorders, obesity and congenital skeletal disorders. In our clinical study 73 patients were analyzed by chromosomal microarray, and results were confirmed by fluorescence in situ hybridization or polymerase chain reaction. All patients underwent detailed clinical evaluation, with special emphasis on behavioral symptoms. 16p rearrangements were identified in 10 individuals. We found six pathogenic deletions and duplications of the recurrent regions within 16p11.2: one patient had a deletion of the distal 16p11.2 region associated with obesity, while four individuals had duplications, and one patient a deletion of the proximal 16p11.2 region. The other four patients carried 16p variations as second-site genomic alterations, acting as possible modifying genetic factors. We present the phenotypic and genotypic results of our patients and discuss our findings in relation to the available literature.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/genética , Trastorno del Espectro Autista/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Preescolar , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN , Discapacidades del Desarrollo/diagnóstico por imagen , Discapacidades del Desarrollo/fisiopatología , Femenino , Ontología de Genes , Estudios de Asociación Genética , Humanos , Hungría , Hibridación Fluorescente in Situ , Lactante , Discapacidad Intelectual/genética , Imagen por Resonancia Magnética , Masculino , Análisis por Micromatrices , Obesidad/genética , Fenotipo , Duplicaciones Segmentarias en el Genoma , Eliminación de Secuencia , Tomógrafos Computarizados por Rayos X
14.
JIMD Rep ; 54(1): 16-21, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32685345

RESUMEN

BACKGROUND: Phosphomannomutase 2 deficiency (PMM2-CDG) affects glycosylation pathways such as the N-glycosylation pathway, resulting in loss of function of multiple proteins. This disorder causes multisystem involvement with a high variability among patients. PMM2-CDG is an autosomal recessive disorder, which can be caused by inheriting two pathogenic variants, de novo mutations or uniparental disomy. CASE PRESENTATION: Our patient presented with multisystem symptoms at an early age including developmental delay, ataxia, and seizures. No diagnosis was obtained till the age of 31 years, when genetic testing was reinitiated. The patient was diagnosed with a complete maternal mixed hetero/isodisomy of chromosome 16, with a homozygous pathogenic PMM2 variant (p.Phe119Leu) causing PMM2-CDG.A literature review revealed eight cases of uniparental disomy as an underlying cause of CDG, four of which are PMM2-CDG. CONCLUSION: Since the incidence of homozygosity for PMM2 variants is rare, we suggest further investigations for every homozygous PMM2-CDG patient where the segregation does not fit. These investigations include testing for UPD or a deletion in one of the two alleles, as this will have an impact on recurrence risk in genetic counseling.

15.
Lab Med ; 51(6): 642-648, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-32537635

RESUMEN

Chromosome 16p11.2 is one of the susceptible sites for recurrent copy number variations (CNVs) due to flanking near-identical segmental duplications. Five segmental duplications, named breakpoints 1 to 5 (BP1-BP5), have been defined as recombination hotspots within 16p11.2. Common CNVs on 16p11.2 include a proximal ~593 kb between BP4 and BP5, and a distal ~220 kb between BP2 and BP3. We performed a search for patients carrying 16p11.2 CNVs, as detected using chromosome microarray (CMA), in the Molecular Diagnostic Laboratory at the University of Texas Medical Branch (UTMB), in Galveston. From March 2013 through April 2018, a total of 1200 CMA results were generated for germline testing, and 14 patients tested positive for 16p11.2 CNVs, of whom 7 had proximal deletion, 2 had distal deletion, 4 had proximal duplication, and 1 had distal duplication. Herein, we provide detailed phenotype data for these patients. Our study results show that developmental delay, abnormal body weight, behavioral problems, and hypotonia are common phenotypes associated with 16p11.2 CNVs.


Asunto(s)
Deleción Cromosómica , Trastornos de los Cromosomas/diagnóstico , Trastornos de los Cromosomas/genética , Duplicación Cromosómica , Cromosomas Humanos Par 11 , Variaciones en el Número de Copia de ADN , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Registros Médicos , Fenotipo , Adulto Joven
16.
Rev. cuba. hematol. inmunol. hemoter ; 36(2): e1189, abr.-jun. 2020.
Artículo en Español | LILACS, CUMED | ID: biblio-1149902

RESUMEN

Introducción: La leucemia mieloide aguda (LMA) es un grupo heterogéneo de desórdenes clonales con una gran variabilidad en términos de patogénesis, características morfológicas, genéticas e inmunofenotípicas. Las mutaciones en el gen NPM1 representan una de las más comunes en las LMA y está asociada con una respuesta clínica favorable. Por citogenética, la inversión del cromosoma 16 define el subgrupo de las LMA de factor de unión al grupo con un pronóstico favorable. Objetivo: Describir un caso con diagnóstico de LMA en los cuales el estudio molecular del gen NPM1 y de la inv(16) fueron positivos. Caso clínico: A nivel molecular, la hibridación in situ fluorescente fue positivo a la inv(16) y por biología molecular fue positivo tanto a la inv(16) como al gen NPM1-A, elementos de baja frecuencia de aparición. Se le administró a la paciente un esquema de poliquimioterapia no intensiva para mejorarla clínicamente. Después de una mejoría clínica inicial, la paciente comenzó con complicaciones y falleció. Conclusiones: La coexistencia de estas dos mutaciones es muy poco frecuente en pacientes con LMA, y a pesar de ser de buen pronóstico la paciente falleció a los pocos días de tratamiento(AU)


Introduction: Acute myeloid leukemia (AML) is a heterogeneous group of clonal disorders with great variability in terms of pathogenesis, morphological, genetic and immunophenotypic characteristics. NPM1 mutations represent one of the most common in AML and are associated with favorable clinical response. By cytogenetics, chromosome 16 inversion defines, with a favorable prognosis, the core‐binding factor for the subgroup of AMLs Objective: To describe a AML case in which the molecular study of the NPM1 gene and the chromosome 16 inversion were positive. Clinical case: At the molecular level, fluorescent in situ hybridization was positive for chromosome 16 inversion and, by molecular biology, it was positive for both chromosome 16 inversion and for the NPM1-A gene, elements with a low frequency of appearance. The patient was administered a non-intensive combination as part of a chemotherapy regimen to improve her clinical status. After initial clinical improvement, the patient began with complications and died. Conclusions: The coexistence of these two mutations is very rare in patients with AML. Despite presenting a good prognosis, the patient died after a few days of treatment(AU)


Asunto(s)
Humanos , Femenino , Cromosomas Humanos Par 16/genética , Leucemia Mieloide Aguda/diagnóstico , Mutación/genética , Hibridación Fluorescente in Situ/métodos , Quimioterapia Combinada , Quinasa de Linfoma Anaplásico/genética
17.
Genes Cancer ; 11(3-4): 137-153, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33488951

RESUMEN

BACKGROUND: Wilms tumor is the most common pediatric renal tumor and the fourth most common malignancy in children. Chromosome 16q deletion(del) or loss of heterozygosity (LOH) has been correlated with recurrence and overall poor prognosis, such that patients with 16qLOH and 1p allelic loss are treated with more aggressive chemotherapeutic regimens. METHODS: In the present study, we have compared the variant profiles of Wilms tumors with and without 16q del/LOH using both data available from the TARGET database (42 samples) and tumors procured from our legacy collection (8 samples). Exome-Seq data was analyzed for tumor specific variants mapping to 16q. Whole exome analysis was also performed. An unbiased approach for somatic variant analysis was used to detect tumor-specific, somatic variants. RESULTS: Of the 72 genes mapping to 16q, 42% were cilia-related genes and 28% of these were found to carry somatic variants specific to those tumors with 16qdel/LOH. Whole exome analyses further revealed that 30% of cilia-related genes across the genome carried alterations in tumors both with and without 16qdel/LOH. Additional pathway analyses revealed that many cilia-related pathway members also carried deleterious variant in these tumors including Sonic Hedgehog (SHh), Wnt, and Notch signaling pathways. CONCLUSIONS: The data suggest that cilia-related genes and pathways are compromised in Wilms tumors. The genes on chromosome 16q that carry deleterious variants in cilia-related genes may account for the more aggressive nature of tumors with 16q del/LOH.

18.
Mol Cytogenet ; 12: 36, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31391865

RESUMEN

BACKGROUND: Nearly 9.89% of chromosome 16 consists of segmental duplications, which makes it prone to non-homologous recombination. The present study aimed to investigate the incidence and perinatal characteristics of submicroscopic chromosome 16 aberrations in prenatal diagnosis. RESULTS: A total of 2,414 consecutive fetuses that underwent prenatal chromosomal microarray analysis (CMA) between January 2016 and December 2018 were reviewed. Submicroscopic anomalies of chromosome 16 accounted for 11.1% (15/134) of all submicroscopic anomalies detected in fetuses with normal karyotype, which was larger than the percentage of anomalies in any other chromosome. The 15 submicroscopic anomalies of chromosome 16 were identified in 14 cases; 12 of them had ultrasound abnormalities. They were classified as pathogenic (N = 7), and variants of uncertain significance (N = 8). Seven fetuses with variants of uncertain significance were ended in live-born, and the remaining were end in pregnancy termination. CONCLUSION: Submicroscopic aberrations of chromosome 16 are frequent findings in prenatal diagnosis, which emphasize the challenge of genetic counseling and the value of CMA. Prenatal diagnosis should lead to long-term monitoring of children with such chromosomal abnormalities for better understanding of the phenotype of chromosome 16 microdeletion and microduplication syndromes.

19.
Int J Mol Sci ; 20(5)2019 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836598

RESUMEN

Chromosome 16 is one of the most gene-rich chromosomes of our genome, and 10% of its sequence consists of segmental duplications, which give instability and predisposition to rearrangement by the recurrent mechanism of non-allelic homologous recombination. Microarray technologies have allowed for the analysis of copy number variations (CNVs) that can contribute to the risk of developing complex diseases. By array comparative genomic hybridization (CGH) screening of 1476 patients, we detected 27 cases with CNVs on chromosome 16. We identified four smallest regions of overlapping (SROs): one at 16p13.11 was found in seven patients; one at 16p12.2 was found in four patients; two close SROs at 16p11.2 were found in twelve patients; finally, six patients were found with atypical rearrangements. Although phenotypic variability was observed, we identified a male bias for Childhood Apraxia of Speech associated to 16p11.2 microdeletions. We also reported an elevated frequency of second-site genomic alterations, supporting the model of the second hit to explain the clinical variability associated with CNV syndromes. Our goal was to contribute to the building of a chromosome 16 disease-map based on disease susceptibility regions. The role of the CNVs of chromosome 16 was increasingly made clear in the determination of developmental delay. We also found that in some cases a second-site CNV could explain the phenotypic heterogeneity by a simple additive effect or a pejorative synergistic effect.


Asunto(s)
Anomalías Múltiples/genética , Cromosomas Humanos Par 16/genética , Hibridación Genómica Comparativa , Discapacidades del Desarrollo/genética , Anomalías Múltiples/clasificación , Anomalías Múltiples/fisiopatología , Adolescente , Adulto , Niño , Preescolar , Aberraciones Cromosómicas , Deleción Cromosómica , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/clasificación , Discapacidades del Desarrollo/fisiopatología , Femenino , Recombinación Homóloga/genética , Humanos , Lactante , Recién Nacido , Cariotipo , Masculino , Fenotipo , Duplicaciones Segmentarias en el Genoma/genética , Adulto Joven
20.
J Med Genet ; 56(6): 413-418, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30242100

RESUMEN

BACKGROUND: Recently, a patient with maternal uniparental disomy of chromosome 16 (UPD(16)mat) presenting with Silver-Russell syndrome (SRS) phenotype was reported. SRS is characterised by growth failure and dysmorphic features. OBJECTIVE: To clarify the prevalence of UPD(16)mat in aetiology-unknown patients with SRS phenotype and phenotypic differences between UPD(16)mat and SRS. METHODS: We studied 94 patients with SRS phenotype of unknown aetiology. Sixty-three satisfied the Netchine-Harbison clinical scoring system (NH-CSS) criteria, and 25 out of 63 patients showed both protruding forehead and relative macrocephaly (clinical SRS). The remaining 31 patients met only three NH-CSS criteria, but were clinically suspected as having SRS. To detect UPD(16)mat, we performed methylation analysis for the ZNF597:TSS-differentially methylated region (DMR) on chromosome 16 and subsequently performed microsatellite, SNP array and exome analyses in the patients with hypomethylated ZNF597:TSS-DMR. RESULTS: We identified two patients (2.1%) with a mixture of maternal isodisomy and heterodisomy of chromosome 16 in 94 aetiology-unknown patients with SRS phenotype. Both patients exhibited preterm birth and prenatal and postnatal growth failure. The male patient had ventricular septal defect and hypospadias. Whole-exome sequencing detected no gene mutations related to their phenotypes. CONCLUSION: We suggest considering genetic testing for UPD(16)mat in SRS phenotypic patients without known aetiology.


Asunto(s)
Cromosomas Humanos Par 16 , Metilación de ADN , Fenotipo , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/etiología , Disomía Uniparental , Adolescente , Adulto , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Lactante , Masculino , Factores de Transcripción/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...