Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Water Sci Technol ; 90(3): 1082-1098, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141053

RESUMEN

Anaerobic co-digestion of source-separated blackwater (BW) and food and kitchen waste (FW) offers decentralized circular economy solutions by enabling local production of biogas and nutrient-rich byproducts. In this study, a 2 m3 pilot-scale continuously stirred tank reactor (CSTR) operated under mesophilic conditions was utilized for co-digestion of BW and FW. The process obtained a CH4 yield of 0.7 ± 0.2 m3/kg influent-volatile solid (VS), reaching a maximum yield of 1.1 ± 0.1 m3/kg influent-VS, with an average organic loading rate of 0.6 ± 0.1 kg-VS/m3/d and HRT of 25 days. The CH4 production rate averaged 0.4 ± 0.1 m3/m3/d, peaking at 0.6 ± 0.1 m3/m3/d. Treatment of digestate through flocculation followed by sedimentation recovered over 90% of ammonium nitrogen and potassium, and 80-85% of total phosphorus in the liquid fraction. This nutrient-rich liquid was used to cultivate Chlorella vulgaris, achieving a biomass concentration of 1.2 ± 0.1 g/L and 85 ± 3% and 78 ± 5% ammonium nitrogen and phosphorus removal efficiency, respectively. These findings not only highlight the feasibility of anaerobic co-digestion of source-separated BW and FW in local biogas production but also demonstrate the potential of microalgae cultivation as a sustainable approach to converting digestate into nutrient-rich algae biomass.


Asunto(s)
Biocombustibles , Reactores Biológicos , Anaerobiosis , Nutrientes/metabolismo , Eliminación de Residuos Líquidos/métodos , Alimentos , Aguas Residuales/química , Fósforo/metabolismo , Alimento Perdido y Desperdiciado
2.
Water Sci Technol ; 89(12): 3163-3177, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39150418

RESUMEN

Anaerobic co-digestion was conducted on the solid residues after three-phase separation of kitchen waste (KWS) and waste-activated sludge (WAS), the synergistic effects and process performance were studied during co-digestion at different ratios of KWS to WAS. KWS and WAS mix ratios of 0:1, 1:4, 1:3, 1:2, 1:1, 2:1, 3:1, 4:1 and 1:0 (based on TS). The results showed that a ratio of KWS to WAS of 1:1 got a very high methane recovery with a methane yield of 310.45 ± 30.05 mL/g VSadded. The highest concentration of free ammonia among all reaction systems was only 70.23 ± 5.53 mg/L, which was not enough to produce ammonia inhibition in the anaerobic co-digestion system. However, when the KWS content exceeded 50%, methane inhibition and prolongation of the lag phase were observed due to the accumulation of volatile fatty acids (VFAs), and during the lag phase. Microbial community analysis showed that various bacterial groups involved in acid production and hydrolysis were mainly dominated by phylum Firmicutes, Chloroflexi, Proteobacteria and Bacteroidetes. Hydrogenotrophic methanogen was found to dominate all archaeal communities in the digesters. Co-digestion of KWS with WAS significantly increased the relative abundance of Methanobacterium compared with anaerobic digestion of WAS alone.


Asunto(s)
Reactores Biológicos , Metano , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Metano/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Amoníaco/metabolismo , Eliminación de Residuos/métodos , Residuos Sólidos , Eliminación de Residuos Líquidos/métodos , Residuos de Alimentos
3.
Heliyon ; 10(15): e34817, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170138

RESUMEN

This study investigates the co-digestion of hydrothermally pretreated empty fruit bunches (EFB) at 190 °C for 5 min (HTP190-EFB) with decanter cake (DC) to improve biogas production in high solid anaerobic digestion (HSAD). The HTP190-EFB exhibited a 67.98 % reduction in total solids, along with the production of 0.89 g/L of sugar, 2.39 g/L of VFA, and 0.56 g/L of furfural in the liquid fraction. Co-digestion of HTP190-EFB with DC at mixing ratios of 5, 10, and 15 %w/v demonstrated improved methane yields and process stability compared to mono-digestion of HTP190-EFB. The highest methane yield of 372.69 mL CH4/g-VS was achieved in the co-digestion with 5 %w/v DC, representing a 15 % increase compared to digestion of HTP190-EFB (324.30 mL CH4/g-VS) alone. Synergistic effects were quantified, with the highest synergistic methane yield of 77.65 mL CH4/g-VS observed in the co-digestion with 5 %w/v DC. Microbial community analysis revealed that co-digestion of hydrothermally pretreated EFB with decanter cake promoted the growth of Clostridium sp., Lactobacillus sp., Fibrobacter sp., Methanoculleus sp., and Methanosarcina sp., contributing to enhanced biogas production compared to mono-digestion of pretreated EFB. Energy balance analysis revealed that co-digestion of HTP190-EFB with DC resulted in a total net energy of 599.95 kW, 52 % higher than mono-digestion of HTP190-EFB (394.62 kW). Economic analysis showed a shorter return on investment for the co-digestion system (0.86 years) compared to the mono-digestion of HTP190-EFB (1.02 years) and raw EFB (2.69 years). The co-digestion of HTP190-EFB with 5 %w/v DC offers a promising approach to optimize methane yield, process stability, and economic feasibility, supporting the palm oil industry for producing renewable energy and sustainable waste management.

4.
Bioresour Technol ; 411: 131357, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39197661

RESUMEN

Pretreatments to improve the efficiency of anaerobic digestion (AD) have gained more attention. The efficiency and mechanism of neutral protease (NP) integrated with other methods remain unclear. This study investigated the efficacy of thermal, alkaline and ultrasonic technologies integrated with NP as the pre-treatments for AD of food waste and dewatered sludge. Results showed the thermal method integrated with NP (TH-NP) was the most effective, achieving a 104.2% improvement in methane production. In this case, TH-NP increased soluble chemical oxygen demand and protein concentrations by 8.6% and 39.8%, respectively. Microbial community analysis indicated that TH-NP promoted the symbiosis between Woesearchaeales and hydrogenotrophic methanogenesis. Furthermore, the PICRUSt2 analysis revealed that TH-NP increased the activities of most enzymes in the acetate and propionate metabolic pathways. In summary, TH-NP is more effective in increasing the AD efficiency compared to other combined pretreatments. This study provides theoretical support for protease-induced pretreatment technology.

5.
Appl Environ Microbiol ; : e0029824, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39189736

RESUMEN

We report the relationship between enrichment of adapted populations and enhancement of community functional resilience in methanogenic bioreactors. Although previous studies have shown the positive effects of acclimation, this work directly investigated the relationships between microbiome dynamics and performance of anaerobic co-digesting reactors in response to different levels of an environmental perturbation (loading of grease interceptor waste [GIW]). Using the methanogenic microbiome from a full-scale digester, we developed eight sets of microbial communities in triplicate using different feed sources. These substrate-specific microbiomes were then exposed to three independent disturbance events of low-, mid- and high-GIW loading rates. This approach allowed us to directly attribute differences in community responses to differences in community composition. Despite identical inocula, environment (digester operation, substrate loading rate, and feeding patterns) and general whole-community function (methane production and effluent quality) during the cultivation period, different substrates led to different microbial community assemblies. Lipid pre-acclimation led to enrichment of a pool of specialized populations, along with thriving of sub-dominant communities. The enrichment of these populations improved functional resilience and process performance when exposed to a low level of lipid-rich perturbation compared with less-acclimated communities. At higher levels of perturbation, the communities were not able to recover methanogenesis, indicating a loading limit to the resilience response. This study extends our current understanding of environmental perturbations, feed-specific adaptation, and functional resilience in methanogenic bioreactors.IMPORTANCEThis study demonstrates, for the first time for GIW co-digestion, how applying similar perturbations to different microbial communities was used to directly identify the causal relationships between microbial community, function, and environment in triplicate anaerobic microbiomes. We evaluated the impact of feed-specific adaptation on methanogenic microbiomes and demonstrated how microbiomes can be influenced to improve their functional (methanogenic) resilience to GIW inhibition. These findings demonstrate how an ecological framework can help improve a biological engineering application, and more specifically, increase the potential of anaerobic co-digestion for converting wastes to energy.

6.
J Environ Manage ; 366: 121700, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996599

RESUMEN

Co-digestion has been considered a promising method to improve methane yield. The effect of the proportion of dominant substrate on the performance and microbial community of anaerobic digestion of Pennisetum hybrid (PH) and livestock waste (LW) was investigated. An obvious synergistic effect was obtained with an increase of 15.20%-17.45% in specific methane yield compared to the predicted value. Meanwhile, the dominant substrate influenced the relational model between methane yield enhancement rate and mixture ratio. For the LW-dominant systems, a parabolic model between enhancement rate and mixture ratio was observed with a highest value of 392.16 mL/g VS achieved at a PH:LW ratio of 2:8. While a linear pattern appeared for PH-dominant systems with the highest methane yield of 307.59 mL/g VS. Co-digestion selectively enriched the relative abundance of Clostridium_sensu_stricto_1, Terrisporobacter, Syntrophomonas, Methanosarcina and Methanobacterium, which boosted the performance of hydrolysis, acidogenesis, acetogenesis and methanogenesis processes.


Asunto(s)
Ganado , Metano , Pennisetum , Pennisetum/metabolismo , Animales , Metano/metabolismo , Anaerobiosis
7.
Water Environ Res ; 96(7): e11082, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39039961

RESUMEN

Anaerobic co-digestion using an anaerobic dynamic membrane bioreactor (AnDMBR) can separate the sludge retention time and hydraulic retention time, retaining the biomass for efficient degradation and the use of less expensive large pore-size membrane materials and more sustainable dynamic membranes (DMs). Therefore, anaerobic co-digestion of toilet blackwater (BW) and kitchen waste (KW) using an AnDMBR was hypothesized to increase the potential for co-digestion. Here, the efficiency and stability of AnDMBR in anaerobic co-digestion of toilet BW and KW were investigated. DM morphology and structural characteristics, filtration properties, and composition, as well as membrane contamination and membrane regeneration mechanisms, were investigated. Average daily biogas yields of the reactor in two membrane cycles before and after cleaning were 788.67 and 746.09 ml/g volatile solids, with average methane content of 66.64% and 67.27% and average COD removal efficiencies of 82.03% and 80.96%, respectively. The results showed that the bioreactor obtained good performance and stability. During the stabilization phase of the DM operation, the flux was maintained between 43.65 and 65.15 L/m2/h. DM was mainly composed of organic and inorganic elements. Off-line cleaning facilitated DM regulation and regeneration, restoring new Anaerobic morphology and structure. PRACTITIONER POINTS: High efficiency co-digestion of BW and KW was realized in the DMBR system. Average daily biogas yields before and after membrane cleaning were 788.67 and 746.09 ml/g volatile solids. Off-line cleaning facilitated DM regulation and regeneration as well as system stability. The flux was maintained between 43.65 and 65.15 L/m2/h during operation.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Eliminación de Residuos Líquidos , Anaerobiosis , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
8.
Bioresour Technol ; 406: 131023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914235

RESUMEN

Gradient anaerobic digestion reactor (GADR) can improve substrate utilization efficiency by solving the problem of the "short circuit" of materials. However, the substrate's composition significantly affects the reactor's performance. This study investigated the impact of food waste (FW) levels on corn straw's dry anaerobic digestion (AD) in a novel GADR. The results show that biomethane production can be improved by coupling urban and agricultural solid waste recycling. The mechanism is to increase the hydrolysis and acid production efficiency, and the abundance of enzymes related to methanogenesis. The maximum methane yield (494.2 mL CH4/g VS) and the highest anaerobic biodegradability (85.7 %) were obtained when the FW was added at 60 %. The co-digestion of FW and straw can improve the hydrolysis and acid production efficiency and methane yield, which improves the buffering capacity and stability of the system compared with the single digestion of FW.


Asunto(s)
Biocombustibles , Reactores Biológicos , Metano , Zea mays , Hidrólisis , Metano/metabolismo , Anaerobiosis , Zea mays/química , Zea mays/metabolismo , Alimentos , Residuos , Biodegradación Ambiental , Eliminación de Residuos/métodos , Alimento Perdido y Desperdiciado
9.
Chemosphere ; 362: 142634, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885770

RESUMEN

Anaerobic co-digestion (AcoD) of food waste (FW) and landfill leachate has shown promising results in enhancing the methane yield. However, leachate includes toxic and refractory compounds that may impact the decomposition process. In this research, co-digested leachate was pretreated using ultrasonication and alkalinization to manipulate its characteristics toward improved synergism with FW. Experimental optimization was conducted through biochemical methane potential (BMP) assays to identify the optimum operating conditions of the pretreatment methods. The study evaluated the synergistic effects of co-digestion with raw and pretreated leachate on enhancing the performance in terms of feedstock solubilization and methane production. The BMP test demonstrated that alkalinization and ultrasonication improved the total methane generation by 35% and 27%, respectively, yielding around 397 and 375 mL CH4 per g of volatile solids. Moreover, ultrasonication and alkalinization enhanced the synergistic effects by 28% and 36%, respectively, compared to co-digestion with untreated leachate. Optimization by response surface methodology revealed that maximum performance could be achieved with leachate sonication at 212 W for 37.5 min or augmenting 788 g NaOH per kg of volatile solids. Kinetic and statistical models were derived to simulate and assess the impacts of the pretreatment parameters on the AcoD process. The results indicated that the ultrasonication energy had a higher influence on total solubility and methane production than alkaline dosage. Additionally, energy efficiency analyses were performed to examine the overall viability of the examined management approach and found that alkalinization increased the net energy efficiency by 23%, whereas ultrasonication was inefficient within the examined laboratory conditions despite the improved performance. The findings support an integrated organic waste management system where separated FW is co-treated with landfill leachate.


Asunto(s)
Metano , Eliminación de Residuos , Contaminantes Químicos del Agua , Anaerobiosis , Alimento Perdido y Desperdiciado , Cinética , Eliminación de Residuos/métodos , Sonicación/métodos , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Pollut Res Int ; 31(29): 41745-41774, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38853230

RESUMEN

Antibiotic resistance genes (ARGs) have emerged as a significant global health threat, contributing to fatalities worldwide. Wastewater treatment plants (WWTPs) and livestock farms serve as primary reservoirs for these genes due to the limited efficacy of existing treatment methods and microbial adaptation to environmental stressors. Anaerobic digestion (AD) stands as a prevalent biological treatment for managing sewage sludge and manure in these settings. Given the agricultural utility of AD digestate as biofertilizers, understanding ARGs' fate within AD processes is essential to devise effective mitigation strategies. However, understanding the impact of various factors on ARGs occurrence, dissemination, and fate remains limited. This review article explores various AD treatment parameters and correlates to various resistance mechanisms and hotspots of ARGs in the environment. It further evaluates the dissemination and occurrence of ARGs in AD feedstocks and provides a comprehensive understanding of the fate of ARGs in AD systems. This review explores the influence of key AD parameters such as feedstock properties, pretreatments, additives, and operational strategies on ARGs. Results show that properties such as high solid content and optimum co-digestion ratios can enhance ARG removal, while the presence of heavy metals, microplastics, and antibiotics could elevate ARG abundance. Also, operational enhancements, such as employing two-stage digestion, have shown promise in improving ARG removal. However, certain pretreatment methods, like thermal hydrolysis, may exhibit a rebounding effect on ARG levels. Overall, this review systematically addresses current challenges and offers future perspectives associated with the fate of ARGs in AD systems.


Asunto(s)
Farmacorresistencia Microbiana , Farmacorresistencia Microbiana/genética , Anaerobiosis , Aguas del Alcantarillado , Aguas Residuales , Antibacterianos/farmacología , Eliminación de Residuos Líquidos/métodos
11.
J Environ Manage ; 363: 121444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38852403

RESUMEN

Waste activated sludge (WAS) and meat processing waste (MPW) were acted as co-substrates in anaerobic co-digestion (AcD), and biochemical methane potential (BMP) test was carried out to investigate the methane production performances. Microbial community structure and metabolic pathways analyses were conducted by 16S rRNA high-throughput sequencing and functional prediction analysis. BMP test results indicated that AcD of 70% WAS+30% MPW and 50% WAS+50% MPW (VS/VS) could significantly improve methane yield to 371.05 mL/g VS and 599.61 mL/g VS, respectively, compared with WAS acting as sole substrate (191.87 mL/g VS). The results of microbial community analysis showed that Syntrophomonas and Petrimonas became the dominant bacteria genera, and Methanomassiliicoccus and Methanobacterium became the dominant archaea genera after MPW addition. 16S functional prediction analysis results indicated that genes expression of key enzymes involved in syntrophic acetate oxidation (SAO), hydrogenotrophic and methylotrophic methanogenesis were up-regulated, and acetoclastic methanogenesis was inhibited after MPW addition. Based on these analyses, it could be inferred that SAO combined with hydrogenotrophic and methylotrophic methanogenesis was the dominant pathway for organics degradation and methane production during AcD. These findings provided systematic insights into the microbial community changes and metabolic pathways during AcD of WAS and MPW.


Asunto(s)
Metano , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Metano/metabolismo , Redes y Vías Metabólicas , ARN Ribosómico 16S , Bacterias/metabolismo , Bacterias/genética , Carne , Archaea/metabolismo , Archaea/genética
12.
Bioresour Technol ; 406: 130964, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38876279

RESUMEN

Biomethane recovery from paper waste (PW) was achieved by mesophilic co-digestion with food waste. The feeding material containing 0%, 20%, 40% and 50% of PW in total solids (TS) were investigated in the long-term continuous operation. The results showed that the biogas production, pH, alkalinity and biodegradation of volatile solids (79.8 ± 3.6%) were stable for PW contents no more than 50%. The PW = 50% condition was considered the critical limit for the reasons of pump clogging, sufficient alkalinity (2.0 ± 0.3 g-CaCO3/L) and depletion of ammonia. Prokaryotic diversity indices decreased with the increased PW contents. Great shifts were observed in the prokaryotic communities before and after the PW contents reaches 50% as TS (18.4% as total weights). Biomethane recovery yields were deceasing from 445 to 350 NL-CH4/kg-fed-volatile-solids. The PW contents as 40% as TS (13.1% as total weights) obtained the optimal performance among all the feeding conditions.


Asunto(s)
Alimentos , Metano , Papel , Residuos Sólidos , Metano/metabolismo , Anaerobiosis , Eliminación de Residuos/métodos , Biocombustibles , Concentración de Iones de Hidrógeno , Reactores Biológicos , Biodegradación Ambiental , Residuos , Alimento Perdido y Desperdiciado
13.
Bioresour Technol ; 402: 130775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701984

RESUMEN

Acidification recovery in anaerobic digestion of food waste is challenging. This study explored its in-situ recovery using a co-substrate of food waste and waste activated sludge. Fe3O4 and bentonite were used as conductor and carrier, respectively, to enhance AD performance under severe acidification. The application of Fe3O4-bentonite resulted in a 152% increase in cumulative methane in the Fe3O4-bentonite 10 digester, demonstrating its effectiveness in restoring the acidified AD system. In acidified systems, bentonite enhanced the diversity and richness of microbial communities due to its buffering capacity. The excessive non-conductive polysaccharides excreted by bacteria in extracellular polymeric substances reduced the possibility of electron transfer by Fe3O4. However, in the synergistic application of Fe3O4 and bentonite, this resistance was alleviated, increasing the possibility of direct interspecies electron transfer, and accelerating the consumption of volatile fatty acids. This approach of integrating carrier and conductive materials is significant for in-situ restoration of acidified systems.


Asunto(s)
Bentonita , Metano , Aguas del Alcantarillado , Bentonita/química , Anaerobiosis , Metano/metabolismo , Concentración de Iones de Hidrógeno , Alimentos , Ácidos Grasos Volátiles , Reactores Biológicos , Ácidos/química , Residuos , Compuestos Férricos/química , Alimento Perdido y Desperdiciado
14.
Environ Res ; 255: 119194, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38777294

RESUMEN

Anaerobic co-digestion (AcoD) with kitchen waste (KW) is an alternative utilization strategy for algal bloom waste (AW). However, the kinetic characteristic and metabolic pathway during this process need to be explored further. This study conducted a comprehensive kinetic and metagenomic analysis for AcoD of AW and KW. A maximum co-digestion performance index (CPI) of 1.13 was achieved under the 12% AW addition. Co-digestion improved the total volatile fatty acids generation and the organic matter transformation efficiency. Kinetic analysis showed that the Superimposed model fit optimally (R2Adj = 0.9988-0.9995). The improvement of the kinetic process by co-digestion was mainly reflected in the increase of the methane production from slowly biodegradable components. Co-digestion enriched the cellulolytic bacterium Clostridium and the hydrogenotrophic methanogenic archaea Methanobacterium. Furthermore, for metagenome analysis, the abundance of key genes concerned in cellulose and lipid hydrolysis, pyruvate and methane metabolism were both increased in co-digestion process. This study provided a feasible process for the utilization of AW produced seasonally and a deeper understanding of the AcoD synergistic mechanism from kinetic and metagenomic perspectives.


Asunto(s)
Metagenómica , Cinética , Eutrofización , Reactores Biológicos/microbiología , Anaerobiosis , Metano/metabolismo , Residuos de Alimentos
15.
Toxics ; 12(5)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38787139

RESUMEN

This study evaluated the environmental impact and overall benefits of incorporating humus composites in the anaerobic co-digestion of kitchen waste and residual sludge. The life cycle assessment method was used to quantitatively analyze the environmental impact of the entire anaerobic co-digestion treatment process of waste, including garbage collection, transportation, and final product utilization. Moreover, the comprehensive assessment of the environmental impact, energy-saving and emission-reduction abilities, and economic cost of using humus composites in the anaerobic co-digestion treatment process was conducted using a benefit analysis method. The results showed that the anaerobic co-digestion of kitchen waste and residual sludge significantly contributed to the mitigation of global warming potential (GWP), reaching -19.76 kgCO2-eq, but had the least impact on the mitigation of acidification potential (AP), reaching -0.10 kgSO2-eq. In addition, the addition of humus composites significantly increased the production of biogas. At a concentration of 5 g/L, the biogas yield of the anaerobic co-digestion process was 70.76 m3, which increased by 50.62% compared with the blank group. This amount of biogas replaces ~50.52 kg of standard coal, reducing CO2 emissions by 13.74 kg compared with burning the same amount of standard coal. Therefore, the anaerobic co-digestion treatment of kitchen waste and residual sludge brings considerable environmental benefits.

16.
Bioresour Technol ; 402: 130836, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38744398

RESUMEN

There have been extensive applications of waste activated sludge (WAS) in anaerobic co-digestion (AcoD). Nonetheless, mechanisms through which AcoD systems maintain stability, particularly under nutrient-stressed conditions, are under-appreciated. In this study, the role of WAS in a nutrient-stressed WAS-food waste AcoD system was re-evaluated. Our findings demonstrated that WAS-based co-digestion increased methane production (by 20-60%) as WAS bolsters such systems' resilience via establishing a core niche-based microbial balance. The carbon utilization investigation suggested a microbial niche balance is attainable if two conditions are satisfied: 1) hydrolysis efficiency is greater than 50%; and 2) both the acidogenesis-to-hydrolysis and acetogenesis-to-hydrolysis efficiencies surpass 0.5. Metagenomic assembly genome (MAG) analysis indicated that the versatile metabolic characteristics strengthened the microbial niche balance, rendering the system resilient and efficient through a syntrophic mode, contributing to both acidogenesis and acetogenesis. The findings of this study provide new insights into the ecological effects of WAS on AcoD.


Asunto(s)
Metano , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Anaerobiosis , Metano/metabolismo , Reactores Biológicos , Hidrólisis , Nutrientes/metabolismo , Carbono/metabolismo
17.
Environ Sci Pollut Res Int ; 31(23): 34622-34646, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709410

RESUMEN

A blend of organic municipal solid waste, slaughterhouse waste, fecal sludge, and landfill leachate was selected in different mixing ratios to formulate the best substrate mixture for biomethanation. Individual substrates were characterized, and the mixing ratio was optimized with the help of a response surface methodology tool to a value of 1:1:1:1 (with a C/N ratio of 28±0.769 and total volatile fatty acid (VFA) concentration of 2500±10.53 mg/L) to improve the overall biomethanation. The optimized blend (C/N ratio: 28.6, VFA: 2538 mg/L) was characterized for physicochemical, biological, and microbial properties and subjected to anaerobic digestion in lab-scale reactors of 1000 mL capacity with and without the addition of inoculum. The biogas yield of individual substrates and blends was ascertained separately. The observed cumulative biogas yield over 21 days from the non-inoculated substrates varied between 142±1.95 mL (24.6±0.3 ml/gVS) and 1974.5±21.72 mL (270.4±3.1 ml/gVS). In comparison, the addition of external inoculation at a 5% rate (w/w) of the substrate uplifted the minimum and maximum cumulative gas yield values to 203±9.9 mL (35.0±1.6 mL/gVS) and 3394±13.4 mL (315.3±1.2 mL/gVS), respectively. The inoculum procured from the Defence Research and Development Organisation (DRDO) was screened in advance, considering factors such as maximizing VFA production and consumption rate, biogas yield, and digestate quality. A similar outcome regarding biogas yield and digestate quality was observed for the equivalent blend. The cumulative gas yield increased from 2673±14.5 mL (373.7±2.2 mL/gVS) to 4284±111.02 mL (391.47±20.02 mL/gVS) over 21 days post-application of a similar dosage of DRDO inoculum. The 16S rRNA genomic analysis revealed that the predominant bacterial population belonged to the phylum Firmicutes, with the majority falling within the orders Clostridiales and Lactobacillales. Ultimately, the study advocates the potential of the blend mentioned above for biomethanation and concomitant enrichment of both biogas yield and digestate quality.


Asunto(s)
Ácidos Grasos Volátiles , Ácidos Grasos Volátiles/metabolismo , Residuos Sólidos , Reactores Biológicos , Biocombustibles , Metano , Aguas del Alcantarillado , Anaerobiosis
18.
Water Res ; 258: 121740, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749185

RESUMEN

Although two-stage anaerobic digestion (TSAD) technology has been investigated, the mechanisms regarding the impact of acidogenic off-gas (AOG) on successive methane production have not been well addressed. In this study, a novel TSAD system was designed. Food waste, as the main substrate, was co-digested with chicken manure and corn straw. The acidogenic gas beyond atmospheric pressure was introduced into the bottom of the methanogenesis reactor through a stainless steel diffuser. Results showed the addition of AOG increased the methane yield from 435.2 to 597.1 mL/g VSin in successive methanogenesis stage, improved by 37.2 %, and increased the energy yield from 9.0 to 11.3 kJ/g VSsubstrate. However, the theoretical contribution of hydrogenotrophic methanogenesis using H2 contained in AOG was only 15.2 % of the increased methane yield. After the addition of AOG, the decreased levels of ammonia nitrogen and butyrate indicate that the stability of the AD system was improved. The electron transfer system and co-enzyme F420 activity were enhanced; however, the decrease in acetate kinase activity indicates aceticlastic methanogenesis may have been weakened. The microbial diversity and species richness were improved by the added AOG. Methanosarcina was more competitive than Methanothermobacter, enhancing the syntrophic effect. The relative abundance of protein degradation bacteria norank_f_Anaerolineaceae and lipid degradation bacteria Syntrophomonas was increased. Metabolite analysis confirmed that the addition of AOG promoted amino acid metabolism, the biosynthesis of other secondary metabolism and lipid metabolism. The improved degradation of recalcitrant organic components (lipids and proteins) in food waste was responsible for the increased methane yield. This study provides an in-depth understanding of the impact of AOG utilization on successive methane production and has practical implications for the treatment of food waste.


Asunto(s)
Biocombustibles , Reactores Biológicos , Metano , Anaerobiosis , Metano/metabolismo , Microbiota , Estiércol
19.
Waste Manag ; 183: 32-41, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38714120

RESUMEN

This study investigated the optimal pretreatment condition and mixture ratio of cattle manure (CM) for its efficient anaerobic co-digestion (AcoD) with food waste (FW) and pig manure (PM). The pretreatment performances of thermal (TM), microwave (MW), and ultrasound (US) technologies and the AcoD performance were statistically and experimentally evaluated at various mixture ratios of CM, FW, and PM. The results revealed that the most effective pretreatment condition with the TM, MW, and US pretreatments was 129.3 °C for 49.6 min, 824.2 W for 7.3 min, and 418.0 W for 36.3 min, respectively. The best AcoD performance of optimally pretreated CM (PCM) was achieved when 30.5 % PCM was mixed with 42.5 % FW and 27.0 % PM. A long-term evaluation showed that the start-up rate for the anaerobic mono-digestion of PCM was 2.3 times faster than that of CM and the amount of methane produced was 4.7 times higher; process stability was thus preferentially maintained under a higher organic loading rate (OLR) (2.0 kg-VS/m3∙d). The start-up rate for the AcoD of PCM with FW and PM was 1.2 times higher than that of the AcoD of CM with FW and PM. Although the performance gap between the AcoD reactors after steady state was not significantly different, the PCM AcoD reactor provided a more stable operation under a higher OLR (5.0 kg-VS/m3∙d). This study demonstrates that the pretreatment and co-digestion of CM could significantly enhance the production of biogas and improve process stability.


Asunto(s)
Estiércol , Animales , Anaerobiosis , Bovinos , Porcinos , Eliminación de Residuos/métodos , Metano/análisis , Metano/metabolismo , Reactores Biológicos , Microondas , Alimentos , Alimento Perdido y Desperdiciado
20.
Chemosphere ; 357: 142077, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643843

RESUMEN

Organic fraction of municipal solid waste (OFMSW) and waste activated sludge (WAS) are the most produced organic waste streams in urban centres. Their anaerobic co-digestion (AcoD) allows to generate methane (CH4) and digestate employable as renewable energy source and soil amendment, respectively, fully in accordance with circular bioeconomy principles. However, the widespread adoption of such technology is limited by relatively low CH4 yields that fail to bridge the gap between benefits and costs. Among strategies to boost AcoD of OFMSW and WAS, use of conductive materials (CMs) to promote interspecies electron transfer has gained increasing attention. This paper presents one of the few experimental attempts of investigating the effects of four different carbon(C)-based CMs (i.e., granular activated carbon - GAC, graphite - GR, graphene oxide - GO, and carbon nanotubes - CNTs) separately added in semi-continuous AcoD of OFMSW and thickened WAS. The presence of C-based CMs has been observed to improve CH4 yield of the control process. Specifically, after 63 days of operation (concentrations of GAC and GR of 10.0 g/L and of GO and CNTs of 0.2 g/L), 0.186 NL/gVS, 0.191 NL/gVS, 0.203 NL/gVS, and 0.195 NL/gVS of CH4 were produced in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.177 NL/gVS produced in the control process. Likewise, at the end of the test (i.e., after 105 days at concentrations of C-based CMs half of the initial ones), CH4 yields were 0.193 NL/gVS, 0.201 NL/gVS, 0.211 NL/gVS, and 0.206 NL/gVS in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.186 NL/gVS of the control process. Especially with regard to GR, GO, and CNTs, results obtained in the present study represent a significant advance of the knowledge on the effects of such C-based CMs to realistic and scalable AD process conditions respect to previous literature.


Asunto(s)
Carbono , Metano , Eliminación de Residuos , Aguas del Alcantarillado , Residuos Sólidos , Aguas del Alcantarillado/química , Anaerobiosis , Metano/análisis , Residuos Sólidos/análisis , Carbono/química , Carbono/análisis , Eliminación de Residuos/métodos , Grafito/química , Reactores Biológicos , Nanotubos de Carbono/química , Carbón Orgánico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...