Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
mBio ; 15(7): e0065824, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38847531

RESUMEN

When respiratory viruses co-circulate in a population, individuals may be infected with multiple pathogens and experience possible virus-virus interactions, where concurrent or recent prior infection with one virus affects the infection process of another virus. While experimental studies have provided convincing evidence for within-host mechanisms of virus-virus interactions, evaluating evidence for viral interference or potentiation using population-level data has proven more difficult. Recent studies have quantified the prevalence of co-detections using populations drawn from clinical settings. Here, we focus on selection bias issues associated with this study design. We provide a quantitative account of the conditions under which selection bias arises in these studies, review previous attempts to address this bias, and propose unbiased study designs with sample size estimates needed to ascertain viral interference. We show that selection bias is expected in cross-sectional co-detection prevalence studies conducted in clinical settings, except under a strict set of assumptions regarding the relative probabilities of being included in a study limited to individuals with clinical disease under different viral states. Population-wide studies that collect samples from participants irrespective of their clinical status would meanwhile require large sample sizes to be sufficiently powered to detect viral interference, suggesting that a study's timing, inclusion criteria, and the expected magnitude of interference are instrumental in determining feasibility.


Asunto(s)
Coinfección , Humanos , Coinfección/virología , Coinfección/epidemiología , Virosis/epidemiología , Virosis/virología , Estudios Transversales , Interferencia Viral , Sesgo de Selección , Prevalencia , Virus/genética , Virus/clasificación , Virus/aislamiento & purificación , Infecciones del Sistema Respiratorio/virología , Infecciones del Sistema Respiratorio/epidemiología
2.
Respir Res ; 25(1): 234, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840154

RESUMEN

BACKGROUND: The concurrent circulation of SARS-CoV-2 with other respiratory viruses is unstoppable and represents a new diagnostic reality for clinicians and clinical microbiology laboratories. Multiplexed molecular testing on automated platforms that focus on the simultaneous detection of multiple respiratory viruses in a single tube is a useful approach for current and future diagnosis of respiratory infections in the clinical setting. METHODS: Two time periods were included in the study: from February to April 2022, an early 2022 period, during the gradual lifting of COVID-19 prevention measures in the country, and from October 2022 to April 2023, the 2022/23 respiratory infections season. We analysed a total of 1,918 samples in the first period and 18,131 respiratory samples in the second period using a multiplex molecular assay for the simultaneous detection of Influenza A (Flu-A), Influenza B (Flu-B), Human Respiratory Syncytial Virus (HRSV) and SARS-CoV-2. RESULTS: The results from early 2022 showed a strong dominance of SARS-CoV-2 infections with 1,267/1,918 (66.1%) cases. Flu-A was detected in 30/1,918 (1.6%) samples, HRSV in 14/1,918 (0.7%) samples, and Flu-B in 2/1,918 (0.1%) samples. Flu-A/SARS-CoV-2 co-detections were observed in 11/1,267 (0.9%) samples, and HRSV/SARS-CoV-2 co-detection in 5/1,267 (0.4%) samples. During the 2022/23 winter respiratory season, SARS-CoV-2 was detected in 1,738/18,131 (9.6%), Flu-A in 628/18,131 (3.5%), Flu-B in 106/18,131 (0.6%), and HRSV in 505/18,131 (2.8%) samples. Interestingly, co-detections were present to a similar extent as in early 2022. CONCLUSION: The results show that the multiplex molecular approach is a valuable tool for the simultaneous laboratory diagnosis of SARS-CoV-2, Flu-A/B, and HRSV in hospitalized and outpatients. Infections with Flu-A/B, and HRSV occurred shortly after the COVID-19 control measures were lifted, so a strong reoccurrence of various respiratory infections and co-detections in the post COVID-19 period was to be expected.


Asunto(s)
COVID-19 , Virus de la Influenza A , Virus de la Influenza B , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/diagnóstico , Virus de la Influenza B/aislamiento & purificación , Virus de la Influenza B/genética , Gripe Humana/epidemiología , Gripe Humana/diagnóstico , Gripe Humana/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Virus Sincitial Respiratorio Humano/genética , Virus de la Influenza A/aislamiento & purificación , Virus de la Influenza A/genética , Masculino , Femenino , Coinfección/epidemiología , Coinfección/diagnóstico , Persona de Mediana Edad , Adulto , Técnicas de Diagnóstico Molecular/métodos , Estaciones del Año , Anciano
3.
Microorganisms ; 12(4)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38674658

RESUMEN

Shortly after the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), cases of viral, bacterial, and fungal coinfections in hospitalized patients became evident. This retrospective study investigates the prevalence of multiple pathogen co-detections in 1472 lower respiratory tract (LRT) samples from 229 SARS-CoV-2-positive patients treated in the largest intensive care unit (ICU) in Slovenia. In addition to SARS-CoV-2, (rt)RT-PCR tests were used to detect cytomegalovirus (CMV), Epstein-Barr virus (EBV), herpes simplex virus 1 (HSV-1), herpes simplex virus 2 (HSV-2), varicella zoster virus (VZV), and atypical bacteria: Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella pneumophila/spp. At least one co-detection was observed in 89.1% of patients. EBV, HSV-1, and CMV were the most common, with 74.7%, 58.1%, and 38.0% of positive patients, respectively. The median detection time of EBV, HSV-1, and CMV after initial SARS-CoV-2 confirmation was 11 to 20 days. Bronchoalveolar lavage (BAL) and tracheal aspirate (TA) samples showed equivalent performance for the detection of EBV, CMV, and HSV-1 in patients with both available samples. Our results indicate that SARS-CoV-2 infection could be a risk factor for latent herpesvirus reactivation, especially HSV-1, EBV, and CMV. However, additional studies are needed to elucidate the clinical importance of these findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...